JPS59123599A - Treatment of waste water containing nitrogenous sulfer compound and ammonia - Google Patents

Treatment of waste water containing nitrogenous sulfer compound and ammonia

Info

Publication number
JPS59123599A
JPS59123599A JP22757782A JP22757782A JPS59123599A JP S59123599 A JPS59123599 A JP S59123599A JP 22757782 A JP22757782 A JP 22757782A JP 22757782 A JP22757782 A JP 22757782A JP S59123599 A JPS59123599 A JP S59123599A
Authority
JP
Japan
Prior art keywords
stage
nitrification
nitrifying
liquid
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22757782A
Other languages
Japanese (ja)
Other versions
JPH0116560B2 (en
Inventor
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP22757782A priority Critical patent/JPS59123599A/en
Publication of JPS59123599A publication Critical patent/JPS59123599A/en
Publication of JPH0116560B2 publication Critical patent/JPH0116560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To adjust a chemical for adjusting pH and treate waste water contg. an N- contg. S compd. and NH3 by circulating part of the nitrifying liquid in an anterior nitrifying stage divided to plural stages to a stage for decomposing and removing the NS compd. and passing the remaining nitrifying liquid to a posterior nitrifying stage. CONSTITUTION:Waste water 1 is adjusted to 2pH by an acid 3 and is supplied to a stage 18 for decomposing and removing NS compd., and the NS compd. in the waste water 1 is hydrolyzed to an amide type NS compd. which is further brought into reaction with NO<->2 in a circulating nitrifying liquid 17 and is decomposed away to gaseous N2 or gaseous N2O. The liquid removed of the NS compd. is neutralized to around neutral in a neutralizing tank 4 and the water temp. is decreased to about 40 deg.C, whereafter the liquid is fed to the 1st nitrifying stage 6-1 and part of the NH3 in the water 1 is nitrified and further part of the NH3 is nitrified in the 2nd nitrifying stage 6-2. The nitrified liquid wherein NO<->2 and NH3 are mixed is circulated as a nitrifying liquid 17 from the stage 6-1 and/or stage 6-2 to the stage 18. The NH3 remaining in the anterior nitrifying stage is thoroughly nitrified in the 3rd nitrifying stage 6-3 and the 4th nitrifying stage 6-4 and the formed NOX is denitrified 12.

Description

【発明の詳細な説明】 本発明は、石炭火力発電所の脱硝脱硫廃水など、アンモ
ニアと、同一分子内に窒素及び硫黄を含む化合物(含窒
素硫黄化合物、以下、NS化合物と略記する)を含有す
る廃水からこれらの化合物を除去する方法に関するもの
である。
Detailed Description of the Invention The present invention is directed to denitrification and desulfurization wastewater from coal-fired power plants that contain ammonia and a compound containing nitrogen and sulfur in the same molecule (nitrogen-containing sulfur compound, hereinafter abbreviated as NS compound). The present invention relates to a method for removing these compounds from wastewater.

石炭火力発電所の廃水中にはNH3(アンモニア)と、
COD成分となるイミドジスルホン酸(NH(SO3)
: )、ハイドロオキシモノスルホン酸(NH(OH)
(SO3) )などのNS化合物が含有されている。こ
のようなNS化合物は微生物では分解できないため、現
在の実用的な処理方法では、第(1)式 %式%(1) K示す如く、例えばイミドジスルホン酸をpH2近傍、
80℃前後でアミド化したのち、さらに第(2)弐NH
2SO3+NO2−+ N2 +SO4+H20−−−
山(2)に示すように酸性下でNO2−(亜硝酸イオン
)と反応せしめてN2ガスにまで分解し除去している。
Wastewater from coal-fired power plants contains NH3 (ammonia),
Imidodisulfonic acid (NH(SO3)), which is a COD component
: ), hydroxymonosulfonic acid (NH(OH)
Contains NS compounds such as (SO3) ). Since such NS compounds cannot be decomposed by microorganisms, in the current practical treatment method, for example, imidodisulfonic acid is treated at around pH 2, as shown in formula (1).
After amidation at around 80°C, the second (2) NH
2SO3+NO2-+ N2 +SO4+H20--
As shown in the mountain (2), it is reacted with NO2- (nitrite ion) under acidic conditions, decomposed into N2 gas, and removed.

しかして、NH3の硝化、脱窒およびこのようなNS化
合物除去方法が採用されている従来の火力発電所の廃水
処理方法について第1図を参照して説明すると、廃水1
はNS化合物分解工程2に流入し水温80℃、酸6の添
加によってpH2に調整されてイミドmNs化合物がア
ミド型NS化合物に加水分解されたのち、中和槽4でア
ルカリ剤(例えば消石灰)5によって中和され、熱交換
あるいは冷却水の注入によって水温が低下されたのち、
循環脱窒液14とともに好気的条件にある硝化工程6に
流入し、廃水1のN′H3は硝化菌の作用によってNO
xに硝化される。循環脱窒液14の循環は、硝化に際し
て生ずるH+を脱窒に際して生ずるアルカリ分で中和す
るだめであるが、不足分は別途中和用アルカリ剤(例え
ばNaOH) 7が注入される。硝化工程乙には硝化菌
の付着した媒体が充填されており、硝化反応はNO2が
生成することを前提に運転される。
The conventional wastewater treatment method for thermal power plants that employs NH3 nitrification, denitrification, and NS compound removal methods will be explained with reference to Figure 1.
flows into the NS compound decomposition step 2, where the water temperature is 80°C and the pH is adjusted to 2 by adding acid 6 to hydrolyze the imide mNs compound into an amide type NS compound. After the water temperature is lowered by heat exchange or injection of cooling water,
It flows into the nitrification process 6 under aerobic conditions together with the circulating denitrification liquid 14, and the N'H3 of the wastewater 1 is converted to NO by the action of nitrifying bacteria.
It is nitrified by x. The purpose of circulating the denitrifying liquid 14 is to neutralize H+ produced during nitrification with alkaline content produced during denitrification, but an alkaline agent (for example, NaOH) 7 for neutralization is separately injected to compensate for the deficiency. Nitrification process B is filled with a medium to which nitrifying bacteria are attached, and the nitrification reaction is operated on the premise that NO2 is produced.

硝化液は次にNS化合物除去工程8に流入し酸9によっ
てpHが3以下になるように調整される。
The nitrifying solution then flows into an NS compound removal step 8, where the pH is adjusted to 3 or less using an acid 9.

NS化合物分解工程2で生成したアミド型NS化合物は
pH3以下、NO2の存在下でN2ガスに分解されたの
ち、中和槽10に流入し、アルカリ剤(例えばNaOH
) 11によって中和されたのち、好気的条件にあり脱
窒菌の付着した媒体が充填されている脱窒工程12に流
入し、メタノールなどの還元剤16が注入され、NO2
はN2ガスに分解除去される。
The amide type NS compound generated in the NS compound decomposition step 2 is decomposed into N2 gas at a pH of 3 or less in the presence of NO2, and then flows into the neutralization tank 10 where it is treated with an alkaline agent (e.g. NaOH).
) After being neutralized by 11, it flows into the denitrification step 12 which is under aerobic conditions and is filled with a medium to which denitrifying bacteria are attached, where a reducing agent 16 such as methanol is injected and the NO2
is decomposed into N2 gas and removed.

脱窒反応で液中のアルカリ変分が増加するので、このア
ルカリ変分を硝化工程乙の中和剤に利用するため大部分
が硝化工程乙に循環され、残部は好気的条件にあるばっ
気工程15に流入し、脱窒液中に残留する還元剤が酸化
分解されたのち濾過工程16でSSが除去され、放流あ
るいはさらに高度の処理を受けて放流される。
Since the denitrification reaction increases the alkaline content in the liquid, most of this alkaline content is recycled to the nitrification process (B) to be used as a neutralizing agent in the nitrification process (B), and the remainder is left in the aerobic condition. After the reducing agent remaining in the denitrification liquid is oxidized and decomposed, SS is removed in a filtration step 16, and the denitrification liquid is discharged or subjected to further advanced treatment.

NS化合物とN0丁の反応は通常、N02−N/Ns化
合物−N中1.5程度で行われるが、NS化合物−Nは
硝化液中のNO2Nに比べけるかに少ないので、生成し
たNO2Nのζ1とんどは脱窒工程12で除去される。
The reaction between the NS compound and N0 is usually carried out at about 1.5% in N02-N/Ns compound-N, but since the amount of NS compound-N is much smaller than that of NO2N in the nitrification solution, the amount of NO2N produced is Most of ζ1 is removed in the denitrification step 12.

しかしながら、以上の従来方法は、pn調整に消費され
る薬品の量が多いため、ランニングコストが高くなると
いう大きな欠点があり、そのうえ第(3)式 %式% (3) に示すようにNH3がNOa (硝酸イオン)まで硝化
されてしまうことがあり、安定してNO2を生成できな
いため、NS化合物の除去率が低下し、処理水中のCO
Dを当初の目標値まで除去できない場合が生じている。
However, the conventional method described above has the major drawback of increasing running costs due to the large amount of chemicals consumed for pn adjustment. NOa (nitrate ions) may be nitrified, making it impossible to stably generate NO2, reducing the removal rate of NS compounds and reducing CO in the treated water.
There are cases where D cannot be removed to the original target value.

本発明は、pH調整用の薬品を節減し、さらに安定した
亜硝酸型硝化を行うことにより、上記従来法の欠点を解
消することを目的とするものである。
The present invention aims to eliminate the above-mentioned drawbacks of the conventional method by reducing the amount of pH adjusting chemicals and performing more stable nitrite-type nitrification.

すなわち本発明は1.アンモニアおよびNS化合物を含
む廃水の処理方法において、NS化合物分解除去工程、
中和工程、複数段に分割された生物学的硝化工程及び生
物学的脱窒工程を順次廃水の流下方向に設置し、前記分
割された硝化工程の前部硝化工程の硝化液の一部を前記
NS化合物分解除去工程へ循環して硝化液中のNO2(
亜硝酸イオン)と廃水中のNS化合物とを反応せしめる
ことによってNS化合物を除去し、循環しない残部の硝
化液を前記脱窒工程から循環した脱窒液と共に前記分割
された硝化工程の後部硝化工程に通液して液中に残留す
るアンモニアを硝化したのち、液中のNOx (NO2
及び/又はNO3)を前記脱窒工程で除去することを特
徴とするものである。
That is, the present invention has 1. In a method for treating wastewater containing ammonia and NS compounds, an NS compound decomposition and removal step;
A neutralization process, a biological nitrification process divided into multiple stages, and a biological denitrification process are sequentially installed in the downstream direction of wastewater, and a part of the nitrification liquid from the front nitrification process of the divided nitrification process is NO2 (
NS compounds are removed by reacting nitrite ions) with NS compounds in the wastewater, and the remaining nitrification solution that is not circulated is used together with the denitrification solution circulated from the denitrification step in the subsequent nitrification step of the divided nitrification step. After passing the liquid through the liquid to nitrify the ammonia remaining in the liquid, NOx (NO2
and/or NO3) is removed in the denitrification step.

次に、本発明の一実施態様について第2図に基づいて説
明する。
Next, one embodiment of the present invention will be described based on FIG. 2.

廃水1は水温80℃、酸乙によってpH2に調整された
NS化合物分解除去工程18に流入し、廃水1中のNS
化合物はアミド型NS化合物に加水分解され、さらに循
環硝化液17中のNOzと反応してN2ガスあるいはl
’J20ガスに分解除去される。上記加水分解反応、ガ
ス化反応とも高水温、低pHはど反応が促進される。N
S化合物が除去された液は中和槽4で中性付近に中和さ
れ、熱交換あるいは冷水の注入によって40℃程度にま
で水温降下したのち、第1硝化工程6−1に流入し、廃
水1中のNH3の一部が硝化され、さらに次の第2硝化
工程6−2で残部のNH3の一部が硝化される。
The wastewater 1 flows into the NS compound decomposition and removal step 18 where the water temperature is 80°C and the pH is adjusted to 2 with acid.
The compound is hydrolyzed into an amide-type NS compound, and further reacts with NOz in the circulating nitrification solution 17 to produce N2 gas or l
'It is decomposed and removed into J20 gas. Both the hydrolysis reaction and the gasification reaction are accelerated by high water temperature and low pH. N
The liquid from which the S compounds have been removed is neutralized to near neutrality in the neutralization tank 4, and the water temperature is lowered to about 40°C by heat exchange or injection of cold water, and then flows into the first nitrification step 6-1, where it is treated as wastewater. A part of NH3 in 1 is nitrified, and a part of the remaining NH3 is further nitrified in the next second nitrification step 6-2.

硝化工程6で硝化反応をNO2で止めるためには、前述
の第(3)式から判るように硝酸菌を失活するとよく、
そのだめには水温を40〜42℃程度の高温に維持およ
び/又はpHを7.5近傍以上にして液中のNH3濃度
を高く保持すると効果的である。第1硝化工程6−1、
第2硝化工程6−2でNH3を残留せしめるためには、
これらの硝化工程のNH3負荷を過大にするか、あるい
は酸素供給量を制限するなどの装置設計、運転操作の°
工夫を行えばよい。
In order to stop the nitrification reaction with NO2 in the nitrification step 6, it is best to deactivate the nitrate bacteria, as seen from equation (3) above.
To prevent this, it is effective to maintain the water temperature at a high temperature of about 40 to 42°C and/or to maintain the pH in the vicinity of 7.5 or higher to maintain a high NH3 concentration in the liquid. First nitrification step 6-1,
In order to make NH3 remain in the second nitrification step 6-2,
Equipment design and operational changes such as increasing the NH3 load in the nitrification process or limiting the amount of oxygen supplied
All you have to do is come up with some ideas.

しかして、NO2とNHaの混合した硝化液は第1硝化
工程6−1および/又は第2硝化工程6−2からNS化
合物分解除去工程18に前記循環硝化液17として循環
される。これらの硝化工程にはpH調整用のアルカリ剤
7が注入されるが、NH3の残留のだめpHが低下しな
ければ勿論注入は不要であり、また第3硝化士程6−6
、第4硝化工程6−4でpH低下が生ずれば、図示して
いないが両硝化工程6−3゜6−4のいずれかあるいは
両方にアルカリ剤7を注入すればよい。
Thus, the nitrified solution containing NO2 and NHa is circulated as the circulating nitrified solution 17 from the first nitrification step 6-1 and/or the second nitrification step 6-2 to the NS compound decomposition and removal step 18. In these nitrification processes, an alkaline agent 7 for pH adjustment is injected, but unless the pH is lowered due to residual NH3, injection is of course not necessary.
If the pH decreases in the fourth nitrification step 6-4, an alkaline agent 7 may be injected into either or both of the nitrification steps 6-3 and 6-4, although not shown.

流出硝化液を循環する硝化工程を2分割しているのは、
廃水1の流入口に向かって段階的にNH3濃度を高くす
ることによりNo夏の生成を促進するためであり、循環
硝化液17の取水口を各硝化工程< 6−1 、6−2
 )に分けているのは、最もNo夏濃度の高い部分より
随童に循環硝化液17をとるためである。
The nitrification process that circulates the effluent nitrification liquid is divided into two parts.
This is to promote the generation of No summer by increasing the NH3 concentration stepwise toward the inlet of the wastewater 1, and the intake of the circulating nitrification liquid 17 is connected to each nitrification process <6-1, 6-2.
) The reason for this is to take the circulating nitrifying liquid 17 from the part with the highest No summer concentration.

第3硝化工程6−6、第4硝化工程6−4では前段の硝
化工程で残留したI’JH3が完全に硝化され、生成し
たNOxは脱窒工程12で脱窒され、脱窒水の一部は第
3硝化工程6−6および/又は第4硝化工程6−4に循
環され、残部はばつ気工程15に流入し、脱窒工程12
で添加された還元剤の残留分が酸化分解されたのち、濾
過工程16あるいはさらに高度の処理を受けたのち放流
される。
In the third nitrification step 6-6 and the fourth nitrification step 6-4, I'JH3 remaining in the previous nitrification step is completely nitrified, and the generated NOx is denitrified in the denitrification step 12, and part of the denitrified water is A portion is recycled to the third nitrification step 6-6 and/or the fourth nitrification step 6-4, and the remainder flows into the aeration step 15 and denitrification step 12.
After the residual amount of the reducing agent added in step 1 is oxidized and decomposed, it is subjected to a filtration step 16 or a more advanced treatment and then discharged.

循環脱窒液14は後段の硝化工程(6−3,<5−4)
に循環されるが、これは前段の硝化工程(6−1、6−
2)の残留NH3を循環脱窒液14で希釈せずに高濃度
に保つことにより亜硝酸化金促進し、かつ循環硝化液1
7中のNO2’a度を高濃度に維持するだめに行われる
The circulating denitrification liquid 14 is used in the subsequent nitrification process (6-3, <5-4)
This is recycled to the previous nitrification process (6-1, 6-
By keeping the residual NH3 in 2) at a high concentration without diluting it with the circulating denitrifying solution 14, gold nitrite oxide is promoted, and the circulating nitrifying solution 1
This is done in order to maintain a high concentration of NO2'a in the water.

硝化工程乙の分割はNH3を段階的に残留させ、No2
の生成を促進するためのものであるから、その分割数は
特に限定されるわけではなく、最少2分割から数十分割
まで分割可能であるが、実用的な分割数は2〜5程度で
ある。
The division of nitrification process B leaves NH3 in stages, and No2
Since the purpose is to promote the generation of .

前記硝化工程6、脱窒工程12、ばっ気工程15は微生
物の付着する媒体を充填させたものが望ましく、充填部
は流動床でも固定床でもよい。但し、浮遊汚泥法は各工
程に固液分離工程を設けて返送しなければならないので
、プロセスが複雑になる。
The nitrification step 6, denitrification step 12, and aeration step 15 are preferably filled with a medium to which microorganisms adhere, and the filling section may be a fluidized bed or a fixed bed. However, the suspended sludge method requires a solid-liquid separation step for each step before being returned, making the process complicated.

脱窒液の循環は、前述のように脱窒液のアルカリ分で硝
化工程乙の酸を中和する目的のほか、硝化液中のNOx
を希釈してその濃度を低く抑えることにより、脱窒工程
12のpH上昇を抑制し、高pHによる脱窒菌の活性低
下と処理水のpHが規制値の範囲を越えないようにする
ためである。脱窒液の循環量は廃水1のNH3濃度にも
よるが、NHa Nが200〜5oomyA程度の廃水
では廃水量の10倍程度の量を循環すればよい。
The circulation of the denitrification liquid is used not only to neutralize the acid in the nitrification process B with the alkaline content of the denitrification liquid, but also to reduce NOx in the nitrification liquid.
This is to suppress the pH increase in the denitrification step 12 by diluting and keeping the concentration low, and to prevent the activity of denitrifying bacteria from decreasing due to high pH and the pH of the treated water from exceeding the regulatory value range. . The amount of denitrification fluid to be circulated depends on the NH3 concentration of the wastewater 1, but in the case of wastewater with NHaN of about 200 to 5 oomyA, it is sufficient to circulate an amount about 10 times the amount of wastewater.

一方、廃水のNH3N濃度が低くて脱窒工程12に流入
するNOxが低い場合、あるいは脱窒工程流入液に希釈
水を注入してNO工濃度を低下した場合には、脱窒工程
12におけるpHの上昇幅が小さくなるので、脱窒液の
循環を省略することも可能であるが、脱窒液を循環する
方が好ましい。まだ、廃水のpH緩衝能が強くて、硝化
、脱窒に際してそれぞれpHの低下、上昇幅が小さい場
合にも脱窒液の循環の省略が可能となるが、循環する方
が好ましい。
On the other hand, if the NH3N concentration in the wastewater is low and the NOx flowing into the denitrification process 12 is low, or if the NOx concentration is lowered by injecting dilution water into the denitrification process influent, the pH in the denitrification process 12 Although it is possible to omit the circulation of the denitrifying liquid since the increase in the amount of the denitrifying liquid becomes smaller, it is preferable to circulate the denitrifying liquid. Although it is possible to omit the circulation of the denitrifying solution even if the pH buffering capacity of the wastewater is strong and the decrease and increase in pH during nitrification and denitrification are small, respectively, it is preferable to circulate it.

前記NS化合物分解除去工程18には単一槽を使用して
もよいが、前述の第(1)式、第(2)式の反応が順次
種別に進行するように、2槽に分割してもよい。この場
合、前段の槽に酸を添加し、後段の槽に硝化液を循環す
るとよい。循環量は硝化液中のNO2Nが廃水のNS化
合物の1.5倍以上になるようにするとよい。
Although a single tank may be used in the NS compound decomposition and removal step 18, it may be divided into two tanks so that the reactions of the above-mentioned formulas (1) and (2) proceed in sequence. Good too. In this case, it is preferable to add acid to the tank at the front stage and circulate the nitrification liquid to the tank at the rear stage. The amount of circulation is preferably such that NO2N in the nitrification solution is 1.5 times or more the NS compound in the wastewater.

定常的な亜硝酸型硝化は、硝化工程<6−1 、6−2
 )の水温を安定して41℃程度に保持することによっ
て行うことができるが、不連続的に44〜45℃の高温
にしても亜硝酸型硝化を維持することができる。
Steady nitrite type nitrification is the nitrification process <6-1, 6-2
) can be carried out by stably maintaining the water temperature at about 41°C, but nitrous acid type nitrification can also be maintained even if the water temperature is raised discontinuously to 44 to 45°C.

硝化工程(6−1、6−2)の中和剤として、Ca(O
H)zを使用すると工程内でCaSO4,CaCO3な
どのスケールを生成するのでNa0)Lが推奨される。
Ca(O
If H)z is used, scales such as CaSO4 and CaCO3 will be generated in the process, so Na0)L is recommended.

以上の実施態様の説明から判るJうに、本発明では大量
の脱窒液を循環する経路にNS化合物除去工程(8)が
ないので、この工程で消費されるpH調整用の酸、アル
カリ剤をまったく使用しなくてすみ、ランニングコスト
の低減化、プロセスの単純化が可能になると共に、硝化
工程で部分的にNH3を高濃度に維持することによって
容易に亜硝酸型硝化を行うことができるので、安定して
NS化合物を除去することが可能になるなどの効果が得
られる。
As can be seen from the above description of the embodiments, in the present invention, there is no NS compound removal step (8) in the route that circulates a large amount of denitrification solution, so that the acid and alkaline agents for pH adjustment that are consumed in this step are removed. It does not need to be used at all, which reduces running costs and simplifies the process. In addition, by maintaining a high concentration of NH3 in parts of the nitrification process, nitrite type nitrification can be easily carried out. Effects such as being able to stably remove NS compounds can be obtained.

次に、本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 第2表に示す水質の戻水を第2図の処理フローに基づい
て処理した。実施条件を第1表、処理水質を第2表に示
す。
Example Returned water having the quality shown in Table 2 was treated based on the treatment flow shown in FIG. The implementation conditions are shown in Table 1, and the treated water quality is shown in Table 2.

第1表 実施条(’4:(14日間平均値)豪硝化桶は
、各種とも実施当初の7日間35℃の一定水温に制御し
、その後7日間は30〜44℃の範囲で変動させた。
Table 1 Implementation conditions ('4: (14-day average value) For each type of nitrification tank, the water temperature was controlled at a constant 35℃ for the first 7 days of implementation, and then varied in the range of 30 to 44℃ for the next 7 days. .

第2表 処理水質(14日間の平均値)東N02−N 
が低いのけ、NH3Nの一部がNo 3にまで硝化され
たことと、循環脱窒液((よ−って希釈されただめであ
る。
Table 2 Treated water quality (average value over 14 days) East N02-N
Although the amount of NH3N is low, some of the NH3N has been nitrified to No.3, and the circulating denitrifying solution ((therefore, it has been diluted).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法のフローシート、第2図は本発明の一実
施態様を示すフローシートである。 1・・廃水、2・・・NS化合物分解工程、6・・酸、
4・・・中和槽、5・・・アルカリ剤、6・・・硝化工
程、6−1 ・・第1硝化工程、6−2・・・第2硝化
工程、6−6・・第3硝化工程、6−4・・・第4硝化
工程、7・・・アルカリ剤、8・・・NS化合物除去工
程、9・・酸、10・・中和槽、11・・・アルカリ剤
、12・・・脱屋工程、16・・・還元剤、14・・循
環脱窒液、15・・げっ気工程、16・・・p過工程、
17・・・循環硝化液、18・・・NS化合物分解除去
工程。 特許出願人  荏原インフィルコ株式会社代理人弁理士
 千  1)   稔
FIG. 1 is a flow sheet of a conventional method, and FIG. 2 is a flow sheet showing an embodiment of the present invention. 1. Wastewater, 2. NS compound decomposition process, 6. Acid,
4... Neutralization tank, 5... Alkali agent, 6... Nitrification process, 6-1... First nitrification process, 6-2... Second nitrification process, 6-6... Third Nitrification step, 6-4... Fourth nitrification step, 7... Alkaline agent, 8... NS compound removal step, 9... Acid, 10... Neutralization tank, 11... Alkaline agent, 12 ... Breaking process, 16... Reducing agent, 14... Circulating denitrification liquid, 15... Aeration process, 16... P passing process,
17... Circulating nitrification liquid, 18... NS compound decomposition and removal process. Patent applicant Minoru Sen 1) Patent attorney representing Ebara Infilco Co., Ltd.

Claims (1)

【特許請求の範囲】 1、含窒素硫黄化合物およびアンモニアを含有する廃水
の処理において、 該廃水を含窒素硫黄化合物分解除去工程、中和工程、複
数段に分割された生物学的硝化工程、生物学的脱窒工程
を順次流下させると共に、前記複数段硝化工程における
前部硝化工程の硝化液の一部を前記含窒素硫黄化合物分
解除去工程へ、前記生物学的脱窒工程の脱窒液の一部を
前記複数段硝化工程における後部硝化工程へそれぞれ循
環して処理することを特徴とする含窒素硫黄化合物およ
びアンモニア含有廃水の処理方法。 2 前記前部硝化工程が、前記複数段硝化工程における
最終段を除く少なくとも一つの硝化工程である特許請求
の範囲第1項記載の方法。 3、 前記後部硝化工程が、前記複数段硝化工程におけ
る最前段を除く少なくとも一つの硝化工程である特許請
求の範囲第1項記載の方法。
[Claims] 1. In the treatment of wastewater containing nitrogen-containing sulfur compounds and ammonia, the wastewater is subjected to a nitrogen-containing sulfur compound decomposition and removal step, a neutralization step, a biological nitrification step divided into multiple stages, a biological At the same time, a part of the nitrification solution from the front nitrification step in the multi-stage nitrification step is sent to the nitrogen-containing sulfur compound decomposition and removal step, and the denitrification solution from the biological denitrification step is passed through the biological denitrification step. A method for treating nitrogen-containing sulfur compounds and ammonia-containing wastewater, characterized in that a portion of the wastewater is recycled to a post-nitrification step in the multi-stage nitrification step. 2. The method according to claim 1, wherein the front nitrification step is at least one nitrification step other than the final stage in the multi-stage nitrification step. 3. The method according to claim 1, wherein the rear nitrification step is at least one nitrification step other than the first stage in the multi-stage nitrification step.
JP22757782A 1982-12-28 1982-12-28 Treatment of waste water containing nitrogenous sulfer compound and ammonia Granted JPS59123599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22757782A JPS59123599A (en) 1982-12-28 1982-12-28 Treatment of waste water containing nitrogenous sulfer compound and ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22757782A JPS59123599A (en) 1982-12-28 1982-12-28 Treatment of waste water containing nitrogenous sulfer compound and ammonia

Publications (2)

Publication Number Publication Date
JPS59123599A true JPS59123599A (en) 1984-07-17
JPH0116560B2 JPH0116560B2 (en) 1989-03-24

Family

ID=16863091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22757782A Granted JPS59123599A (en) 1982-12-28 1982-12-28 Treatment of waste water containing nitrogenous sulfer compound and ammonia

Country Status (1)

Country Link
JP (1) JPS59123599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045152A (en) * 2014-06-29 2014-09-17 桂林理工大学 Method for optimizing oxidation operation process of anaerobic ammonia
CN104045153A (en) * 2014-06-29 2014-09-17 桂林理工大学 Device capable of reducing generation amount of nitrous oxide in anaerobic ammonia oxidation reactor
CN112028242A (en) * 2020-07-29 2020-12-04 江苏大学 Inhibition of N2Apparatus and method for O-bleed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561994A (en) * 1978-11-02 1980-05-10 Hitachi Zosen Corp Method of reducing sulfureous nitrogen compounds in waste water
JPS5712893A (en) * 1980-06-26 1982-01-22 Mitsubishi Heavy Ind Ltd Disposal of waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561994A (en) * 1978-11-02 1980-05-10 Hitachi Zosen Corp Method of reducing sulfureous nitrogen compounds in waste water
JPS5712893A (en) * 1980-06-26 1982-01-22 Mitsubishi Heavy Ind Ltd Disposal of waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045152A (en) * 2014-06-29 2014-09-17 桂林理工大学 Method for optimizing oxidation operation process of anaerobic ammonia
CN104045153A (en) * 2014-06-29 2014-09-17 桂林理工大学 Device capable of reducing generation amount of nitrous oxide in anaerobic ammonia oxidation reactor
CN112028242A (en) * 2020-07-29 2020-12-04 江苏大学 Inhibition of N2Apparatus and method for O-bleed

Also Published As

Publication number Publication date
JPH0116560B2 (en) 1989-03-24

Similar Documents

Publication Publication Date Title
Schulze-Rettmer The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium-phosphate
JP3531481B2 (en) Wastewater treatment method and apparatus
KR102175423B1 (en) Wastewater treatment method and treatment device
JPS59123599A (en) Treatment of waste water containing nitrogenous sulfer compound and ammonia
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JP2005288371A (en) Wastewater treatment method
JPS6316100A (en) Biological nitraification and denitrification for drainage containing ammonia
JPH08309366A (en) Removal of nitrogen and phosphorus from waste water
JP4085436B2 (en) Drainage treatment apparatus and method
JPS5929092A (en) Treatment of sewage containing nitrogen component
JPH01194997A (en) Treatment of cyanide-containing solution and aerobe obtained by conditioning of facultative anaerobe
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPH0131958B2 (en)
JPS58150496A (en) Process for methane fermentation of waste liquid highly contg. nitrogen
JPH09290290A (en) Treatment of coke-oven gas liquor
JPH0871588A (en) Denitrification treatment of cyan-containing waste fluid
JPS6014997A (en) Treatment of organic filthy water
JPH0218155B2 (en)
JPH02245285A (en) Treatment of ammonia-containing waste water
JPS6054792A (en) Controlling device of biological denitrification process
JPH11216493A (en) Intermittent-aeration activated sludge treatment
JP3808936B2 (en) Efficient denitrification method of coke oven gas liquid by hydrogen donor addition
JPH09290296A (en) Biological denitrification treatment of cyan-containing coke-oven gas liquor
JPH06206093A (en) Method and device for accelerating nitrification for treatment with anaerobic-aerobic activated sludge