JPS5912311A - Capacitor type converter - Google Patents

Capacitor type converter

Info

Publication number
JPS5912311A
JPS5912311A JP12099382A JP12099382A JPS5912311A JP S5912311 A JPS5912311 A JP S5912311A JP 12099382 A JP12099382 A JP 12099382A JP 12099382 A JP12099382 A JP 12099382A JP S5912311 A JPS5912311 A JP S5912311A
Authority
JP
Japan
Prior art keywords
pulse width
voltage
width signal
capacitance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12099382A
Other languages
Japanese (ja)
Inventor
Terutaka Hirata
平田 輝孝
Masahiro Watari
正博 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP12099382A priority Critical patent/JPS5912311A/en
Publication of JPS5912311A publication Critical patent/JPS5912311A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To compensate for nonlinearity of a quantity to be measured, by using a variable capacitor whose capacity is varied in correspondence with the quantity to be measured and reference capacitor whose capacity is constant, and applying feedback by a pulse signal in correspondence with the difference in capacities. CONSTITUTION:A switch SW1 is driven by a pulse width signal PW2. A switch SW2 is driven by a pulse width signal PW3. A preset voltage Vr is turned ON and OFF by said switches, respectively. Field effect transistors are suitable for the switches SW1 and SW2. IC is an integrating circuit utilizing an operation amplifier OP1. An output voltage Vo which is applied to the input (-) of the integrating circuit, through a resistor R1, the output voltage which is applied through a resistor R2, and a reference voltage Vs1 which is applied through a resistor R2 are added and integrated, and the preset voltage Vr is obtained. FC is a filter circuit utilizing an operation amplifier OP2, wherein the voltage obtained by turning the switches SW2 ON and OFF is smoothed and the output voltage Vo is obtained.

Description

【発明の詳細な説明】 本発明は、圧力、差圧等の被測定量に応じて可動電極が
変位し容量が変化する可変コンデンサを用いた容量式変
換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitive transducer using a variable capacitor whose movable electrode is displaced and whose capacitance changes depending on a measured quantity such as pressure or differential pressure.

一般に容量式変換器においては、可変コンデンサに並列
に存在するストレイ容量の影響を受けて直線性が悪い欠
点があった。また圧力変換器のように可動電極が被測定
量に応じて変位する金属ダイヤスラムの場合には、被測
定量と容量との関係が双曲線で表わせるものが多く、被
測定量と出力とが非直線になっていた。
In general, capacitive converters have the disadvantage of poor linearity due to the influence of stray capacitance that exists in parallel with the variable capacitor. In addition, in the case of metal diaphragms such as pressure transducers in which the movable electrode is displaced according to the measured quantity, the relationship between the measured quantity and the capacitance is often expressed as a hyperbola, and the measured quantity and output are often expressed as a hyperbola. It was non-linear.

本発明は、被測定量に応じて容量が変化する可変コンデ
ンサと容量が一定な基準コンデンサを用い、基準コンデ
ンサと可変コンデンサの容量の差に応じたデユティレシ
オの第1のパルス幅信号およびいずれか一方の容量に応
じたデユティレシオの第2のパルス幅信号を得、第1の
パルス幅信号で設定電圧をオンオフした後平滑して出力
電圧を得るとともに、この出力電圧の一部を基準電圧に
加算し、この加算電圧に第2のパルス幅信号のデユティ
レシオの逆数を乗じた値を設定電圧とすることによって
、上述の如き非直線性を有効に補償できる容量式変換器
を実現したものである。
The present invention uses a variable capacitor whose capacitance changes depending on a measured quantity and a reference capacitor whose capacitance is constant, and generates a first pulse width signal with a duty ratio corresponding to the difference in capacitance between the reference capacitor and the variable capacitor, and either one of the first pulse width signals and the other. A second pulse width signal with a duty ratio corresponding to the capacitance is obtained, the set voltage is turned on and off using the first pulse width signal, and then smoothed to obtain an output voltage, and a part of this output voltage is added to the reference voltage. By setting the set voltage to a value obtained by multiplying this added voltage by the reciprocal of the duty ratio of the second pulse width signal, a capacitive converter that can effectively compensate for the above-mentioned nonlinearity is realized.

第1図は本発明変換器の一実施例を示す接続図である。FIG. 1 is a connection diagram showing an embodiment of the converter of the present invention.

図において、C4は可変コンデンサで、圧力等の被測定
量に応じて変位する可動電極10とこの可動電極10に
対向配置されている固定電極11とで構成されている。
In the figure, C4 is a variable capacitor, which is composed of a movable electrode 10 that is displaced according to a measured quantity such as pressure, and a fixed electrode 11 that is disposed opposite to the movable electrode 10.

c2t−i容量が一定な基準コンデンサである。c/p
は容量パルス幅変換回路で、可変コンデンサC4と基準
コンデンサC2の容量変化を検出し、C1の容1″に応
じたデュテ1 イレシオ下のパルス幅信号PW、と、C2の容量t2 
   ・ に応じたデユティレシオ−〒−のパルス幅信号PW2お
よびC2とC1の容量の差に応じたデユティレジt2−
t1   ・ オー7−のパルス幅信号PW3を出力するものである。
c2t-i is a reference capacitor with constant capacitance. c/p
is a capacitance pulse width conversion circuit that detects the capacitance change of the variable capacitor C4 and the reference capacitor C2, and converts the pulse width signal PW under the duty 1 ratio according to the capacitance 1'' of C1, and the capacitance t2 of C2.
- Duty ratio according to the pulse width signal PW2 of 〒- and duty register t2- according to the difference in capacitance between C2 and C1.
It outputs a pulse width signal PW3 of t1 and 7-.

c/pの具体的な構成の一例を第2図に示す。第2図に
おいて、sw、、、sw、2はそれぞれコンデ/すC,
、C2に並列に接続された電界効果トランジスタ等のス
イッチ、PGは周期Tおよび時間幅t。
An example of a specific configuration of c/p is shown in FIG. In Fig. 2, sw, , sw, 2 are respectively conde/suC,
, C2 are connected in parallel to a switch such as a field effect transistor, and PG has a period T and a time width t.

が一定なパルスP、ヲ出力するパルス発生器、8人、、
BA2は各々バッファアンプ、cpl、cp2は各々コ
ンパレータ、G、 、 G2. G、  は各々ノアゲ
ート、 IVはインバータである。swl、、sw、2
はPGからの第3図(イ)に示す如き一定周期Tで一定
パルス幅t8のパルスP、によって同時に駆動され、1
s の期間オンになる。オンになるとC,、C2に充電
されていた電荷が放電し、オフになると抵抗R111R
+2を介して直流電源vaよυの電流でC4゜C2が充
電される。その結果C,,C2の充電電圧■。1+Vc
2(d第3図(ロ)に示すようになる。コンパレータC
P、、CP2でBA、、BA2を介して与えられるvc
l、 vc2  を監視し、vc7. vc2  が一
定値Vbに達するとcp、、cp2の出力が第3図(ハ
)、に)に示すように反転する。Vc4. V、 が■
5  に達するまでの時間をi、+t2とすると、ノア
ゲートG、、G2゜G5  の出力端にはそれぞれ第3
図(ホ)、(へ)、(ト)に示すようにデユティレシオ
がtt、、 tz−9tz−t>なるTT      
T パルス幅信号pw、 、 Pw2. pw、が生ずる。
A pulse generator that outputs a constant pulse P, 8 people,
BA2 is a buffer amplifier, cpl, cp2 is a comparator, G, , G2. G and are respectively Noah gates, and IV is an inverter. swl,,sw,2
are simultaneously driven by a pulse P of a constant period T and a constant pulse width t8 as shown in FIG. 3(a) from the PG, and 1
It is turned on for a period of s. When it turns on, the charge charged in C, C2 is discharged, and when it turns off, the resistor R111R
C4°C2 is charged with the current of the DC power supply va through υ via +2. As a result, the charging voltage of C, C2 is ■. 1+Vc
2 (d) as shown in Figure 3 (b). Comparator C
P, , vc given via BA, , BA2 at CP2
l, monitor vc2, vc7. When vc2 reaches a constant value Vb, the outputs of cp and cp2 are inverted as shown in FIG. Vc4. V, is ■
If the time it takes to reach 5 is i, +t2, then the output terminals of the NOR gates G, , G2 and G5 each have a third gate.
As shown in Figures (E), (F), and (G), the duty ratio is tt, tz-9tz-t>TT.
T pulse width signals pw, , Pw2. pw is generated.

そして、j1st2  は抵抗J1 + ”12の値を
R,、= R,2: Rとすると、 t、 = k C,、、、、、、山(1)t、 = k
 C2・・曲・・・(2)ただし、k= ” tn (
1−Vb/V&)で与えられるので、pw、 、 Pw
2. pwBのデユティレシオはそれぞれC1の容量、
C2の容量およびC2とC5の容量の差に応じたものと
なる。
Then, j1st2 is the resistance J1 + "12, and if the value of it is R,, = R,2: R, then t, = k C,,,,,,,,mountain (1) t, = k
C2...Song...(2) However, k= ” tn (
1-Vb/V&), so pw, , Pw
2. The duty ratio of pwB is the capacity of C1,
This depends on the capacitance of C2 and the difference between the capacitances of C2 and C5.

再び第1図において、SWl、SW2は各々スイッチで
、SWはパルス幅信号PW2で駆動され、SW2はパル
ス幅信号pw3で駆動されてそれぞれ設定電圧vrをオ
ンオフするものである。なおスイッチsw、 、 sw
2としては電界効果トランジスタ等の電子スイッチが好
適である。ICに演算増幅器op。
Referring again to FIG. 1, SWl and SW2 are switches, SW is driven by a pulse width signal PW2, and SW2 is driven by a pulse width signal pW3 to turn on and off the set voltage vr, respectively. Note that the switches sw, , sw
2 is preferably an electronic switch such as a field effect transistor. Operational amplifier op in IC.

を用いた積分回路で、入力←)に抵抗R1を介して加え
られる設定電圧V をスイッチSW、でオンオフした電
圧と、抵抗R2f、介して加えられる出力電圧V。と、
抵抗R3を介して加えられる基準電圧v8.とを加算積
分して設定電圧vrを得るものである。FCは演算増幅
器″6P2を用いたフィルタ回路で、SW2でオンオフ
された電圧を平滑して出力電圧v0を得るものである。
This is an integrator circuit that uses a set voltage V applied to the input ←) via a resistor R1, which is turned on and off by a switch SW, and an output voltage V applied via a resistor R2f. and,
Reference voltage v8. applied via resistor R3. The set voltage vr is obtained by adding and integrating the values. FC is a filter circuit using an operational amplifier 6P2, which smoothes the voltage turned on and off by SW2 to obtain an output voltage v0.

このように構成した本発明変換器において、Pw2の周
期Tが積分回路ICの時定数CIR,に比較し十分に短
かく、定常状態に達しているときの積分回路ICの出力
電圧の直流分をvr とすると、積分回路ICの平均入
力電流は零となるので、フィルタ回路FCの出力電圧の
直流分をV とすると次式の関係が成立する。
In the converter of the present invention configured as described above, the period T of Pw2 is sufficiently short compared to the time constant CIR of the integrating circuit IC, and the DC component of the output voltage of the integrating circuit IC when the steady state is reached is vr, the average input current of the integrating circuit IC is zero, so if the DC component of the output voltage of the filter circuit FC is V, the following relationship holds true.

t ニー、2  jLLユ。0   ・・曲(3)R,T 
  R2H。
t nee, 2 jLL yu. 0...Song (3) R, T
R2H.

同様にパルス幅信号pwsの周期Tがフィルタ回路FC
の時定数CFR5に比較し十分に短かいので、定常状態
に達しているときのフィルタ回路FCの出力電圧の直流
分V は Rst2−tl vo=−頁°7°vr     、、、、“(4)とな
る。(3)式と(4)式からV は、6 ただし、  A1R4 となる。このようにvoはPw、のパルス幅(12−1
,)に大きく依存しているので、j2==i、  のと
きの出力の点(零点)はスイッチsw、、sw2の浮遊
容量。
Similarly, the period T of the pulse width signal pws is the filter circuit FC.
Since the time constant CFR5 is sufficiently short compared to the time constant CFR5, the DC component of the output voltage of the filter circuit FC when the steady state is reached is Rst2−tl vo=−page°7°vr ). From equations (3) and (4), V is 6, where A1R4 is obtained. In this way, vo is the pulse width of Pw (12-1
, ), the output point (zero point) when j2==i, is the stray capacitance of the switches sw, , sw2.

抵抗R,、R2,R,、R4,R5の温度変化などの影
響を受けず、零点の安定性がよい。またパルスP。
It is not affected by temperature changes in the resistors R, R2, R, R4, and R5, and has good zero point stability. Also Pulse P.

の周期Tが変化してもその影響を受けない。(5)式に
(1)式と(2)式を代入すると、vU次式で表わすこ
とができる。
Even if the period T of is changed, it is not affected by the change. By substituting equations (1) and (2) into equation (5), vU can be expressed as the following equation.

一方可変コンデンサC1の容量は変位量Xに対し)初期
容量をC8,可動電極10と固定電極11間の基準間隔
をd(x=oのとき)およびストレイ容量をC8とする
と、 の関係で変化する。よって出力電圧V は、・・・・・
・(8) となる。ここで、 を満足するように可変抵抗R5の抵抗値を調整すれば、
出力電圧V。は、 ・・・・・・OI となシ、Co + ”2 * Cs * ”2 * R
5* d + vsl  は一定値であるので、出力電
圧V。は変位量xに正確に対応したものとなる。なお、
基準コンデンサc2の容if、C2=Co+C,に選べ
ば、出力電圧V。は、R11Z 。 83.   ・・       °°曲a”となる
On the other hand, the capacitance of the variable capacitor C1 changes with respect to the amount of displacement do. Therefore, the output voltage V is...
・(8) becomes. Here, if the resistance value of variable resistor R5 is adjusted to satisfy the following,
Output voltage V.・・・・・・OI Tonashi, Co + ”2 * Cs * ”2 * R
5* d + vsl is a constant value, so the output voltage V. corresponds accurately to the amount of displacement x. In addition,
If the capacity of the reference capacitor c2 is chosen as C2=Co+C, the output voltage will be V. is R11Z. 83.・・・°°song a”.

が大きくなる程増加しR,> C2Cs  になるよう
2 に調整すれば、変位量2が大きくなる程増加率が減少す
るようになり、人出方関係を非直線にできる。しかもそ
の非直線性の大きさは抵抗値R3の値を変えることによ
って設定できる。したがって、例えば金属ダイヤスラム
で差圧や圧力を変位に変換する場合には、被測定量と可
動電極10の変位量Xとの非直線を補正できる。すなわ
ちリニアライズができる。
If the displacement amount 2 is adjusted to 2 so that it increases as the displacement amount 2 increases, and becomes R,>C2Cs, the increase rate decreases as the displacement amount 2 increases, and the relationship in the number of people can be made non-linear. Moreover, the magnitude of the nonlinearity can be set by changing the value of the resistance value R3. Therefore, when converting differential pressure or pressure into displacement using a metal diaphragm, for example, non-linearity between the amount to be measured and the amount of displacement X of the movable electrode 10 can be corrected. In other words, linearization is possible.

なお上述では、スイッチSW、をパルス幅信号pw2で
駆動する場合を例示したが、第4図に示すようにパルス
幅信号PW、で駆動するようにしてもよい。この場合V
。は、 ・・・・・・aり となり、R5の値を調整することによってリニアライズ
ができる。また上述では可変抵抗R3を調整する場合を
例示したが、第5図に示すように出力電圧Vf分圧抵抗
器RVで分圧した後バッファアンプBA、および抵抗R
5ヲ介して積分回路ICに与えるようにしてもよい。こ
の場合は、分圧抵抗器RVの分圧比をnとすると、 となり、分圧比nf:調整することによってリニアライ
ズができる。さらに第5図に示すように基準電圧■8゜
を抵抗R6を介してフィルタ回路FCの入力に与えれば
、抵抗R6の値を選ぶことによって零点を移動させるこ
とができる。なお第4図および第5図においてスイッチ
S’tV、 、 SW2の一端と基準点間に接続した抵
抗r、 、 r21d 8W、 、 sw2  の素子
や配線の浮遊容量の影響を除くためのものである。なお
抵抗r1*r2 の代りにsw、 、 sw2 と逆位
相でオンオフするスイッチとしてもよく、またsw、 
、 sw2 をトランスファスイッチとしてもよい。
In the above description, the switch SW is driven by the pulse width signal pw2, but the switch SW may be driven by the pulse width signal PW as shown in FIG. In this case V
. is as follows, and linearization can be performed by adjusting the value of R5. In addition, although the case where the variable resistor R3 is adjusted is illustrated above, as shown in FIG.
Alternatively, the signal may be applied to the integrating circuit IC through the circuit 5. In this case, if the voltage dividing ratio of the voltage dividing resistor RV is n, then the voltage dividing ratio nf: can be linearized by adjusting it. Further, as shown in FIG. 5, if a reference voltage of 8 DEG is applied to the input of the filter circuit FC via a resistor R6, the zero point can be moved by selecting the value of the resistor R6. In addition, in Figures 4 and 5, the resistors r, , r21d 8W, , sw2 connected between one end of the switch S'tV, , SW2 and the reference point are used to eliminate the influence of stray capacitance of the elements and wiring. . Note that instead of the resistor r1*r2, a switch that turns on and off in the opposite phase to sw, , and sw2 may be used, or sw,
, sw2 may be a transfer switch.

以上説明したように本発明においては、被測定量に応じ
て容量が変化する可変コンデンサと容量が一定な基準コ
ンデンサを用い、基準コンデンサと可変コンデンサの容
量の差に応じたデュテイレジオの第1のパルス幅信号お
よびいずれか一方の容9に応じたデユティレシオの第2
のパルス幅信号を得て、第1のパルス幅信号で設定電圧
をオンオンした後平滑して出力電圧を得るとともに、こ
の出力電圧の一部を基準電圧に加算し、この加算電圧に
第2のパルス幅信号のデユティレシオの逆数を乗じ次位
を設定電圧とするようにしているので、簡単な構成で有
効に非直線性を補正できる容量式変換器が得られる。
As explained above, in the present invention, a variable capacitor whose capacitance changes depending on the amount to be measured and a reference capacitor whose capacitance is constant are used, and the first pulse of the duty ratio is set according to the difference in capacitance between the reference capacitor and the variable capacitor. The second duty ratio according to the width signal and either capacity 9
Obtain a pulse width signal of Since the pulse width signal is multiplied by the reciprocal of the duty ratio and the next order is set as the set voltage, a capacitive converter that can effectively correct nonlinearity can be obtained with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明変換器の一実施例を示す接続図、゛ 第
2図は本発明変換器に用いる容量パルス幅変換回路の具
体的な結成の一例を示す接続図、第3図はその動作説明
のための波形図、第4図および第5図は本発明変換器の
他の実施例を示す接続図である。
Fig. 1 is a connection diagram showing one embodiment of the converter of the present invention, Fig. 2 is a connection diagram showing an example of a specific configuration of a capacitive pulse width conversion circuit used in the converter of the present invention, and Fig. 3 is its connection diagram. Waveform diagrams for explaining the operation, and FIGS. 4 and 5 are connection diagrams showing other embodiments of the converter of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 被測定量に応じて容量が変化する可変コンデンサと、容
量が一定な基準コンデンサと、基準コンデンサと可変コ
ンデンサの容量の差に応じたデユティレシオの第1のパ
ルス幅信号およびいずれか一方の容量に応じ几デユティ
レシオの第2のパルス幅信号を得る回路と、前記第1の
パルス幅信号で設定電圧をオンオンした後平滑して出力
電圧を得る手段と、この出力電圧の一部を基準電圧に加
算し、この加算電圧に前記第2のパルス幅信号のデユテ
ィレシオの逆数を乗算し次位を前記設定電圧とする手段
とを有する容量式変換器。
A variable capacitor whose capacitance changes according to the measured quantity, a reference capacitor whose capacitance is constant, a first pulse width signal of a duty ratio according to the difference in capacitance between the reference capacitor and the variable capacitor, and a first pulse width signal according to the capacitance of either one. a circuit for obtaining a second pulse width signal with a duty ratio; a means for turning a set voltage on and off using the first pulse width signal and then smoothing it to obtain an output voltage; , means for multiplying the added voltage by the reciprocal of the duty ratio of the second pulse width signal to obtain the set voltage.
JP12099382A 1982-07-12 1982-07-12 Capacitor type converter Pending JPS5912311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12099382A JPS5912311A (en) 1982-07-12 1982-07-12 Capacitor type converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12099382A JPS5912311A (en) 1982-07-12 1982-07-12 Capacitor type converter

Publications (1)

Publication Number Publication Date
JPS5912311A true JPS5912311A (en) 1984-01-23

Family

ID=14800120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12099382A Pending JPS5912311A (en) 1982-07-12 1982-07-12 Capacitor type converter

Country Status (1)

Country Link
JP (1) JPS5912311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211533A (en) * 1986-03-13 1987-09-17 Yokogawa Electric Corp Capacity type converting device
JP2018040711A (en) * 2016-09-08 2018-03-15 株式会社デンソーテン Capacitor capacity diagnostic device and capacitor capacity diagnostic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211533A (en) * 1986-03-13 1987-09-17 Yokogawa Electric Corp Capacity type converting device
JPH0545171B2 (en) * 1986-03-13 1993-07-08 Yokogawa Electric Corp
JP2018040711A (en) * 2016-09-08 2018-03-15 株式会社デンソーテン Capacitor capacity diagnostic device and capacitor capacity diagnostic method

Similar Documents

Publication Publication Date Title
JP4089672B2 (en) Oscillation circuit and semiconductor device having the oscillation circuit
JPS5928845B2 (en) displacement converter
JPS5912311A (en) Capacitor type converter
JP4121089B2 (en) Flow meter signal processing circuit
JPH0122085Y2 (en)
JPS5977311A (en) Capacitor type converter
JPS6352686B2 (en)
JPS59133421A (en) Capacity type converter
JPS62186607A (en) Triangular wave generator
JPS59112223A (en) Capacity type converter
JPS59133422A (en) Capacity type converter
JPH0353180Y2 (en)
JPS6342330Y2 (en)
JPS59176622A (en) Capacity type converter
JPH0427218Y2 (en)
JPH0374324B2 (en)
JPH0755859A (en) Capacitance detection circuit
JPH0216450B2 (en)
JPH0120648Y2 (en)
JPS63224664A (en) Booster circuit
JPS6020004Y2 (en) capacitive converter
CN117833657A (en) Power converter for remote power supply and error compensation circuit thereof
JPS60203810A (en) Physical quantity converter
JPS61177024A (en) A/d conversion circuit
JPS6058803B2 (en) flow transmitter