JPS59122930A - Fine particle detecting method - Google Patents

Fine particle detecting method

Info

Publication number
JPS59122930A
JPS59122930A JP57233698A JP23369882A JPS59122930A JP S59122930 A JPS59122930 A JP S59122930A JP 57233698 A JP57233698 A JP 57233698A JP 23369882 A JP23369882 A JP 23369882A JP S59122930 A JPS59122930 A JP S59122930A
Authority
JP
Japan
Prior art keywords
particle
particles
slit
slit plate
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57233698A
Other languages
Japanese (ja)
Other versions
JPH032252B2 (en
Inventor
Yoichi Matsumoto
陽一 松本
Akira Mizuno
彰 水野
Masaaki Otsuka
正明 大塚
Ichiro Sugiyama
一朗 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57233698A priority Critical patent/JPS59122930A/en
Publication of JPS59122930A publication Critical patent/JPS59122930A/en
Publication of JPH032252B2 publication Critical patent/JPH032252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure a ratio between the amount of a particle and the radius of the particle, by introducing the fine particle between a pair of facing electrodes, to which an AC voltage is applied, projecting light, and guiding scattered light due to the fine particles on a slit plate. CONSTITUTION:Fine particles are introduced between a pair of facing electrodes 1 and 1', to which an AC voltage is applied. He-Ne laser light is projected on the particles by a lighting device 6. Scattered light from the fine particles is guided on a slit plate 10. In the method of present invention, the locus of the particle movement in an AC electric field is observed by using an optical system. Therefore, the vibration amplitude of the fine particle can be measured without contact. Thus, a ratio between the amount of charge on the particle and the radius of the particle q/a and the like can be obtained.

Description

【発明の詳細な説明】 本発明1−I: 、ガス中に浮遊する微粒子の荷電量対
粒径比や、その速度などを測定するだめの微粒子検出方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Invention 1-I: This invention relates to a particle detection method for measuring the ratio of charge to particle size of particles suspended in a gas, their velocity, and the like.

近年、電気集じん装置には、高性能化、省エネルギー化
などが要求されている。この要求を満たすだめにdl、
装置の動作状態を把握し、最適制御を行う必要がある。
In recent years, electrostatic precipitators are required to have higher performance and lower energy consumption. In order to meet this request, dl,
It is necessary to understand the operating status of the equipment and perform optimal control.

そこで従来は、電気集じん装置の1火花類度」「出ロダ
スト濃度」などを測定し9課電・槌打時間々隔などの調
整を行うようにしている。
Therefore, in the past, the spark level, the emitted rod dust concentration, etc. of the electrostatic precipitator were measured, and the time intervals for applying electricity and hammering were adjusted.

しかし、特に装置出口側の情報として「ダストa度」だ
けでは制御を行うにあまりに不十分であり2粒径分布・
荷電量なども常時計測して制御系に組み入れることが望
ましい。
However, especially as information on the device exit side, "dust a degree" alone is insufficient for control, and two particle size distributions and
It is desirable to constantly measure the amount of charge and incorporate it into the control system.

特に2粒子荷電量と粒子半径の比9/a(以下単に比q
/aという)は、集じん装置の集じん効率を決める粒子
移動速度を左右する重要な要素である。その為、サブミ
クロン粒子、つまり。
In particular, the ratio of the charge amount of two particles to the particle radius is 9/a (hereinafter simply referred to as the ratio q
/a) is an important factor that influences the particle movement speed that determines the dust collection efficiency of the dust collection device. Therefore, submicron particles, that is.

排ガス中の微粒子に着目し、その比q / aを測定す
る必要がある。
It is necessary to focus on fine particles in exhaust gas and measure their ratio q/a.

本発明の微粒子検出方法は、交番電圧を印加した一対の
対向電極間に微粒子を導入して光を照射し、その微粒子
による散乱光を微粒子の導入方向と光学的に平行な向き
に配設した少なくとも2本以上のスリットを有するスリ
ット板上に導き、同スリット板のスリットを通過する散
乱光を光電子増倍管で検出して各スリットの通過時間を
測定し、スリット間隔と通過時間とから微粒子の振動振
幅を求めるζものであるので。
In the particle detection method of the present invention, particles are introduced between a pair of opposing electrodes to which an alternating voltage is applied, light is irradiated, and the scattered light by the particles is arranged in a direction optically parallel to the direction in which the particles are introduced. Fine particles are guided onto a slit plate having at least two slits, and the scattered light passing through the slits of the slit plate is detected with a photomultiplier tube to measure the passing time of each slit. Since it is ζ to find the vibration amplitude of.

粒子荷電量と粒子半径の比q / aなども求められる
ようになる。
The ratio q/a between particle charge amount and particle radius can also be determined.

以下2本発明の方法を図面を参照しながら説明していく
The two methods of the present invention will be explained below with reference to the drawings.

図において、1・1′は一対の対向電極であって、交流
電源2により対向電極1・1′間に正弦波状の交番電界
が発生させられる。
In the figure, reference numerals 1 and 1' denote a pair of opposing electrodes, and an AC power supply 2 generates a sinusoidal alternating electric field between the opposing electrodes 1 and 1'.

3はガス導入管、4はガス排出管であって。3 is a gas introduction pipe, and 4 is a gas discharge pipe.

電気集じん装置などからサンプリングされたガスが対向
電極1・1′間に導入・流過される。なお、5は流量調
整用の弁である。
Gas sampled from an electrostatic precipitator or the like is introduced and passed between the opposing electrodes 1 and 1'. Note that 5 is a valve for adjusting the flow rate.

6は対向電極1・1′間を照らす照明装置であって+ 
He  Neレーザなどを使用する。7は拡大レンズで
あって、ガス中に含まれた微粒子による散乱を拡大して
取り出すものである。8は拡大レンズ7の光路中に置か
れたハーフミラ−であって、光を分岐して光電子増倍管
(以下単にPMという)9に入力することができる。
6 is a lighting device that illuminates between the opposing electrodes 1 and 1'; +
A HeNe laser or the like is used. Reference numeral 7 denotes a magnifying lens, which magnifies and extracts the scattering caused by fine particles contained in the gas. A half mirror 8 is placed in the optical path of the magnifying lens 7, and is capable of branching light and inputting it into a photomultiplier tube (hereinafter simply referred to as PM) 9.

10は、第2図に示すように、細いスリット1゜Aを平
行に有するスリット板であって、対向電極l・1′間を
一流れるガス流の向きと光学的に平行な向きに配設され
ている。
10, as shown in FIG. 2, is a slit plate having narrow slits 1°A in parallel, and is arranged in a direction optically parallel to the direction of the gas flow flowing between the opposing electrodes 1 and 1'. has been done.

さて、対向電極1・1′間に発生された交番電界中にお
ける球形の荷電微粒子の電界方向(X方向)の運動は(
1)式で表される。
Now, the motion of spherical charged particles in the electric field direction (X direction) in the alternating electric field generated between the opposing electrodes 1 and 1' is (
1) It is expressed by the formula.

X = A cos (ωt−ψ)十XO・・・0)た
だし。
X = A cos (ωt-ψ) 1XO...0) However.

A = qE/mω21+(6πηa/mω) 2・=
 (2)ψ = π−もan’  (6πηa/mω 
)     ’−(3)Eo、電界最大値、1n:粒子
質量。
A = qE/mω21+(6πηa/mω) 2・=
(2) ψ = π−alsoan' (6πηa/mω
) '-(3) Eo, maximum electric field value, 1n: particle mass.

a:粒子半径、  ゛η:空気粘性。a: particle radius, ゛η: air viscosity.

q:粒子荷電量、 ω:電界角周波数。q: particle charge amount, ω: electric field angular frequency.

Xo:振動幅  ・ である。Xo: Vibration width・ It is.

ここで1%に半径1μm以下の微粒子を考えると9位相
角ψ−90度であり振幅Aは A=qEO/6πηaω −(4) となる。
Here, if we consider 1% of particles with a radius of 1 μm or less, the phase angle is 9-90 degrees, and the amplitude A is A=qEO/6πηaω −(4).

従って、この振幅Aを測定できれば、たとえば比q /
 aが求められることになる訳である。
Therefore, if this amplitude A can be measured, for example, the ratio q /
This means that a is required.

PM9前方に置かれたスリット板10は、第3図に示す
ように間隔dを置いて2つのスリット10A、、 t、
oA2を有している。照明装置6で照らされたガス中の
微粒子の散乱光が粒子偏向用交番電界の最大時にスリッ
トIOA、を横切るとき。
The slit plate 10 placed in front of the pm9 is placed in two slits 10a, t, T, T, T, T, T, T, T, as shown in Fig. 3.
It has oA2. When the scattered light of fine particles in the gas illuminated by the illumination device 6 crosses the slit IOA when the particle deflection alternating electric field is at its maximum.

つ捷り1粒子がスワン) 10A2に到達するまでの時
間を△Lとすると、(1)式より A = d / sin (ω△t )  −(5)と
して求められるので、 PM9により散乱光かスワン)
 IOA、、 1OA2を横切る時間をPM9により検
出すれば良い。
If △L is the time taken to reach 10A2 (one particle per particle is a swan), then from equation (1), A = d / sin (ω△t) - (5). swan)
It is sufficient to detect the time when IOA,, 1OA2 is crossed by PM9.

このようにして2本発明の方法によって粒子の振動振幅
Aを求めると、たとえば比q / aのような値に置き
換えることが可能である。
In this way, when the vibration amplitude A of a particle is determined by the method of the present invention, it is possible to replace it with a value such as the ratio q/a.

上述した方法によると9粒子の振動軸XOがスリット板
10のスワンl−1OA、と一致せねばならず。
According to the method described above, the vibration axis XO of the nine particles must coincide with the swan l-1OA of the slit plate 10.

このような振動軸を持つ粒子の存在確率は小さなもので
ある。
The probability of existence of a particle with such a vibration axis is small.

そこで、第2図に示しだスリット板(イ)(ロ)(ハ)
(特に(ハ))ように、スリット10Aの数を多くして
おけばその確率は大きくなる。
Therefore, the slit plates (A), (B), and (C) shown in Figure 2 are
(Especially (c)), the probability of this happening increases as the number of slits 10A increases.

一方1次のような方法も考えることができる。On the other hand, a first-order method can also be considered.

すなわち、最大電界時からスワン) IOA、を横切る
才での時間を△J+スリット10A2  を横切るまで
の時間を△も2とし、その時間をPM9の出力により求
めるようにすれば、振幅Aは A  =  a/(5in(ω△t2) −5iri(
ω△も]))により求めることも可能である。
In other words, if the time taken from the maximum electric field to cross the slit 10A2 is △J + the time taken to cross the slit 10A2 and △ is also 2, and the time is determined by the output of PM9, the amplitude A is A = a/(5in(ω△t2) −5iri(
It is also possible to obtain ω△ by ])).

このように1本発明の方法では光学系を使用して交番電
界中の粒子運動軌跡を観測するので。
As described above, the method of the present invention uses an optical system to observe particle motion trajectories in an alternating electric field.

微粒子の振動振幅を°非接触で測定できる。The vibration amplitude of fine particles can be measured without contact.

1だ、交番電界の最大となる時刻に同期してスリット板
のスリットからの光信号を検出するようにしだので、ス
リットの開口面積を小さくでき、信号対雑音比(s /
 N比)を高くすることができる。
1. Since the optical signal from the slit of the slit plate is detected in synchronization with the time when the alternating electric field reaches its maximum, the aperture area of the slit can be reduced and the signal-to-noise ratio (s /
N ratio) can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する際に使用する機器の例
示図、第2図はスリット板の例示図。 第3図は測定原理説明図である。 1・1′:対向電極、2:交流電源、3゛ガス導入管、
6:照明装置、7:拡大レンズ、8゛ハーフミラ−19
:光電子増倍管、1o°スリツト 板 、IOA:  
ス リ ソ ト 。
FIG. 1 is an illustrative diagram of equipment used in carrying out the method of the present invention, and FIG. 2 is an illustrative diagram of a slit plate. FIG. 3 is an explanatory diagram of the measurement principle. 1・1′: Counter electrode, 2: AC power supply, 3゛Gas introduction tube,
6: Illumination device, 7: Magnifying lens, 8゛half mirror-19
: Photomultiplier tube, 1o° slit plate, IOA:
Sri Soto.

Claims (1)

【特許請求の範囲】[Claims] 交番電圧を印加した一対の対向電極間に微粒子を導入し
て光を照射し、その微粒子による散乱光を微粒子の導入
方向と光学的に平行な向きに配設した少なくとも2本以
上のスリットを有するスリット板上に導き、同スリット
板のスリットを通過する散乱光を光電子増倍管で検出し
て各スリットの通過時間を測定し、スリット間隔と通過
時間とから微粒子の振動振幅を求めることを特徴とする
微粒子検出方法。
Microparticles are introduced between a pair of opposing electrodes to which an alternating voltage is applied, and light is irradiated, and light scattered by the microparticles is reflected by at least two slits arranged in a direction optically parallel to the direction in which the microparticles are introduced. It is characterized by guiding the light onto a slit plate, detecting the scattered light passing through the slits of the slit plate with a photomultiplier tube, measuring the transit time of each slit, and determining the vibration amplitude of the particles from the slit interval and transit time. A method for detecting particulates.
JP57233698A 1982-12-28 1982-12-28 Fine particle detecting method Granted JPS59122930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233698A JPS59122930A (en) 1982-12-28 1982-12-28 Fine particle detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233698A JPS59122930A (en) 1982-12-28 1982-12-28 Fine particle detecting method

Publications (2)

Publication Number Publication Date
JPS59122930A true JPS59122930A (en) 1984-07-16
JPH032252B2 JPH032252B2 (en) 1991-01-14

Family

ID=16959143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233698A Granted JPS59122930A (en) 1982-12-28 1982-12-28 Fine particle detecting method

Country Status (1)

Country Link
JP (1) JPS59122930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643541A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Instrument for measuring fine particle in fluid
JPH02501087A (en) * 1986-09-30 1990-04-12 コロイダル・ダイナミクス・プロプライエタリ・リミテッド Method and apparatus for determining electrophoretic mobility of particles in suspension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501087A (en) * 1986-09-30 1990-04-12 コロイダル・ダイナミクス・プロプライエタリ・リミテッド Method and apparatus for determining electrophoretic mobility of particles in suspension
JPS643541A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Instrument for measuring fine particle in fluid

Also Published As

Publication number Publication date
JPH032252B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
EP0214769B1 (en) Aerosol particle charge and size analyzer
US8044350B2 (en) Miniaturized ultrafine particle sizer and monitor
Mazumder et al. Measurement of particle size and electrostatic charge distributions on toners using E-SPART analyzer
JP3622696B2 (en) Method and apparatus for measuring suspended particulate matter
US7772579B2 (en) Method and apparatus for simultaneously measuring a three dimensional position of a particle in a flow
US3692412A (en) Apparatus for analysing suspended particles
JPS62124441A (en) Fluidized cell measuring device
KR20060113669A (en) Method and apparatus for airborne particle sorting
JP4909254B2 (en) Airborne particulate matter measurement device
JPH04283648A (en) Measuring device for characteristic of fiber-shaped particle in gas
JPS59122930A (en) Fine particle detecting method
WO2007136818A2 (en) Method and apparatus for simultaneously measuring a three dimensional postion of a particle in a flow
Ignatovich et al. Detection of nanoparticles using optical gradient forces
Jia et al. Experimental investigation on the agglomeration performance of pre-charged micro-nano particles in uniform magnetic field
JPH04184241A (en) Particle analyser
JPS6243540A (en) Superfine particle measuring apparatus
Hemstreet Velocity distribution on the Masuda panel
Tedjojuwono et al. Studies of the dynamic behaviour of charged dust particles in high electric fields using laser Doppler velocimetry
Belhadj et al. Corona wind velocity: Parametric approach
JPS643541A (en) Instrument for measuring fine particle in fluid
Mizuno et al. Development of charge-to-radius ratio measuring apparatus for submicron particles
Schmid et al. In‐Situ Measurement of Local Particle Flux Densities in a Complex Two‐Phase Flow
Schmid et al. In-situ Measurement of Local Particle Fluxes in a Laboratory-Scaled ESP
Tardos et al. Electrical charge measurements on fine airborne particles
JPH0136109Y2 (en)