JPS59126753A - Production of high-strength ferrous sintered parts - Google Patents

Production of high-strength ferrous sintered parts

Info

Publication number
JPS59126753A
JPS59126753A JP57152285A JP15228582A JPS59126753A JP S59126753 A JPS59126753 A JP S59126753A JP 57152285 A JP57152285 A JP 57152285A JP 15228582 A JP15228582 A JP 15228582A JP S59126753 A JPS59126753 A JP S59126753A
Authority
JP
Japan
Prior art keywords
powder
sintered
sintering
strength
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57152285A
Other languages
Japanese (ja)
Inventor
Yoichi Serino
芹野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57152285A priority Critical patent/JPS59126753A/en
Publication of JPS59126753A publication Critical patent/JPS59126753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain ferrous sintered parts having high strength without hot forging by subjecting iron powder consisting respectively of specified ratios of C powder and P powder added with a trace amt. of Ni, Mo, Mn, Cr and Sn to primary sintering then to shot peening and cold coining and subjecting the same further to secondary sintering. CONSTITUTION:Iron powder compounded with Fe-P alloy powder, electrolytic Cu powder and natural graphite powder so as to contain 2wt% Cu, 0.5wt% C and the balance Fe-P is prepaired. C in such iron powder is incorporated at 0.45- 0.9wt% and P powder at 0.1-0.5wt%. After 0.8wt% lead stearate is added as a lubricant to the compounded powder, the powder is mixed by using a V-shaped mixer and is compression-molded by using dies, whereby a powder molding is obtd. The molding is sintered in an inert gaseous atmosphere. The primary sintered body is subjected to shot peening then to cold coining in the dies, whereafter the sintered body is subjected to secondary sintering in an endothermic gaseous atmosphere and the intended high strength ferrous sintered parts are obtd.

Description

【発明の詳細な説明】 この発明は熱間鍛造を行なうことなく、高強度を有する
鉄系焼結部品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ferrous sintered parts having high strength without hot forging.

粉末冶金技術を用いた鉄系焼結部品は、生産性が高く、
かつ寸法精度が良く、又表面が清浄(スケールがなく光
輝面を有する)であるという特長を有しているので、広
い工業分野に晋及している。
Iron-based sintered parts using powder metallurgy technology have high productivity.
It also has good dimensional accuracy and a clean surface (no scale and has a bright surface), so it is used in a wide range of industrial fields.

併し、焼結部品は多くの気孔を内部に有する為、強度特
に疲労強度が低いという欠点を有しておシ、高い強度を
有する鋼製鍛造部品に代わる焼結部品の出現が望まれて
いた。近年、焼結部品の気孔を、この部品に対して熱間
鍛造を行なうことによシ消滅させて、高い強度にした焼
結鍛造部品も実用化されるようになってきた。この焼結
鍛造部品は気孔がほとんどない為、高強度を有している
が、反面熱間鍛造を行なう為、焼結部品層・来の利点で
ある生産性、寸法精度が低下し、又疲労強度に最も重要
な影椿を有する表面付近には気孔が残留し易いという欠
点があった。
However, since sintered parts have many pores inside, they have the disadvantage of low strength, particularly fatigue strength, and there is a desire for sintered parts to replace steel forged parts with high strength. Ta. In recent years, sintered forged parts that have high strength by eliminating pores in sintered parts by subjecting the parts to hot forging have come into practical use. This sintered forged part has almost no pores, so it has high strength, but on the other hand, because it is hot forged, the productivity and dimensional accuracy, which are the advantages of sintered part layers, decrease, and they also suffer from fatigue. There was a drawback that pores tend to remain near the surface where the camellia is most important for strength.

この発明は上記に濫゛み、熱間鍛造を行な−うことなく
、通常の焼結法で高い強度特に疲労強度を有する焼結部
品の製造方法を提供するものである。
The present invention extends to the above and provides a method for manufacturing sintered parts having high strength, particularly fatigue strength, by a conventional sintering method without hot forging.

次に、この発明を冥施例に基づいて説明する。Next, this invention will be explained based on an example.

100メツシユ(粒径150μ以下)の鉄:燐合金s末
(0,396” t 含有t ルF′e)、2ooメツ
シユ(粒径75μ以下)のぼ解枦I++1(Cu)粉、
及び200メツシユの天然!#鉛(q粉末を、虚盾比で
Cu2%、C0,5%残部がFe−Pとなるように配合
し、さらに金型成形時の潤滑剤として、前述の九合物に
対し重量比で0.8%のステアリン酸亜鉛を投入した後
、この混合物をv5混合機を用いて60分混合を行った
100 meshes (particle size 150μ or less) of iron: phosphorus alloy s powder (0,396" t containing F'e), 200 meshes (particle size 75μ or less) of iron: phosphorus alloy I++1 (Cu) powder,
And 200 mesh natural! #Lead (q powder) is blended so that the imaginary shield ratio is Cu2%, C0.5% the balance is Fe-P, and as a lubricant during mold molding, After adding 0.8% zinc stearate, the mixture was mixed for 60 minutes using a V5 mixer.

次に、この混合粉末を金型を用いて4.8”/、4の加
圧力で圧縮成形して、第1図に実線で示した形状を有す
る粉末成形体1を得た。この粉末成形体1は全長1 =
 98.5u、中心部の長さn1=20朋、この部の厚
さt1=8mx、又両側のつかみ部の長さ12 = 2
4.25闘いこの部の厚さT1−19Hであシ、中心部
とつかみ部との曲面の半径r−21,5MMである。
Next, this mixed powder was compression molded using a mold at a pressure of 4.8"/4 to obtain a powder compact 1 having the shape shown by the solid line in FIG. Body 1 has total length 1 =
98.5u, length of the center part n1 = 20m, thickness of this part t1 = 8mx, and length of the gripping parts on both sides 12 = 2
4.25 The thickness of this part is T1-19H, and the radius of the curved surface between the center part and the grip part is r-21.5MM.

次に、この粉末成形体1を950°Cで60分間エンド
サーミックガヌ雰囲気(N2 J=r33%、CoJ=
F24%、残N2)中で焼結(第1次焼M)を行なった
。この第1次焼結体1をアークハイ) 0.31 am
、カバレージ100%でショットピーニングを行なった
後、更にこの第1次焼結体1に対し金型中で冷間コイニ
ング(プレス荷重は8tOn/ci )を実施した。
Next, this powder compact 1 was heated at 950°C for 60 minutes in an endothermic Ganu atmosphere (N2 J=r33%, CoJ=
Sintering (first sintering M) was performed in F24%, balance N2). This primary sintered body 1 is arc high) 0.31 am
After shot peening with 100% coverage, the primary sintered body 1 was further subjected to cold coining in a mold (press load was 8 tOn/ci).

その結果、第1次焼結体1は第1図に破線で示すように
圧紬された。すなわち、中心部の板厚t1=8mWrが
t2 = 7 mとなり、又つかみ部の厚さT1=19
羽がT2 = 13 inとなった。
As a result, the primary sintered body 1 was pressed as shown by the broken line in FIG. In other words, the plate thickness at the center t1 = 8 mWr becomes t2 = 7 m, and the thickness at the gripping part T1 = 19
The wings were now T2 = 13 inches.

次に、上記コイニング後の第1次焼結体1を、1150
°Cのエンドサーミックガス雰囲気中で60分間2次焼
結を行ない第2次焼結体としてのテヌトピー72(点線
で示す。)を得た。
Next, the primary sintered body 1 after the above coining was heated to 1150
Secondary sintering was carried out for 60 minutes in an endothermic gas atmosphere at °C to obtain Tenutopi 72 (indicated by a dotted line) as a secondary sintered body.

第2図はこのテストピース2の表面部の兜孔5の分布状
況を示したものであり、表面6から約1Mまではほぼ完
全に気孔5がなく、内部4には多くの気孔5が残存して
いる。そして、このテストビーフ2の測定の結果は、表
面6で硬度がビツカーヌ(10kg)で270、又密度
が7.6g肩であシ、内部4で硬度がビッカース(10
に9)で190、又密度が6.7 gA以上であった。
Figure 2 shows the distribution of the pores 5 on the surface of this test piece 2. There are almost no pores 5 from the surface 6 to about 1M, and many pores 5 remain in the interior 4. are doing. The measurement results for Test Beef 2 show that the hardness at surface 6 is Vickers (10 kg), 270, the density is 7.6 g at the shoulder, and the hardness at internal 4 is Vickers (10 kg).
9) was 190, and the density was 6.7 gA or more.

上記のようにして形成されたテストビーフ2の強度評価
結果を表1に示す。
Table 1 shows the strength evaluation results of Test Beef 2 formed as described above.

表1中、テスト材2の構造用鋼は54Bcである。In Table 1, the structural steel of test material 2 is 54Bc.

表1から明らかなように、テスト材1のテストビーフ2
は疲労強度で6の焼結鍛造材以上の強度を示している。
As is clear from Table 1, test beef 2 of test material 1
shows a fatigue strength higher than that of sintered forged material with a rating of 6.

なお、表1のテスト材6の焼結鍛造材は以下の方法によ
シ製作したものである。
The sintered forged material of test material 6 in Table 1 was manufactured by the following method.

100メツシユの純Fe粉、200メツシユの電N銅粉
及び200メツシユの天然黒鉛粉を重量比でCu2%、
C065%残部Feになるように配合し、この配合材に
対し0.8%のステアリン酸亜鉛を金型成形時の潤滑剤
として投入した。
100 mesh pure Fe powder, 200 mesh N copper powder and 200 mesh natural graphite powder with Cu2% by weight,
The mixture was blended to have 65% CO and the balance was Fe, and 0.8% zinc stearate was added to this blend as a lubricant during molding.

そして、上記配合剤をv1型混合機を用いて60分間混
合した後、この混合粉末を金型を用いて4.8ton、
ldの加圧力で第1図に実線で示すテストビーフ1と同
じ形の粉末成形体を得た後、この粉末成形体e1150
°Cのエンドサーミックガス雰囲気中で加熱し、ただち
に金型を用いて9酬」の傭東で熱間に造を行ない、形状
がテストピース2と同じ焼結鍛造体を製作した。
After mixing the above ingredients for 60 minutes using a V1 mixer, 4.8 tons of this mixed powder was mixed using a mold.
After obtaining a powder compact with the same shape as Test Beef 1 shown by the solid line in Fig. 1 with a pressing force of ld, this powder compact e1150
It was heated in an endothermic gas atmosphere at °C, and immediately hot-molded using a mold with a 9-metal mold to produce a sintered forged body having the same shape as test piece 2.

次に、この実施例における炭、素C及び燐Pの作用につ
いて説明する。
Next, the effects of carbon, element C, and phosphorus P in this example will be explained.

炭素Cは鋼材の硬さおよび強度を向上させる元素である
事は一般的に知られている通シである。
It is generally known that carbon C is an element that improves the hardness and strength of steel materials.

この実施例において、Cの量が0.45%以下ではテス
トビーフ2の表面6の硬さとして、HV(10に9)2
00以上を得るには、高価なCu、Ni、Mo、 Mn
及びN1等の元素を多量に添加する必要があり、経済的
でな゛い。そして、表面6の硬さがHv(10kq)2
00以下では高い疲労強度が得られないので、Cの量は
0.45%以上とする必要がある。一方、Cの量が0.
9%以上になると、組織中にセメンタイトが著しく析出
するようになり、疲労強度が逆に低下する。従って、C
量は0.45〜0,9%が過当である。
In this example, when the amount of C is 0.45% or less, the hardness of the surface 6 of the test beef 2 is HV (9 to 10) 2.
To obtain 00 or more, expensive Cu, Ni, Mo, Mn
It is necessary to add a large amount of elements such as N1 and N1, which is not economical. And the hardness of the surface 6 is Hv (10kq)2
If it is less than 0.00, high fatigue strength cannot be obtained, so the amount of C needs to be 0.45% or more. On the other hand, the amount of C is 0.
If it exceeds 9%, cementite will precipitate significantly in the structure, and the fatigue strength will conversely decrease. Therefore, C
An appropriate amount is 0.45 to 0.9%.

なお、Cu、Ni、MOlMn llt、びCr等ノ元
素は、Cのみでは不足する嫂さ、強度を拙う為の元素で
あシ、使用目的によシ過当瓜を選択して除却するのは通
常の焼結合金の場合と同様である。
In addition, elements such as Cu, Ni, MOlMnllt, and Cr are elements that improve the strength and strength of C alone, so it is best to select and remove excess melons depending on the purpose of use. This is the same as in the case of ordinary sintered alloys.

燐(Piはこの実施例において重もポルな元素であシ、
次のような作用を有している。
Phosphorus (Pi is a heavy element in this example)
It has the following effects.

■ 1次焼結においては、焼結を促進し、かつ低温焼結
で焼結体の硬さを著しく上昇させる事なく粉末の結合を
強化する。この結果、−次焼結に続くショットピーニン
グによシ粉末成形体10表面から0.5緒以上までを略
真密度(気孔5がない状態)にする事ができる。ちなみ
に、Pを添加しないテストビーフを作成し、−次焼結に
続くショットピーニングを行なったところ、テストビー
フの隅部に欠けを生じた。又、上記1次焼結を1100
℃で60分間実施したもののショットピーニング後の真
密度の部分は、表面から0.1〜D、15jljfであ
り、この実施例のテストピース2の0.5緒と比較する
と非常に少なかった。
■ In the primary sintering, sintering is promoted and the low temperature sintering strengthens the bonding of the powder without significantly increasing the hardness of the sintered body. As a result, by the shot peening subsequent to the second sintering, it is possible to make the powder compact 10 from the surface up to 0.5 mm or more approximately true density (a state in which there are no pores 5). Incidentally, when test beef without P added was prepared and shot peening was performed following the -second sintering, chipping occurred at the corners of the test beef. In addition, the above primary sintering was performed at 1100
The true density after shot peening for 60 minutes at ℃ was 0.1-D from the surface and 15jljf, which was very small compared to 0.5D of test piece 2 of this example.

■ 2次焼結はテストピース2全体の焼結を完全に行な
うものであるが、この場合にショットピーニングおよび
冷間コイニングによシ略真密度になった表面部分のマイ
クロクラックを完全に焼結する事が重要であり、このク
ラックが桟留すると、テストピース2の疲労強度向上の
効果が著しく失われる。Pはテストビーフ2の表面部分
のマイクロクラックを完全に焼結する性質を有している
■ Secondary sintering is to completely sinter the entire test piece 2, but in this case, shot peening and cold coining completely sinter the microcracks on the surface that has reached approximately true density. It is important to do this, and if this crack becomes anchored, the effect of improving the fatigue strength of the test piece 2 will be significantly lost. P has the property of completely sintering the microcracks on the surface of the test beef 2.

ちなみに、Cu 2 %、0.5%CQ部Feの瑣量比
を有しPを含有しない粉末を1100°Cで60分間1
次焼結後、以後の工程をこの実施例と全く同じ方法で製
作したテストビーフの引張強さは70にり/l11m’
であり、略この実施例のテストピース2と差がなかった
が、疲労強度が24kq/IIL[11″と著しく低い
ものであった。
Incidentally, a powder containing no P and having a trivial ratio of Cu 2 %, 0.5% CQ part Fe was heated at 1100°C for 60 minutes.
After the next sintering, the tensile strength of the test beef produced using the same method as in this example was 70 mm/l11 m'
Although there was almost no difference from test piece 2 of this example, the fatigue strength was extremely low at 24 kq/IIL [11''.

そして、テストの結果Pの址としては、粉末成形体1(
テストビーフ2)の全量に対して0.1%以下では不充
分であり、逆に0.5%以上を加えるト、F’e−C−
P糸の共晶であるヌテダイトが析出し易くなって、疲労
強度の低下が起こる。従って、Pの量は粉末成形体1に
対して0.1〜0.5%が適当である。
As a result of the test, P powder compact 1 (
It is insufficient to add 0.1% or less to the total amount of test beef 2), and conversely, adding 0.5% or more to the total amount of F'e-C-
Nutedite, which is a eutectic of P yarn, tends to precipitate, resulting in a decrease in fatigue strength. Therefore, the appropriate amount of P is 0.1 to 0.5% based on the powder compact 1.

次に、通常使用される焼結合金製のほとんどの部品は、
最表面部に応力が果申し易い。この疲労の起点部分にな
)易い表面部の強度を向上させるには、冷間加工と雰囲
気焼結である為の表面部の清浄性(焼結鍛造は熱間鍛造
であるため表面部の清浄性が悪い)を加味しても、表面
の密度を入6g/cd以上にする必要がある。そして、
内部密度も6.7g/al以下では表面部の応力負担が
著しく大きくなる為、内部密度としても6.7 g/d
以上が必要である。この実施例のテストピース2はその
表面密度が乙6g/7以上であシ、かつその内部密度が
6.7gA以上になっているので、上記の条件を十分満
足している。
Next, most commonly used parts made of sintered alloys are
Stress tends to be felt on the outermost surface. In order to improve the strength of the surface area, which tends to be the starting point of fatigue, it is necessary to maintain the cleanliness of the surface area due to cold working and atmosphere sintering. Even if we take into account the negative effects (poor properties), the surface density needs to be at least 6 g/cd. and,
If the internal density is less than 6.7 g/al, the stress burden on the surface becomes significantly large, so the internal density is also 6.7 g/d.
The above is necessary. The test piece 2 of this example has a surface density of 6 g/7 or more and an internal density of 6.7 gA or more, so it fully satisfies the above conditions.

又、通常の高強度材料は硬度が高い為に一般的にはOa
械加工性が良くないが、この実施例の焼結合金は1次焼
結後でショットピーニング前に機械加工を行なうことが
可能であシ、機械加工性が落ちることもない。
In addition, ordinary high-strength materials have high hardness, so they generally have Oa
Although machinability is not good, the sintered alloy of this example can be machined after primary sintering and before shot peening, and machinability does not deteriorate.

この発明は上記のように、重量比で戻水0.45〜0,
90%、燐0.1〜0,5%の粉末及び銅、ニッケル、
七ルプデン、マンガン、クロムおよび錫のうち少くとも
一種を倣加に加えた鉄の粉末を予備焼結してできた部品
にショットピーニングと冷間コイニングを行ない史に二
回目の焼結をして、高強度鉄系焼結部品を製造すること
としたことによル、表面部の密度を乙6 gAd以上、
又内部の密度を6.7 g/d以上にして、熱間焼結鍛
造材以上の疲労強度を有し、かつ寸法精度や表面清浄度
の極めて優れた高強度鉄糸咬結部品を得ることができる
As mentioned above, this invention has a weight ratio of 0.45 to 0 return water,
90%, 0.1-0.5% phosphorus powder and copper, nickel,
Parts made by pre-sintering iron powder to which at least one of hexafluoride, manganese, chromium and tin has been added are subjected to shot peening and cold coining, and then sintered for the second time in history. By manufacturing high-strength iron-based sintered parts, the density of the surface area was increased to 6 gAd or more.
Also, to obtain a high-strength iron thread-bound part with an internal density of 6.7 g/d or more, which has a fatigue strength higher than that of hot sintered forged materials, and has extremely excellent dimensional accuracy and surface cleanliness. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明により製造した粉末成形体(テストビーフ
)の正面図、第2図は第1図のテストピース(点線部)
の1−1線fr面図である。 1・・・粉末成形体(1次焼結体) 2・・・テストピース(高強度鉄系焼結部品)出  願
  人  トヨタ自動車株式会社代   理   人 
  弁理士 岡  1) 英  彦後図面無し 第1図 第 2 図 00u 手続補正書(力”へ9 昭和タフ年 2月70日 特許庁長官 若’L和夫殿  ス:す 1 事件の表示 昭和タフ年 酋 評 願第1.j22紋号41件との関
係 特許出願人 4代理人 輛3114
The figure is a front view of the powder compact (test beef) produced according to the present invention, and Figure 2 is the test piece of Figure 1 (dotted line).
It is a 1-1 line fr view of . 1...Powder compact (primary sintered compact) 2...Test piece (high strength iron-based sintered part) Applicant: Toyota Motor Corporation Agent
Patent Attorney Oka 1) Hidehiko No drawings Figure 1 Figure 2 Figure 00u Procedural amendment (to force) 9 February 70, Showa Tuff Director General of the Patent Office Mr. Waka'L Kazuo S:S1 Display of the case Showa Tuff year No. 1.Relationship with 41 cases of J22 Crest Number of Patent Applicants 4 Agents 3114

Claims (1)

【特許請求の範囲】[Claims] クロム並びに錫の粉末のうち少くとも一種を加是た鉄粉
を1次焼結し、この−次焼結部品にシーットピーニング
と冷間コイニン夛を行ないさらに2次焼結したことを特
徴とずぶ高強度鉄系焼結部品の製造方法。
It is characterized by primary sintering of iron powder to which at least one of chromium and tin powders has been added, sheet peening and cold sintering of this primary sintered part, and further secondary sintering. A manufacturing method for extremely high-strength iron-based sintered parts.
JP57152285A 1982-08-31 1982-08-31 Production of high-strength ferrous sintered parts Pending JPS59126753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152285A JPS59126753A (en) 1982-08-31 1982-08-31 Production of high-strength ferrous sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152285A JPS59126753A (en) 1982-08-31 1982-08-31 Production of high-strength ferrous sintered parts

Publications (1)

Publication Number Publication Date
JPS59126753A true JPS59126753A (en) 1984-07-21

Family

ID=15537175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152285A Pending JPS59126753A (en) 1982-08-31 1982-08-31 Production of high-strength ferrous sintered parts

Country Status (1)

Country Link
JP (1) JPS59126753A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011927A2 (en) * 2000-08-09 2002-02-14 Keystone Investment Corporation Method for producing powder metal materials
JP2009041109A (en) * 1996-06-14 2009-02-26 Hoganas Ab Powder metallurgical body with compacted surface
RU2494836C1 (en) * 2012-08-09 2013-10-10 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method of producing iron-based phosphorus-bearing powder
WO2014065279A1 (en) * 2012-10-25 2014-05-01 千住金属工業株式会社 Sliding member and production method for same
CN104096835A (en) * 2014-07-18 2014-10-15 常熟市迅达粉末冶金有限公司 Energy-saving powder metallurgy process
US10309457B2 (en) 2012-03-27 2019-06-04 Senju Metal Industry Co., Ltd. Sliding member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041109A (en) * 1996-06-14 2009-02-26 Hoganas Ab Powder metallurgical body with compacted surface
WO2002011927A2 (en) * 2000-08-09 2002-02-14 Keystone Investment Corporation Method for producing powder metal materials
WO2002011927A3 (en) * 2000-08-09 2003-01-09 Keystone Invest Corp Method for producing powder metal materials
US10309457B2 (en) 2012-03-27 2019-06-04 Senju Metal Industry Co., Ltd. Sliding member
RU2494836C1 (en) * 2012-08-09 2013-10-10 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method of producing iron-based phosphorus-bearing powder
WO2014065279A1 (en) * 2012-10-25 2014-05-01 千住金属工業株式会社 Sliding member and production method for same
US9956613B2 (en) 2012-10-25 2018-05-01 Senju Metal Industry Co., Ltd. Sliding member and production method for same
CN104096835A (en) * 2014-07-18 2014-10-15 常熟市迅达粉末冶金有限公司 Energy-saving powder metallurgy process
CN104096835B (en) * 2014-07-18 2016-02-10 苏州市凯业金属制品有限公司 A kind of energy-conservation powder metallurgical technique

Similar Documents

Publication Publication Date Title
EP0266935B1 (en) Powdered metal valve seat insert
US7341689B2 (en) Pre-alloyed iron based powder
US4954171A (en) Composite alloy steel powder and sintered alloy steel
JP2002146403A (en) Alloy steel powder for powder metallurgy
US20100116088A1 (en) High-strength composition iron powder and sintered part made therefrom
WO2018053940A1 (en) Non-magnetic steel product and powder metallurgy manufacturing method therefor
EP0812925B1 (en) Low alloy steel powders for sinterhardening
JPS59126753A (en) Production of high-strength ferrous sintered parts
WO1994027764A1 (en) Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter
EP1055010A1 (en) High density forming process with powder blends
EP0274542B1 (en) Alloy steel powder for powder metallurgy
EP0601042B1 (en) Powder-metallurgical composition having good soft magnetic properties
CN110267754B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
US3890105A (en) Metallic sintering powder or alloy
JPS6345306A (en) Production of sintered member
EP0334968B1 (en) Composite alloy steel powder and sintered alloy steel
US3567528A (en) Method of using a carburized austenitic stainless steel
CN110234448B (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JP2579171B2 (en) Manufacturing method of sintered material
JPH0694562B2 (en) Method for producing composite alloy steel powder and sintered alloy steel
JPS58107470A (en) Preparation of sintered parts
JP3341675B2 (en) Iron-based sintered alloy excellent in strength and toughness and method for producing the same
CA1339554C (en) Composite alloy steel powder and sintered alloy stell
JPS60169501A (en) Ferrous alloy powder for sintering and forging