JPS5912503A - Method of producing solid electrolyte thin film - Google Patents

Method of producing solid electrolyte thin film

Info

Publication number
JPS5912503A
JPS5912503A JP12174082A JP12174082A JPS5912503A JP S5912503 A JPS5912503 A JP S5912503A JP 12174082 A JP12174082 A JP 12174082A JP 12174082 A JP12174082 A JP 12174082A JP S5912503 A JPS5912503 A JP S5912503A
Authority
JP
Japan
Prior art keywords
thin film
solid electrolyte
electrolyte thin
lisicon
producing solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12174082A
Other languages
Japanese (ja)
Inventor
大塚 秀昭
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12174082A priority Critical patent/JPS5912503A/en
Publication of JPS5912503A publication Critical patent/JPS5912503A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はリチウムイオン導電性を有する固体電解質薄膜
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a solid electrolyte thin film having lithium ion conductivity.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、固体電解質材料への関心が高まってきており、特
にアルカリイオン導電性の固体電解質は、Na−8%池
、Li電池等の電解質としての応用が注目されている。
Recently, interest in solid electrolyte materials has increased, and in particular, alkali ion conductive solid electrolytes are attracting attention for their application as electrolytes for Na-8% batteries, Li batteries, and the like.

近年、電子機器の小型化、薄型化、高性能化に伴い、薄
膜型のLi電池等が特に関心を集めている。又、イオン
導電体を用いたデバイスと半導体IC回路との整合性を
考慮した場合に、固体電解質材料の薄膜化、微細・臂タ
ーン化の必要がある。rc回路との整合性となると、I
Cに使用されている基板、例えばシリコン、サファイア
、スピネル等の基板上への固体電解質材料の形成が望ま
れている。
In recent years, as electronic devices have become smaller, thinner, and more sophisticated, thin-film Li batteries and the like have attracted particular attention. Furthermore, when considering the compatibility between devices using ionic conductors and semiconductor IC circuits, it is necessary to make the solid electrolyte material thinner, finer, and more rounded. When it comes to compatibility with the rc circuit, I
It is desirable to form solid electrolyte materials on substrates used in C, such as silicon, sapphire, spinel, and the like.

しかしながら、従来、固体電解質材料については主に、
セラミック技・術で作られる焼結体がほとんどであるた
め、小型、薄型にすることには限界があり、しかも半導
体ICとの整合性も悪いという欠点があった。
However, conventionally, solid electrolyte materials mainly
Since most of them are sintered bodies made using ceramic technology, there is a limit to how small and thin they can be made, and they also have the drawback of poor compatibility with semiconductor ICs.

〔発明の目的〕[Purpose of the invention]

本発明は薄膜型Li電池の実現や半導体デバイスとイオ
ン導電体との結合性を可能にした固体電解質薄膜の製造
方法を提供しようとするものである。
The present invention aims to provide a method for manufacturing a solid electrolyte thin film that enables the realization of a thin film type Li battery and the bondability between a semiconductor device and an ionic conductor.

〔発明の概要〕[Summary of the invention]

本発明者はL14Goo4−Zn2Ge04系固溶体の
−っで、Li3PO4のγ。相と同じ構造をとるLi4
(、−x)Zn2XGe04なる組成式のリシコン(す
thium 5Bp@r−pOnfQ Conduct
or q LISICON)に着目し、前記組成式のX
が0.09≦X≦0.40の範囲にあるリシコンを高周
波スパッタリング法又は蒸着法によりシリコン、サファ
イア、スピネル等の基板上に形成することによって、γ
1構造をもつリチウムイオン導電性の固体電解質薄膜を
容易に製造し得る方法を見い出したものである。
The present inventor has determined the γ of Li3PO4 in the L14Goo4-Zn2Ge04 solid solution. Li4 has the same structure as the phase
(, -x) Zn2XGe04 composition formula (Sthium 5Bp@r-pOnfQ Conduct
or q LISICON), and
By forming γ in the range of 0.09≦X≦0.40 on a substrate of silicon, sapphire, spinel, etc. by high frequency sputtering or vapor deposition,
We have discovered a method for easily manufacturing a lithium ion conductive solid electrolyte thin film having one structure.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例1 まず、Li5Zno、5GeO4(x=0.25)の組
成式で表わされるLISJCON系材料をターゲットと
し、高周波スパッタリング法によりサファイア基板のR
面(1102)に厚さ0.3屡の薄膜を形成した。スパ
ッタリングの条件は、基板温度80°C1雰囲気ガスA
r/C)z (酸素74.6%)、真空度8X10−2
Torr 、、・やワー100Wで行った。薄膜形成後
、620°Cで6時間熱処理して結晶性の向上を図った
0 得られた固体電解質薄膜の結晶構造をX線回折法により
調べた結果、LISICON構泣(Li、PO4数は、
ターケ゛ットの格子定数とほとんど同じであった。この
IjSICON系薄膜の基板系内膜向の導電、率は50
0°Cにおいて、2X10  Ω σ で、ターゲット
に用いたLi 3Zn0.5Ge04の500 ’Cに
おける4電率6.5X10  Ωαに比べて約1/30
であるが、L I 2 Ge OsやL12ZnGeO
4等の薄膜の10倍の大きさをもつ。また、同相料の基
板依存性は小さく、石英ガラス、等を用いてもほとんど
同様な膜が得られた。
Example 1 First, a LISJCON material represented by the composition formula of Li5Zno, 5GeO4 (x=0.25) was targeted, and the R of a sapphire substrate was removed by high-frequency sputtering.
A thin film with a thickness of 0.3 mm was formed on the surface (1102). The sputtering conditions are: substrate temperature: 80°C; atmosphere gas: A.
r/C)z (oxygen 74.6%), vacuum degree 8X10-2
Torr... and power was set at 100W. After forming the thin film, it was heat-treated at 620°C for 6 hours to improve crystallinity.As a result of examining the crystal structure of the obtained solid electrolyte thin film by X-ray diffraction, it was found that LISICON structure (Li, PO4 number,
The lattice constant was almost the same as that of the target. The conductivity rate of this IjSICON thin film toward the inner film of the substrate is 50
At 0°C, 2X10 Ωσ is approximately 1/30 of the 4-electric constant of Li3Zn0.5Ge04 used as a target, which is 6.5X10 Ωα at 500'C.
However, L I 2 Ge Os and L12ZnGeO
It is 10 times larger than a 4th grade thin film. In addition, the dependence of the in-phase material on the substrate is small, and almost the same film was obtained even when using quartz glass or the like.

また、数回のス・母ツタリングによシzn不足になるた
め、これを補なう目的でL13zno5GeO4に10
〜100 mo1%のZnOを過剰に加えたターケ9ッ
トを用いて同様にスフ9ツタリングを行なってサファイ
ア基板のR面に薄膜を形成した。この場合もLISIC
ON構造の薄膜が得られた。ス・!ツタリングの条件は
基板温度が室温から250℃の範囲では影響なく、ガス
圧も6×10 〜10X10−2Torr 、 60〜
150 Wのd’クワ−同様な薄膜が得られた。
In addition, since zn is insufficient due to several times of sintering, 10
A thin film was formed on the R surface of the sapphire substrate by similarly performing Suff 9 tuttering using Tarque 9 to which ~100 mo1% of ZnO was added in excess. In this case too, LISIC
A thin film with an ON structure was obtained. vinegar·! The conditions for tsuttering have no effect when the substrate temperature is in the range from room temperature to 250°C, and the gas pressure is 6 x 10 - 10 x 10 -2 Torr, 60 -
A 150 W d'hoe-like thin film was obtained.

実施例2 Lis s z n o2sGe04 (X =o、 
i 2 s )をターr、)を用い、高周波スパッタリ
ング法によす、サファイア基板(R面)上に厚さ07μ
nLの薄膜を作製した。ス・セツタリングの条件は、実
施例1とほとんど同じでおるが、雰囲気ガスの圧力を1
.OX I 0−2Torrとした。薄膜形成後620
℃で6時間熱処理を行い、結晶性の向上を図った。
Example 2 Lis s z no2sGe04 (X = o,
A film with a thickness of 07 μm was deposited on a sapphire substrate (R side) using a high-frequency sputtering method using a tar r, ).
A thin film of nL was produced. The conditions for gas settling were almost the same as in Example 1, except that the pressure of the atmospheric gas was reduced to 1.
.. OXI was set at 0-2 Torr. 620 after thin film formation
Heat treatment was performed at ℃ for 6 hours to improve crystallinity.

得られた薄膜の結晶構造は、非常に弱いながらもLi 
2Gem3と思われるピークが混っているが、LISI
CON構造をとっている。500℃における導電率は実
施例1に示したものとほとんど同じ大きさであった。
Although the crystal structure of the obtained thin film is very weak, Li
There are some peaks that seem to be 2Gem3, but LISI
It has a CON structure. The conductivity at 500° C. was almost the same magnitude as that shown in Example 1.

また、実施例1と同様、L l y、sZ n a 2
s Ge OaにZnOを10〜100 molチ象加
したターゲットを用い、6X10 〜10X10  T
orr 、 60〜150Wの・平ワーの条件でスパッ
タリングを行なったところ、同様にLISICON構造
の薄膜を得ることができた。
Also, as in Example 1, L ly, sZ na 2
Using a target in which 10 to 100 mol of ZnO was added to s Ge Oa, 6X10 to 10X10T
When sputtering was carried out under the condition of normal power of 60 to 150 W, a thin film having a LISICON structure could be similarly obtained.

実施例3 ターケ0ットとして、Ll 2.8Zno、6GeO4
(X = 0.3 )を用い、実施例1と同様な方法で
高周波ス・ぐツタリングを行い膜厚0.6〜1μ7シL
の薄膜を作製し、更に実施例1と同様に熱処理を行い、
結晶性を高めその構造を調べた。薄膜の結晶構造は、や
はりLISICON構造でおジ、導電率は500 ’C
で1×10−3Ω′″1d1であった。
Example 3 As target, Ll 2.8Zno, 6GeO4
(X = 0.3), high frequency suction was performed in the same manner as in Example 1 to obtain a film thickness of 0.6 to 1 μ7.
A thin film was prepared, and then heat treated in the same manner as in Example 1,
We increased the crystallinity and investigated its structure. The crystal structure of the thin film is still a LISICON structure, and the conductivity is 500'C.
The resistance was 1×10−3Ω′″1d1.

また、実施例1と同様L12.8zno6Ge04にZ
nOを10〜150 mo1%過剰に加えたターゲット
を用い、同様な真空度、パワーでスパッタリングを行な
ったところ、同様にLISICON構造の薄膜を得るこ
とができた。
Also, as in Example 1, Z was added to L12.8zno6Ge04.
When sputtering was performed using a target to which 10 to 150 mo1% of nO was added at the same degree of vacuum and power, a thin film having a LISICON structure could be similarly obtained.

実施例4 ターゲットとして、L i 2.a Zn nB Ge
O4(x 〜0,4 )を用いて、実施例1と同様な条
件で高周波スパッタリングにより膜厚0,6〜1μmの
薄膜を作製し熱処理を行った。X線回折によυ薄膜の結
晶構造を調べた結果、LISICONのピークの他に弱
いながらもLI ZnGe04と思われるピークが混っ
ていた。導電率は500″Cで4×10 0確であった
Example 4 As a target, L i 2. a Zn nB Ge
Using O4(x ~ 0,4), a thin film with a thickness of 0.6 to 1 μm was prepared by high frequency sputtering under the same conditions as in Example 1, and heat treated. As a result of examining the crystal structure of the υ thin film by X-ray diffraction, in addition to the LISICON peak, a weak peak believed to be LI ZnGe04 was mixed. The conductivity was 4×100 at 500″C.

実施例5 L15Zn[15GeO4(X=0.25 )に50%
ZnOを加えたものを蒸着源として、電子ビーム蒸着に
より薄膜形成を行った。10″’ Torrの真空度で
、蒸発源の電力を制御し、膜堆積速度を350 X/m
lnとし、基板温度を100℃として、薄膜を作製した
。高周波スパッタリングの場合と同様に熱処理を行い、
結晶性の向上を図った。結晶構造はLISICON構造
であゃ、強度比もスパッタリングによる薄膜とほとんど
同じであった。導電率も実施例1のスパッタリング膜と
同じであった。
Example 5 L15Zn [50% in 15GeO4 (X=0.25)
A thin film was formed by electron beam evaporation using ZnO as a evaporation source. At a vacuum level of 10'' Torr, the power of the evaporation source was controlled and the film deposition rate was 350 X/m.
A thin film was produced at a temperature of 100° C. and a substrate temperature of 100° C. Heat treatment is performed in the same way as in the case of high frequency sputtering,
We aimed to improve crystallinity. Since the crystal structure was a LISICON structure, the intensity ratio was almost the same as that of a thin film produced by sputtering. The conductivity was also the same as that of the sputtered film of Example 1.

また、真空度10−’ 〜10’ T’orr、基板温
度、室温から300℃の条件で電子ビーム蒸着を行なっ
ても同様にLISICON構造の薄膜を得ることができ
た。
Further, even when electron beam evaporation was performed under the conditions of a vacuum degree of 10-' to 10'T'orr and a substrate temperature of room temperature to 300 DEG C., a thin film having a LISICON structure could be similarly obtained.

実施例6 Li 、8ZnCL6Ge04 (x = 0.3 )
に20%ZnOを加えたものを蒸着源とし、実施例5と
同様の条件で電子ビーム蒸着により薄膜を作製した。同
様な熱処理を行うことによりLISICON構造の薄月
莞を得た。同様にx=0.09〜x = 0.4の範囲
のLISICON系材料に適轟量ZnOを加えた蒸着源
を用いることによりLISICON構造の薄膜を得た。
Example 6 Li,8ZnCL6Ge04 (x = 0.3)
A thin film was produced by electron beam evaporation under the same conditions as in Example 5, using 20% ZnO as the evaporation source. A thin moon shell with a LISICON structure was obtained by performing a similar heat treatment. Similarly, a thin film having a LISICON structure was obtained by using a deposition source in which a suitable amount of ZnO was added to a LISICON material in the range of x = 0.09 to x = 0.4.

しかして、上記実施例1〜6で述べたp口<、スパッタ
法、蒸着法において、ターダウト、蒸着源に Li4(1−、)Zn2XGem4+ yZn。
Therefore, in the p-type, sputtering, and vapor deposition methods described in Examples 1 to 6 above, Li4(1-,)Zn2XGem4+ yZn is used as the terdoubt and vapor deposition source.

但し 0.09≦X≦0.40 0≦y≦1.5 を用いてスパッタ条件、蒸着条件を実施flu 1〜6
に記載した範囲で制御することによりLISICON構
造の薄膜を得ることができる。
However, sputtering conditions and vapor deposition conditions were carried out using 0.09≦X≦0.40 0≦y≦1.5 flu 1 to 6
A thin film having a LISICON structure can be obtained by controlling within the range described in .

また、本発明方法により得られた代表的な固体電解質薄
膜の500℃における導電率を下i己表に示す。
Further, the electrical conductivity at 500° C. of a typical solid electrolyte thin film obtained by the method of the present invention is shown in the table below.

上表よジ得られた固体電解質薄膜は4電率の商いLlイ
オン導電性を有することがわかる。
From the table above, it can be seen that the obtained solid electrolyte thin film has Ll ion conductivity based on the quadruplicity.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば基板上にL I S
 I CON構造のリチウムイオン導電性を肩する固体
電解質薄膜を容易に製造でき、もって薄膜型Ll電池の
実現や、種々の基板を用いた半導体ICとの整合性によ
り被合デバイスの実現を達成できる等顕著な効果を有す
る。
As described in detail above, according to the present invention, L I S
It is possible to easily manufacture a solid electrolyte thin film that supports lithium ion conductivity in the ICON structure, which enables the realization of thin-film type L1 batteries and the realization of integrated devices through compatibility with semiconductor ICs using various substrates. etc. have remarkable effects.

Claims (1)

【特許請求の範囲】[Claims] 高周波スノ臂、タリング法又は蒸着法によりLi4(、
−、)Zn2XGe04 (0,09≦X≦0.40)
の組成式で表わされる材料を基板上に形成することを特
徴とする固体電解質薄膜の製造方法。
Li4(,
-,)Zn2XGe04 (0,09≦X≦0.40)
A method for producing a solid electrolyte thin film, comprising forming a material represented by the composition formula on a substrate.
JP12174082A 1982-07-13 1982-07-13 Method of producing solid electrolyte thin film Pending JPS5912503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12174082A JPS5912503A (en) 1982-07-13 1982-07-13 Method of producing solid electrolyte thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12174082A JPS5912503A (en) 1982-07-13 1982-07-13 Method of producing solid electrolyte thin film

Publications (1)

Publication Number Publication Date
JPS5912503A true JPS5912503A (en) 1984-01-23

Family

ID=14818703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12174082A Pending JPS5912503A (en) 1982-07-13 1982-07-13 Method of producing solid electrolyte thin film

Country Status (1)

Country Link
JP (1) JPS5912503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195956A (en) * 2017-05-12 2017-09-22 西安交通大学 The energy storage material preparation method of conductive substrates supported bi-metallic germanate nanometer sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195956A (en) * 2017-05-12 2017-09-22 西安交通大学 The energy storage material preparation method of conductive substrates supported bi-metallic germanate nanometer sheet

Similar Documents

Publication Publication Date Title
TW529194B (en) Method of forming thin film of inorganic solid electrolyte
CN109402739A (en) A kind of two dimension bismuth oxygen selenium atom crystalline material, and its preparation method and application
JP3677509B2 (en) Solid electrolyte and all solid state battery using the same
JPS5830749B2 (en) Zinc oxide piezoelectric crystal film
JP2009504556A (en) SiOx: Si composite composition and method for producing the same
JPS5912503A (en) Method of producing solid electrolyte thin film
JP2539214B2 (en) Glass ceramics and manufacturing method thereof
CN108640532A (en) A kind of thin-film solar cells preparation method for falling into light glass
JPH0280562A (en) Production of iron garnet layer and waveguide and integrated optoelectronics element
JPS5831743B2 (en) Zinc oxide piezoelectric crystal film
JPS5830752B2 (en) Zinc oxide piezoelectric crystal film
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
JPH0243334B2 (en)
JPH0547943B2 (en)
JPS6241311B2 (en)
CN113235159B (en) Method for preparing single crystal nickel ferrite film
CN103560147A (en) Nitrogen and phosphorus zinc oxide thin film, preparation method thereof and thin film transistor
da Costa et al. Effect of the Heat Treatment on the Microstructure and Morphology of Cigs Thin Films Prepared by RF Magnetron Sputtering at Room Temperature
JPH0210873B2 (en)
JPS58172234A (en) Thin film of amorphous lithium tantalate-lithium niobate and its preparation
CN113661143B (en) Method for producing film and laminate
CN115747744A (en) Indium gallium oxide film and preparation method thereof
JPS58167431A (en) Lithium oxide amorphous material and its preparation
SU1049573A1 (en) Process for producing zinc oxide-based piezometric films
JPS6321298A (en) Production of thin film of piezoelectric zinc oxide crystal