JPS59122587A - Production of molded slightly fusible or infusible pitch - Google Patents

Production of molded slightly fusible or infusible pitch

Info

Publication number
JPS59122587A
JPS59122587A JP23300882A JP23300882A JPS59122587A JP S59122587 A JPS59122587 A JP S59122587A JP 23300882 A JP23300882 A JP 23300882A JP 23300882 A JP23300882 A JP 23300882A JP S59122587 A JPS59122587 A JP S59122587A
Authority
JP
Japan
Prior art keywords
pitch
infusible
fine powder
softening point
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23300882A
Other languages
Japanese (ja)
Inventor
Shinpei Gomi
五味 真平
Tomio Arai
荒井 富夫
Toshio Tsutsui
俊雄 筒井
Takao Nakagawa
隆夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Standard Research Inc
Original Assignee
Fuji Standard Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Standard Research Inc filed Critical Fuji Standard Research Inc
Priority to JP23300882A priority Critical patent/JPS59122587A/en
Publication of JPS59122587A publication Critical patent/JPS59122587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To obtain molded slightly fusible or infusible pitch, by heat-treating molded petroleum or coaly pitch in contact with porous fine powder, so that a softening point of pitch is raised with keeping its shape. CONSTITUTION:Molded peroleum or coaly pitch having preferably >=120 deg.C softening point, containing 40-75wt% solid carbon, is heat-treated in contact with porous fine powder(preferable example, carbon black, pulverized active carbon, alumina, silica alumina, etc.) usually having 10-1,000mum average particle diameter, 0.05-2ml/g pore volume and/or 0.1-2,000m<2>/g specific surface area, to give the desired molded slightly fusible or infusible pitch.

Description

【発明の詳細な説明】 本発明は、石油系又は石炭系ピッチ成形体を加熱処理し
、その形状を保持した捷まピッチ軟化点を上昇させるこ
とによって、難融性又は不融性のピッチ成形体を製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention heat-treats a petroleum-based or coal-based pitch formed body to increase the softening point of the kneaded pitch while maintaining its shape, thereby forming a refractory or infusible pitch. The present invention relates to a method of manufacturing a body.

炭素成形体には、繊維状(炭素繊維)や球状をはじめと
して各種の炭素製品がある。一般には、これらの炭素成
形体を製造するには、先ず、成形しやすい性状のピッチ
を用い、所要の形状のピッチ成形体をつく9、これを不
融化させてから炭化を行い、必要に応じさらにグラファ
イト化したり、賦活化する方法が行われている。
There are various types of carbon products including fibrous (carbon fiber) and spherical carbon products. Generally, in order to manufacture these carbon molded bodies, first, a pitch molded body of the desired shape is made using pitch that is easy to mold.9 This is then infusible and then carbonized, and if necessary, Furthermore, methods of converting it into graphite and activating it are being used.

ピッチ成形体の炭化は、通常、5oo℃以上の高温度で
行われるため、ピッチ成形体をそのまま加熱すると、ピ
ッチ成形体は、昇温途中で軟化や、溶融、融着等を生じ
て、その形を維持することができなくなる。従って、ピ
ッチ成形体の炭化を行うには、その前処理としてピンチ
成形体の不融化か不可欠となる。このように、ピッチ成
形体から炭素製品を製造する場合には、ピッチ成形体の
不融化は極めて重要であシ、また不融化段階での処理条
件の適否が得られる炭素製品の性状にも大きな影響を与
える。
Carbonization of pitch compacts is usually carried out at a high temperature of 50°C or higher, so if the pitch compacts are heated as they are, the pitch compacts will soften, melt, or fuse during the temperature rise, resulting in damage to the pitch compacts. Unable to maintain shape. Therefore, in order to carbonize a pitch compact, it is essential to make the pinch compact infusible as a pretreatment. In this way, when manufacturing carbon products from pitch compacts, making the pitch compacts infusible is extremely important, and the appropriateness of the processing conditions at the infusibility stage also has a large effect on the properties of the carbon products. influence

従来、ピンチ成形体を不融化する方法としては、一般に
、酸化性の気体を用い、常温から約550℃の間の温度
で徐々に昇温させながら、酸化条件下で熱処理する方法
が知られている。この場合、酸化性ガスとしては、空気
の他、酸素、オゾン、三酸化イオウ、二酸化窒素又はこ
れらのガスを空気や音素で希釈した混合ガスが用いられ
る。
Conventionally, as a method for making a pinch molded body infusible, a method is generally known in which a heat treatment is performed under oxidizing conditions using an oxidizing gas and gradually increasing the temperature from room temperature to about 550°C. There is. In this case, as the oxidizing gas, in addition to air, oxygen, ozone, sulfur trioxide, nitrogen dioxide, or a mixed gas of these gases diluted with air or phoneme is used.

しかしながら、このような酸化剤を用いる熱処理方法に
おいては、当然のことながら、相当量の酸化性ガスが必
要とされるだめに、処理コストが高くなるという問題が
ある他、酸化反応を利用するものであることから、成形
体表面や内部に酸化物が生じ、その6周節が困難で、そ
のため製品の品質が悪化するという欠点がある。さらに
、酸化性ガスを用いる熱処理は、発熱反応であるために
、温度調節が困難である上、一般に、温度を常温から約
550℃までの間の温度で徐々に上昇さぜることか必要
であるために、反応時間が長く、装置が大きくなるとい
う欠点もある。
However, such heat treatment methods that use oxidizing agents naturally have the problem that a considerable amount of oxidizing gas is required, which increases the processing cost. As a result, oxides are generated on the surface and inside of the molded product, making it difficult to form oxides, resulting in a disadvantage that the quality of the product deteriorates. Furthermore, since heat treatment using an oxidizing gas is an exothermic reaction, it is difficult to control the temperature, and generally it is necessary to gradually increase the temperature between room temperature and about 550°C. Because of this, there are disadvantages in that the reaction time is long and the equipment becomes large.

本発明者らは、従来法における前記欠点の克服された不
融化法を開発すへく種々研究を重ねた結果、ピンチ成形
体を多孔性微粉体と接触させた状態において加熱処理す
る時には、ピンチ成形体は、溶融、融着などを生じ乞こ
となく、その軟化点をと昇させ、軟化点の高いS触性の
ピッチ成形体を経由17、最終的には軟化点を実質的に
示さない不融性のピッチ成形体が得られることを見出し
、本発明を完成するに到った。
The present inventors have developed an infusible method that overcomes the above-mentioned drawbacks of the conventional method, and as a result of extensive research, we have found that when heat-treating a pinched compact while it is in contact with porous fine powder, the pinching The molded product increases its softening point without causing melting, fusion, etc., passes through the S-tactile pitch molded product with a high softening point17, and finally shows virtually no softening point. It was discovered that an infusible pitch molded product can be obtained, and the present invention was completed.

即ち、本発明によれば、石油系又は石炭系ピンチ成形体
を、多孔性微粉体との接触下で加熱処理することを特徴
とする難融性又は不融性ピッチ成形体の製造方法が提供
される。
That is, according to the present invention, there is provided a method for producing a refractory or infusible pitch molded product, which is characterized in that a petroleum-based or coal-based pinch molded product is heat-treated in contact with porous fine powder. be done.

本発明で使用するピッチ成形体の原料ピッチとしては、
石油類の熱分解や接触分解プロセスからの分解残油を熱
処理して得られるピンチ類、重質油(残直油)の処理プ
ロセス(例えば、ユリカプロセス、SDAプロセス等)
で生成するピッチ類、天然産のビチューメ/やアスファ
ルト類等の処理で得られるピンチ類等の石油系ピッチの
他、石炭の乾留や液化プロセス(例えばSRCプロセス
)等から生成する石炭系ピッチ類が用いられる。本発明
においては、これらのピッチ類は、従来公知の方法に従
って所要形状に成形されるが、この場合の成形体の形状
、寸法は任意であシ、例えば、繊維状、球状、板状、柱
状、筒状等が挙げられる。本発明で用いる好ましいピッ
チ成形体としては、軟化点か120℃頃上、固定炭素4
0〜75重量係を含むものである。首だ、本発明のピッ
チ成形体には、その成形に際し、柚々の補助成分を含有
させることができ、例えは、グラファイト、コークス、
グリーンコークス、カーダンブランク等の炭素質の微粉
体を適量、例えば70M敗係以下の量で含翁さぜること
ができる。
The raw material pitch for the pitch molded body used in the present invention is as follows:
Treatment process for pinches and heavy oil (residual oil) obtained by heat treating cracked residual oil from petroleum thermal cracking and catalytic cracking processes (e.g. Eureka process, SDA process, etc.)
In addition to petroleum-based pitches such as pinches obtained by processing naturally produced bitumen and asphalt, there are also coal-based pitches produced from coal carbonization and liquefaction processes (e.g. SRC process). used. In the present invention, these pitches are molded into a desired shape according to a conventionally known method, but the shape and dimensions of the molded product in this case can be arbitrary; for example, it can be fibrous, spherical, plate-like, columnar. , cylindrical, etc. A preferable pitch molded body used in the present invention has a fixed carbon 4
This includes weight ratios of 0 to 75. The pitch molded product of the present invention can contain auxiliary ingredients such as graphite, coke, and yuzu during molding.
An appropriate amount of carbonaceous fine powder such as green coke or cardan blank can be mixed in, for example, in an amount of 70M or less.

ピッチ成形体を溶融成形法により製造する場合、従来公
知の方法が採用され、例えば、繊維状ピンチを得るだめ
の溶融紡糸法、球状ピッチを得るために、ガス気流中に
溶融ピッチを噴霧し、微粒子化する方法、溶融ピッチを
液中で微粒化する方法、その他、微粒子状又はペレット
状のピッチをその軟化点以上の温度に加熱溶融し、押出
成形等の適当な方法で成形する方法等が採用される。
When a pitch molded body is produced by a melt molding method, conventionally known methods are employed, such as melt spinning to obtain fibrous pinches, spraying of molten pitch into a gas stream to obtain spherical pitch, There are methods such as a method of atomizing molten pitch, a method of atomizing molten pitch in a liquid, and a method of heating and melting pitch in the form of fine particles or pellets to a temperature above its softening point and molding it by an appropriate method such as extrusion molding. Adopted.

本発明の方法を実施するには、前記したピッチ成tl?
、体を多孔性微粉体と接触させた状態において加熱処理
すれはよく、その実施は極めて容易である。
To carry out the method of the invention, the pitch formation tl?
The heat treatment can be easily carried out while the body is in contact with the porous fine powder, and it is extremely easy to carry out the heat treatment.

本発明で用いる多孔性微粉体は、耐熱性のものであれは
有機系、無機系を問わずに適用することができるし、ま
た単独の微粉体でも2種以上の微粉体の混合物であって
も任意に適用することができる。まだ、本発明の微粉体
には、1次粒子の他、1次粒子が凝集した2次粒子から
なるもの等が包含され、また、微粉体の多孔性は、1次
粒子の有する細孔の他、1次粒子が凝集して粉体を形成
する場合に生じる細孔(空隙)等に由来するものが含ま
れる。本発明においては、一般的には、平均粒子直径1
0μm〜1000 /im z a孔容積0.05〜2
 m B、 / g 、及・び又は比表面積(BET 
) 0.1〜2000m 2/ gを有する微粉体が用
いられる。このような微粉体の具体例を示すと、例えば
、カーボンブランク、活性炭、コークス等の炭素質の微
粉体の他、アルミナ、シリカ・アルミナ、シリカ、マグ
ネシア等の金属酸化物や、硫酸カルシウム、硫酸マグネ
シウム、炭酸カルシウム等の各種耐熱性無機化合物、ノ
ミ−ライト、セピオライト、ゼオライト、カオリン、タ
ルク等の各種の粘土又は粘土鉱物さらに珪藻土等の天然
物等が挙げられる。本発明においては、細孔又は空隙を
持つ微粉体であれば任意に使用できるが、殊に、親油性
又は吸油性にすぐれたものが好捷しく用いられ、カーボ
ンブランク、微粉状活性炭、アルミナ、シリカ・アルミ
ナ等の使用か有利である。
The porous fine powder used in the present invention can be applied regardless of whether it is organic or inorganic as long as it is heat resistant, and it can be a single fine powder or a mixture of two or more types of fine powder. can also be applied arbitrarily. However, the fine powder of the present invention includes not only primary particles but also those consisting of secondary particles which are aggregates of primary particles, and the porosity of the fine powder is determined by the pores of the primary particles. In addition, it includes those originating from pores (voids) etc. that occur when primary particles aggregate to form powder. In the present invention, the average particle diameter is generally 1
0μm~1000/imz a pore volume 0.05~2
m B, / g, and/or specific surface area (BET
) A fine powder having a particle size of 0.1 to 2000 m 2 /g is used. Specific examples of such fine powder include carbonaceous fine powder such as carbon blank, activated carbon, and coke, as well as metal oxides such as alumina, silica/alumina, silica, and magnesia, calcium sulfate, and sulfuric acid. Examples include various heat-resistant inorganic compounds such as magnesium and calcium carbonate, various clays or clay minerals such as chililite, sepiolite, zeolite, kaolin, and talc, and natural products such as diatomaceous earth. In the present invention, any fine powder having pores or voids can be used, but those with excellent lipophilicity or oil absorption are particularly preferably used, such as carbon blank, fine powder activated carbon, alumina, etc. It is advantageous to use silica, alumina, etc.

本発明においては、前記微粉体は、ピッチ成形体表面を
被懐するに十分な量で用いられ、その具体的使用量は、
ピンチ成形体の性状や、熱処理装置、温度条件、微粉体
の種類等によって広範囲に変化させることができ、一義
的に定めることは困難であるが、一般的には、例えば、
ピッチ成形体I Kq当シ、0.01 KP〜10Kg
の割合である。
In the present invention, the fine powder is used in an amount sufficient to cover the surface of the pitch compact, and the specific amount used is as follows:
It can vary widely depending on the properties of the pinch compact, heat treatment equipment, temperature conditions, type of fine powder, etc., and it is difficult to define it unambiguously, but in general, for example,
Pitch molded body I Kq, 0.01 KP to 10 Kg
This is the percentage of

本発明によシピツチ成形体を好ましく熱処理させる場合
、ピッチ成形体と前記微粉体との接触を充分に保ちなが
ら、ピンチ成形体の軟化点以下の温度、通常、常温から
550℃までの間の温度で急速な昇温又は予じめ調節さ
れた速度で昇温させる。
When the pitch molded product is preferably heat-treated according to the present invention, the pitch molded product and the fine powder are kept in sufficient contact with each other at a temperature below the softening point of the pinch molded product, usually at a temperature between room temperature and 550°C. Raise the temperature rapidly or at a pre-controlled rate.

この場合の具体的熱処理方法としては、例えは、流動層
装置を使用し、不活性ガスによシ微粉体とピッチ成形体
とを共に流動化させながら加熱する方法、回転ドラムを
使用し、微粉体とピンチ成形体とを混合接触させながら
加熱する方法、ピッチ成形体を静止させておき、これに
攪拌又は移動により微粉体を接触させ看がら加熱する方
法、微粉体を静止させておき、これにピッチ成形体を移
動接触させながら加熱する方法、さらに、ピンチ成形体
と微粉体とを充分接触させた状態で静止させておき、加
熱する方法等を示すことができる。昇温速度はピッチ成
形体の性状や、熱処理装置及び方法、さらに微粉体の種
類によって異なるので、一義的には規定できないが、瞬
間的な昇温から、20℃/時のように徐々に昇温する場
合もある。
In this case, specific heat treatment methods include, for example, using a fluidized bed apparatus to heat the fine powder and the pitch molded body while fluidizing them together with an inert gas, and using a rotating drum to heat the fine powder and the pitch compact while fluidizing them together. A method in which the pitch molded product is heated while being brought into mixed contact with the pitch molded product, a method in which the pitch molded product is kept stationary, and a fine powder is brought into contact with it by stirring or moving, and heated while watching. A method of heating the pitch molded body while moving it into contact with the powder, and a method of heating the pinch molded body and the fine powder while keeping them stationary in a state where they are in sufficient contact with each other. The rate of temperature increase varies depending on the properties of the pitch compact, the heat treatment equipment and method, and the type of fine powder, so it cannot be unambiguously defined, but it can vary from an instantaneous temperature increase to a gradual temperature increase of 20°C/hour. Sometimes it's warm.

本発明によりピッチ成形体の熱処理を行う場合、反応系
には適当量の不活性ガス、例えば、窒素ガスやスチーム
等を流通させながら行うことができるし、また、必要に
応じ、酸化性のガス、例えば、空気、酸素、三酸化イオ
ウ、二酸化窒素等を適量併用することも可能であ・る。
When heat treating a pitch compact according to the present invention, it can be carried out while an appropriate amount of an inert gas such as nitrogen gas or steam is passed through the reaction system, and if necessary, an oxidizing gas may be added. For example, it is also possible to use appropriate amounts of air, oxygen, sulfur trioxide, nitrogen dioxide, etc.

本発明によりピッチ成形体を熱処理する場合、熱処理が
進むに従って、ピッチ成形体中に存在する油分等の揮発
成分が、拡散、蒸発等の現象によりピンチ成形体と接触
する微粉体にマイグレーション(migration)
又は吸着されると共に、ピッチの熱分解により生じた揮
発性の油分もまた同様にして微粉体にマイクレー/コン
又は吸着される。
When a pitch compact is heat-treated according to the present invention, as the heat treatment progresses, volatile components such as oil present in the pitch compact migrate to fine powder that comes into contact with the pinch compact due to phenomena such as diffusion and evaporation.
In addition to being adsorbed, volatile oil produced by thermal decomposition of pitch is also adsorbed to the fine powder.

このピンチ中の油分やピッチ熱分解生成物が微粉体によ
ってマイグレーション又は吸着されることは、アルミナ
等の白色の微粉体を用いて不融仕始」jlを行う場合に
、その白色の微粉体がカッ色糸の着色物に変換されるこ
とによって確認される。そして、このようなピンチ中の
油分や、ピッチの熱分解生成物か、熱処理中に、ピッチ
成形体から微粉体上へ連続的に除去されることによって
、ピッチ成形体は、その形状を保持したままその軟化点
を上昇させ、翔、触性のピッチ成形体を経たのち、最終
的には、軟化点320℃以上、実質的には軟化点を示さ
ない不融性のピンチ成形体に変換される。
The fact that the oil and pitch thermal decomposition products in the pinch migrate or are adsorbed by the fine powder is caused by the fact that when performing infusibility using a white fine powder such as alumina, the white fine powder This is confirmed by the conversion to colored yarn. The pitch compact retains its shape by being continuously removed from the pitch compact to the fine powder during heat treatment, such as oil in the pinch or pitch pyrolysis products. After increasing its softening point and passing through a tactile pitch molded product, it is finally converted into an infusible pinch molded product with a softening point of 320°C or higher, which has virtually no softening point. Ru.

微粉体を用いないでピンチ成形体を熱処理すると、ピッ
チ成形体は、ピンチ中に含まれる油分の溶解作用により
、軟化や@融を生じると共に、相互に融着を生じて、そ
の形状を保持し得なくなるが、前記あように、微粉体を
用いる時には、その微粉体がピッチ中の油分等の揮発物
質を連続的に除去することから、このような軟化や溶融
を生じることなく、まだ相互に融着を生じるようなこと
もなく、その形状は一定に保持される。
When a pinch molded body is heat-treated without using fine powder, the pitch molded body softens and melts due to the dissolving action of the oil contained in the pinch, and also fuses with each other to maintain its shape. However, as mentioned above, when fine powder is used, the fine powder continuously removes volatile substances such as oil from the pitch, so there is no softening or melting, and there is still mutual interaction. There is no fusion and the shape is maintained constant.

本発明においては、前記したように、ピッチ成形体は、
軟化点の上昇されだ難融性ピッチ成形体を経たのち、最
終的に不融性のピッチ成形体に変換されるこ七から、不
融化に至る中間の熱処理過程において、熱処理を停止す
ることにより、ピッチからさらに炭化水素ガスや油分を
回収すると共に、軟化点が実質的に上昇しだ難融性ピッ
チを得ることができる。この難融性ピッチは軟化点が上
昇されていることから、その取扱いは容易であシ、しか
も適当量の揮発分(油分)が未だ含有されていので、燃
料や、ガス化原料等のように、ピッチ中に含まれる炭化
水素又は油分を利用した種々の工業用原料又は燃料とし
て有利に利用される。
In the present invention, as described above, the pitch molded body is
By stopping the heat treatment during the intermediate heat treatment process from the point where the softening point rises to the refractory pitch molded product, which is finally converted to the infusible pitch molded product, to the infusible state. In addition to recovering hydrocarbon gas and oil from the pitch, it is possible to obtain a refractory pitch whose softening point is substantially increased. Since this refractory pitch has a raised softening point, it is easy to handle, and since it still contains a suitable amount of volatile matter (oil), it can be used as fuel, gasification raw material, etc. It is advantageously used as a variety of industrial raw materials or fuels using the hydrocarbons or oil contained in the pitch.

本発明において、難融性ピッチ成形体の軟化点は、実用
的観的からは、150℃以上、好ましくは200℃〜3
00℃に規定するのが有利であり、このような難融性ピ
ッチは、貯蔵時において相互に付着することがないので
その貯蔵、運搬等は極めて容易であり、さらに、微粒子
状で・々−すを用いて燃焼させる場合に、バーナのノズ
ル付近で溶融付着することが少ない。難融性ピッチを燃
料として利用する場合、その燃焼性を考えて、難融性ピ
ッチ成形体中の揮発分(油分)は、30重量%以上に規
定するのがよい。また、との難融性ピッチは、従来公知
の酸化性ガスを用いる不融化法における原料として用い
ることができる。即ち、低軟化点のピンチ成形体を不融
化する場合に、先ずこの低軟化点のピッチ成形体を本発
明の方法によりi触性ピッチ成形体とした後、このもの
を原料として用いて従来の不融化法を行うことにより、
容易に不1%lI!性ピッチ成杉体を得ることができる
。  。
In the present invention, from a practical standpoint, the softening point of the refractory pitch molded product is 150°C or higher, preferably 200°C to 3°C.
It is advantageous to regulate the temperature at 00°C, and since such refractory pitches do not stick to each other during storage, they are extremely easy to store, transport, etc., and furthermore, they are in the form of fine particles and... When burning using a burner, there is little chance of melting and adhesion near the burner nozzle. When refractory pitch is used as a fuel, the volatile content (oil content) in the refractory pitch molded product is preferably set to 30% by weight or more in consideration of its combustibility. Moreover, the refractory pitch can be used as a raw material in a conventionally known infusibility method using an oxidizing gas. That is, when making a low softening point pinch molded product infusible, the low softening point pitch molded product is first made into an i-tactile pitch molded product by the method of the present invention, and then this product is used as a raw material to make the conventional pitch molded product. By performing the infusibility method,
Easily not 1%lI! It is possible to obtain a sexual pitch adult cedar body. .

本発明においては、不融性ピッチ成形体は、前記のよう
に難融性ピッチ成形体を経由して得られる。即ち、本発
明によれば、固定炭素量40〜75重量%のピッチ成形
体は、熱処理の進行に伴い、その固定炭素量はしだいに
増加しく軟化点の上昇)、最終的に固定炭素量が少なく
とも65重重量板上、通常、75重量係以上になり、ま
だ軟化点が320℃以上で、実質的に軟化点を示さない
不融性ピッチになる。本発明においては、前記したよう
に、その熱処理系には、酸化性ガスを添加させることが
できるが、この場合、この酸化性ガスは熱処理開始時か
ら添加させることができる惟、熱処理の中間時から添加
させることができ、例えば、低軟化点のピッチ成形体を
150〜200℃の難融性ピッチ成形体を形成させた後
、酸化性ガスを添加して熱処理し、不融化することがで
きる。
In the present invention, the infusible pitch molded product is obtained via the refractory pitch molded product as described above. That is, according to the present invention, in a pitch molded product having a fixed carbon content of 40 to 75% by weight, as the heat treatment progresses, the fixed carbon content gradually increases (the softening point rises), and the fixed carbon content eventually decreases. On at least a 65-weight plate, it usually reaches a weight factor of 75 or higher, and still has a softening point of 320° C. or higher, resulting in an infusible pitch that exhibits virtually no softening point. In the present invention, as described above, an oxidizing gas can be added to the heat treatment system, but in this case, the oxidizing gas can be added from the start of the heat treatment, or during the middle of the heat treatment. For example, after forming a pitch molded product with a low softening point into a refractory pitch molded product at 150 to 200°C, an oxidizing gas can be added and heat treated to make it infusible. .

本発明において、ピッチ成形体中の揮発分(油分等)は
、熱処理過程で、主に微粉体中にマイグレーション又は
吸着される。この微粉体中の油分等は、加熱処理は過程
で微粉体からガスとして遊離し、一部回収することがで
きるが、必要に応じ、従来公知の脱着処理や加熱蒸発処
理、あるいは熱分解処理等によシ、微粉体から収率よ〈
分離回収することができる。
In the present invention, volatile components (oil, etc.) in the pitch molded body are mainly migrated or adsorbed into the fine powder during the heat treatment process. The oil content in this fine powder is liberated as gas from the fine powder during the heat treatment process, and can be partially recovered, but if necessary, it may be necessary to use conventionally known desorption treatment, thermal evaporation treatment, or thermal decomposition treatment. Yield from fine powder
Can be separated and recovered.

本発明の方法によれば、従来の熱処理法とは異なり、多
用の酸化剤を用いる酸化反応を利用するものではないこ
とから熱処理に際して実質的な発熱を回避させることが
できるので温度コントロールが容易である上、捷た熱処
理装置をコンパクトにすることができる等の利点が得ら
れる。また、本発明で得られる難融性及び不融性ピッチ
成形体は、従来のものとは異なり、表面や内部に過度の
酸化をさけることができることから、一般的には品質上
すぐれたものである。また、本発明の熱処理法において
、酸化性ガスを併用する場合には、所望する難融性や不
融性製品の製造に要する時間を短縮することができると
共に、またその酸化性ガスの使用量を著しく減少させる
ことができる。
According to the method of the present invention, unlike conventional heat treatment methods, it does not utilize an oxidation reaction using a large number of oxidizing agents, so substantial heat generation can be avoided during heat treatment, making temperature control easy. In addition, advantages such as the ability to make the shredded heat treatment apparatus more compact can be obtained. In addition, the refractory and infusible pitch molded products obtained by the present invention are generally superior in quality because, unlike conventional products, excessive oxidation on the surface and inside can be avoided. be. In addition, in the heat treatment method of the present invention, when an oxidizing gas is used in combination, the time required to manufacture a desired refractory or infusible product can be shortened, and the amount of the oxidizing gas used can be reduced. can be significantly reduced.

また、酸化性ガスを用いる従来の熱処理法では、不融化
が困難であった低軟化点のピッチ成形体も、微粉体を使
用する本発明の方法によれば、不融化することができる
Moreover, pitch compacts with a low softening point that are difficult to make infusible by conventional heat treatment methods using oxidizing gases can also be made infusible by the method of the present invention using fine powder.

本発明により得られる不融化製品は、従来のものと同様
に種々の原料として用いることができ、例えば、燃料、
ガス化原料、炭素製品原料、グラファイト製品原料、活
性炭原料等として利用することができる。本発明により
不融化されたピッチ成形体は、それらの製品とするため
にさらに高温に加熱処理しても、軟化、融着、凝集、破
砕などを生ずるようなことはなく、目的の製品を与える
The infusible product obtained by the present invention can be used as a variety of raw materials in the same way as conventional products, such as fuel,
It can be used as a raw material for gasification, a raw material for carbon products, a raw material for graphite products, a raw material for activated carbon, etc. Even when the pitch molded body made infusible according to the present invention is further heat-treated to a high temperature to produce those products, it does not cause softening, fusion, agglomeration, or crushing, and provides the desired products. .

本発明により得られる高軟化点の難融化製品や不融化製
品は、一般的には、従来の酸化性ガスを用いて得られる
ものに比して、酸化による皮膜の形成や過度の酸化を受
けることがないか、あるいは極めて少ないことによって
特徴すけられ、工業原料として有利に適用される。
The refractory and infusible products with a high softening point obtained by the present invention are generally more susceptible to the formation of a film due to oxidation and excessive oxidation than those obtained using conventional oxidizing gases. It is characterized by having no or very little amount of oxidation, and is advantageously applied as an industrial raw material.

次に、本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 減圧蒸留残渣油の熱分解に′よシ得られた石油系ピッチ
を原料として、平均粒径150μmのピッチ球を製造し
た。このピッチ球の性状を原料ピッチ成形体として第1
表に示す。このピッチ球10Kpを、平均粒子径40μ
mη、a1孔容積1.4 m KL 7’ gr比表面
積320 m 2/grのアルミナ微粉体30Kgと混
合し、流動層装置を用いて加熱処理した。流動層装置は
塔径3(Jcrn、塔高3mであり、空塔速度20 c
m/ Sのスチームを用いて流動させ、昇温速度1℃/
 m j nで150℃より550℃迄加熱処理、した
Example 1 Pitch balls having an average particle diameter of 150 μm were manufactured using petroleum pitch obtained by thermal decomposition of vacuum distillation residue oil as a raw material. The properties of this pitch ball were first evaluated as a raw material pitch molded body.
Shown in the table. This pitch ball of 10Kp is
mη, a1 pore volume 1.4 m KL 7' gr specific surface area 320 m 2 /gr was mixed with 30 kg of alumina fine powder, and heat treated using a fluidized bed apparatus. The fluidized bed apparatus has a column diameter of 3 (Jcrn, column height of 3 m, and a superficial velocity of 20 c
It was fluidized using steam of m/S, and the heating rate was 1℃/
Heat treatment was performed from 150°C to 550°C using mjn.

この加熱処理によ知、ピッチ球は、軟化、融着、破砕な
どを起すことなく、不融化することができ、6、3 K
9の不融化成形品が得られ、また排出ガス中より1.3
Kgの油分が回収された。冷却後の不融化されたピッチ
球の性状を第1表に合せて示すが、不融化ピッチの特徴
は、(1)軟化点が320℃以上、実際上軟化点は無く
なっている、(2)含油率(揮発分)が減少し、H/C
も減少している、(3)空気酸化による不融化品(従来
法)に比べ酸素含有率が上昇していない、などが挙けら
れ、この不融化した成形体は常法によシ炭化又は賦活化
して、コークス球又は活性炭素成形体とすることができ
た。
This heat treatment is known to make the pitch ball infusible without causing softening, fusion, or crushing, and the pitch ball can be made infusible at 6.3 K.
An infusible molded product of 9 was obtained, and 1.3 was obtained from the exhaust gas.
Kg of oil was recovered. The properties of the infusible pitch sphere after cooling are shown in Table 1, and the characteristics of the infusible pitch are (1) the softening point is 320°C or higher, and there is virtually no softening point; (2) Oil content (volatile content) decreases, H/C
and (3) the oxygen content has not increased compared to products made infusible by air oxidation (conventional method).This infusible molded product can be carbonized or carbonized by conventional methods. It could be activated to form coke balls or activated carbon molded bodies.

々お、第1表には同じピッチ球を微粉体を角いることな
く空気を用いた流動層で酸化した不融化成形体の性状を
比較のために示した。
For comparison, Table 1 shows the properties of an infusible molded product obtained by oxidizing the same pitch ball in a fluidized bed using air without removing the fine powder.

第  1  表 米比較例 実施例 2 減圧蒸留残渣油の熱分解により得られた石油系ピンチを
原料として、平均粒径150μmのピッチ球を製造した
。このピッチ球の性状は第2表に原料ピンチ成形体とし
て示した。このピッチ球5 K9を実施例−1と同じア
ルミナ微粉体30 K、、と混合し、同じ装置にて加熱
処理した。空塔速度20 on/SeCのスチームで流
動させ、昇温速度1℃/m l nで105℃より55
0℃迄加熱処理した。ピッチ球は軟化、融着、破砕など
を起すことなく、不融化することができ、3.2Kg(
53wt係)の成形品が得られ、また排ガス中よシ1.
4Kp(23wtチ)の油分が回収された。不融化され
たピッチ球の性状を第2表に示すが、軟化点は320℃
以上で実際上軟化点はなくなっており、常法によりこの
不融化ピッチを炭化または賦活化してコークス球または
活性炭素球を得ることができた。
Table 1 Rice Comparative Examples Example 2 Pitch balls having an average particle diameter of 150 μm were manufactured using petroleum pinch obtained by thermal decomposition of vacuum distillation residue oil as a raw material. The properties of this pitch ball are shown in Table 2 as a raw material pinch molded product. This pitch ball 5K9 was mixed with the same alumina fine powder 30K as in Example-1, and heat-treated in the same apparatus. Fluidized with steam at a superficial velocity of 20 on/SeC, and heated from 105°C to 55°C at a heating rate of 1°C/ml n.
Heat treatment was performed to 0°C. Pitch balls can be made infusible without softening, fusion, or crushing, and weigh 3.2 kg (
A molded product of 53wt) was obtained, and 1.
4Kp (23wt) of oil was recovered. The properties of the infusible pitch ball are shown in Table 2, and the softening point is 320°C.
As a result, the softening point practically disappeared, and coke balls or activated carbon balls could be obtained by carbonizing or activating this infusible pitch by a conventional method.

次に、同じピッチ球6に?を使用し、同じアルミナ微粉
体30に2を用いた流動層を用いて加熱処理した。この
場合はアルミナ微粉体に酸化性ガスとして空気を併用し
た方法を用いた。加熱方法とし ′では、予め250℃
で20cm/secの空気を用いて流動させたアルミナ
微粉体中にピッチ球を供給し、急速に温度を上昇させ、
1時間250℃に保持した後、10℃/ m i nの
昇温速度で300℃迄昇温し、更に300℃で3時間保
持して不融化を行った。
Next, the same pitch ball 6? The same alumina fine powder 30 was heat-treated using a fluidized bed using 2. In this case, a method was used in which air was used in combination with alumina fine powder as an oxidizing gas. For the heating method, set the temperature to 250℃ in advance.
A pitch sphere was supplied into fine alumina powder that was fluidized using air at a rate of 20 cm/sec, and the temperature was rapidly raised.
After holding at 250°C for 1 hour, the temperature was raised to 300°C at a temperature increase rate of 10°C/min, and was further held at 300°C for 3 hours to make it infusible.

ピッチ球は軟化、融着、破砕などを起すことなく、不融
化することができ、34 Kp (56w t%)の成
形品が得られた。不融化されたピッチ球の性状を第2表
に示すが、軟化点が320℃以上で、実際上軟化点はな
くなっておシ、これを炭化または賦活化してコークス球
または活性炭を得ることができた。
The pitch sphere could be made infusible without causing softening, fusion, or crushing, and a molded product of 34 Kp (56 wt%) was obtained. The properties of the infusible pitch balls are shown in Table 2, and the softening point is 320°C or higher, which means that there is practically no softening point, and coke balls or activated carbon can be obtained by carbonizing or activating the pitch balls. Ta.

第  2  表 捷だ比較のために、同じピッチ球を微粉体を用いること
なく、空気を用いて流動しながら室温より300℃丑で
3℃/m i nの昇温速度で加熱を行い不融化しよう
としたが、ピンチ成形体間の溶融付着が激しく、ピッチ
成形体の形状を維持して不融化することは困難であった
Second, for a quick comparison, the same pitch ball was made infusible by heating it from room temperature to 300°C at a rate of 3°C/min while flowing it with air, without using fine powder. However, the melt adhesion between the pinch molded bodies was severe, and it was difficult to maintain the shape of the pitch molded body and make it infusible.

実施例 3 減圧蒸留残渣油の熱分解により得られた石油系ピッチを
原料として、平均粒径150μmのピッチ球を製造した
。このピッチ球の性状は第3表に原料ピンチ成形体とし
て示した如くであった。このピッチ球15Kgを平均粒
子径40μm1細孔容積0、35 c c / g r
 、比面積950 m2/ g rの活性炭ビーズ50
に2と混合し、実施例−1と同じ装置にて加熱処理した
。空塔速度20 cm/ s e cのスチームで流動
させ、昇温速度1℃/m i nで、100℃より55
0℃まで加熱した。ピッチ球は軟化、融着、破砕などを
起すことなく不融化することができ、成形品ピッチ球9
.6Kf(64wt%)が得られ、また排出ガス中より
1.4Kg(9wt%)の油分が回収された。
Example 3 Pitch balls having an average particle diameter of 150 μm were manufactured using petroleum pitch obtained by thermal decomposition of vacuum distillation residue oil as a raw material. The properties of this pitch ball were as shown in Table 3 for the raw material pinch molded product. This pitch sphere (15 kg) was packed with an average particle diameter of 40 μm and a pore volume of 0.35 cc/g r.
, activated carbon beads 50 with specific area 950 m2/g r
2 and heat-treated in the same equipment as in Example-1. It was fluidized with steam at a superficial velocity of 20 cm/sec, and the temperature was increased from 100°C to 55°C at a heating rate of 1°C/min.
Heated to 0°C. The pitch ball can be made infusible without causing softening, fusion, or crushing, and the molded pitch ball 9
.. 6Kf (64wt%) was obtained, and 1.4Kg (9wt%) of oil was recovered from the exhaust gas.

不融化されたピッチ球の性状を原料ピッチ成形体の性状
と共に第3表に示すが、軟化点は320℃以上で実際上
軟化点はなくなっており、常法によりこの不融化ピッチ
球を炭化または賦活化して、コークス球寸たQ寸活准炭
素球を得ることが可能であった。
The properties of the infusible pitch spheres are shown in Table 3 together with the properties of the raw pitch molded product.The softening point is 320°C or higher, which is practically no longer a softening point, and the infusible pitch spheres are carbonized or Through activation, it was possible to obtain activated quasi-carbon spheres having the size of coke spheres.

実施例 実施1+B−tで使用したピッチ球Q、 5 Kg を
平均粒子径27mμ、比表面積80m2/gr、吸油量
102m6/100 grのカーボンブラック2 N9
と混合し、回転ドラム型反応器を用いて加熱処理した。
The pitch ball Q used in Example 1+B-t, 5 kg, was made of carbon black 2 N9 with an average particle diameter of 27 mμ, a specific surface area of 80 m2/gr, and an oil absorption amount of 102 m6/100 gr.
and heat-treated using a rotating drum reactor.

この場合回転ドラム型反応器は口径12cn+、−ft
さ1.5 mであり、回転数は1〜100 r、 p、
 m、の範囲で調節可能である。
In this case, the rotating drum reactor has a diameter of 12cn+, -ft.
The length is 1.5 m, and the rotation speed is 1 to 100 r, p,
It is adjustable within a range of m.

加熱は、1℃/ m i nの昇温速度で100℃より
450℃迄昇温し、その後450℃にて1時間保持した
。キャリヤーガスとしてはN2を用い、0.7Nλ/m
inをリアクター内に導入した。ピッチ球は、軟化、融
着、破砕などを起こすことなく不融化することができ、
成形品0.34 Kf (68w t%)が得られた。
Heating was performed by increasing the temperature from 100°C to 450°C at a rate of 1°C/min, and then holding the temperature at 450°C for 1 hour. N2 is used as carrier gas, 0.7Nλ/m
In was introduced into the reactor. Pitch balls can be made infusible without softening, fusion, or crushing.
A molded article of 0.34 Kf (68 wt%) was obtained.

また排ガス中より0.06 Kg(12,Owt係)の
油分が回収された。不融化前後のピッチ球の性状を第4
表に示すが、軟化点は320℃以上で実際上は軟化点が
無くなっており、この不融化ピッチ球を常法により炭化
または賦活化してコークス球まだは活性炭素成形品を得
ることができた。
Additionally, 0.06 kg (12,000 kg) of oil was recovered from the exhaust gas. The properties of the pitch ball before and after infusibility are as follows.
As shown in the table, the softening point is 320°C or higher, which is practically no softening point, and by carbonizing or activating this infusible pitch sphere by a conventional method, it was possible to obtain a coke ball or an activated carbon molded product. .

第  4  表 実施例 5 実施例−1で使用したピッチ球0.5Kgを平均粒径1
μm、比表rfj+’ 411200 mVgr、糾孔
芥積1.3ml/ g +−の活性炭微粉体2に7と混
合し、実施例−4と1司−な回転Pラム型リアクターを
用いて加熱処理した。加熱は1℃/ m i nの昇温
速度で100℃より450℃迄昇温し、その後同温度で
1時間保持した。
Table 4 Example 5 The pitch balls used in Example-1 (0.5 kg) had an average particle diameter of 1.
μm, specific table rfj+' 411200 mVgr, pore volume 1.3 ml/g +- activated carbon fine powder 2 was mixed with 7, and heated using a rotating P-ram type reactor similar to Example-4. did. The temperature was increased from 100°C to 450°C at a rate of 1°C/min, and then maintained at the same temperature for 1 hour.

キャリヤーガスとしてはN2を用い、0.7 N it
 / m i nの量をリアクター内に供給した。ピッ
チ球は、軟化、融着、破砕などを起こすことなく不融化
することができ、成形品0.35Kg(70wt%)が
得られた。
N2 was used as the carrier gas, 0.7 N it
/ min was fed into the reactor. The pitch ball could be made infusible without causing softening, fusion, or crushing, and a molded product of 0.35 kg (70 wt%) was obtained.

不融化前後のピッチ球の性状を第5表に示すが、不融化
後のものの軟化点は320℃以上で実際上は軟化点が無
くなっており、この不融化ピッチ球を常法により炭化ま
たはさらに賦活化してコークス球まだは活性炭素成形品
を得ることができた。
The properties of the pitch balls before and after infusibility are shown in Table 5.The softening point of the pitch balls after infusibility is 320°C or higher, which is practically no softening point, and the infusible pitch balls are carbonized or further After activation, activated carbon molded products could be obtained from coke balls.

第5表 実施例 6 石油留分の接触分#(FCC)で生成した芳香族性の高
沸点留分を熱処理して得られた、軟化点185℃、H/
C(原子比)O,’69(7)ピッチを紡糸し、平均直
径20μmのピッチ繊維を製造した。′このピッチ繊維
を約30cn+の長さに切断し、その約1000本を口
径5(7)、長さl mの縦型反応容器内に吊し、その
中を平均粒子径27mμ、比表面積80 m2/ g 
r−。
Table 5 Example 6 Softening point 185°C, H/
C (atomic ratio) O, '69 (7) pitch was spun to produce pitch fibers with an average diameter of 20 μm. 'This pitch fiber was cut to a length of approximately 30 cn+, and approximately 1,000 of them were suspended in a vertical reaction vessel with a diameter of 5 (7) and a length of 1 m. m2/g
r-.

吸油量102il/100gr (7)カーN7ブラツ
ク180grで充てんした。この反応容器を電気炉を用
いて、20℃/ h rの昇温速度で50’Cより55
0’Cまで昇温、加熱し、不融化を行った。このとき、
キャリヤーガスとして窒素ガスを0.15Nn/min
の割合で反応容器内に供給した。不融化されたピンチ繊
維は、軟化点は320℃以上で実際上軟化点を示さず、
H/cば0.42であった。丑だ、この不融化されたピ
ンチ繊維を用いて、更に炭化やグラファイト化を行なう
ことができた。
Oil absorption: 102 il/100 gr (7) Filled with car N7 black 180 gr. This reaction vessel was heated from 50'C to 55'C using an electric furnace at a heating rate of 20°C/hr.
The temperature was raised to 0'C to make it infusible. At this time,
Nitrogen gas as carrier gas at 0.15Nn/min
was supplied into the reaction vessel at a ratio of . Infusible pinch fibers have a softening point of 320°C or higher, but do not actually show a softening point.
H/c was 0.42. Fortunately, we were able to further carbonize and graphitize the infusible pinch fibers.

実施例 7 実施例−1と同じピッチ球0.5に9を使用し、微粉体
として平均粒子径1μm、比表面積3 m27 g r
のコークス微粉3 N9を混合し、実施例−4と同じ回
転トゝラム型リアクターを用いて加熱処理した。加熱は
1℃/ m i nの昇温速度で100℃よシ450℃
迄昇霊し、その後同温度で約1時間保持した。
Example 7 The same pitch balls as in Example-1 were used, 0.5 to 9 were used, and the average particle diameter was 1 μm and the specific surface area was 3 m27 g r as a fine powder.
Fine coke powder 3N9 was mixed and heat-treated using the same rotating drum reactor as in Example-4. Heating is from 100℃ to 450℃ at a heating rate of 1℃/min.
After that, it was kept at the same temperature for about 1 hour.

また、キャリヤーガスとして0.7Nρ/ m 1nの
窒素ガスをリアクター内に導入した。ピッチ球は軟化、
融着、破砕などを起すことなく不融化することができ、
成形品0.32に9(64wt係)が得られた。
Further, nitrogen gas of 0.7 Nρ/m 1n was introduced into the reactor as a carrier gas. The pitch ball has softened,
It can be made infusible without causing fusion or crushing,
A molded product of 0.32 to 9 (64wt) was obtained.

実施例 8 実施圀〜lと同じピッチ球0.5Kpを使用し、微粉体
として平均粒子径25μm、比表面積20 m2/ g
、r ’1細孔容積2.3 ml、’ grの珪藻土2
 N9とを混合し、実施例−4と同じ回転ドラム型リア
クターを用いて加熱処理した。この場合、空気0.7N
n/minを供給し、加熱は1℃/m i nの昇温速
度で100℃より450℃迄まで昇温し、その後同温度
で1時間保持した。
Example 8 Using the same pitch ball 0.5 Kp as in Example 1, a fine powder with an average particle diameter of 25 μm and a specific surface area of 20 m2/g
, r '1 pore volume 2.3 ml, ' gr diatomaceous earth 2
N9 and heat-treated using the same rotating drum reactor as in Example-4. In this case, air 0.7N
The temperature was increased from 100°C to 450°C at a heating rate of 1°C/min, and then maintained at the same temperature for 1 hour.

ピッチ球は軟化、融着、破砕などを起すことなく不融化
することができ、成形品0.38Kg(76wt%)が
得られた。
The pitch ball could be made infusible without softening, fusion, or crushing, and a molded product of 0.38 kg (76 wt%) was obtained.

1だ、同じのピッチ球0.5Kgを使用し微粉体として
、平均粒子径1.2μm1比表面積8m2/grの軽質
炭酸カル7ウム2 K、とを混合し、同じ装置を用いて
加熱処理した。この場合も空気0.7Nβ/ m i 
nを供給し、加熱も同様の方法で行った。ピッチ球は軟
化、融漸、破砕などを起すことなく不融化す名ことがで
き、成形品として0.35にり(7’Ow t%)が得
られた。
1. Using 0.5 kg of the same pitch ball, a fine powder of light calcium carbonate 2 K with an average particle diameter of 1.2 μm and a specific surface area of 8 m2/gr was mixed and heat-treated using the same equipment. . In this case as well, air is 0.7Nβ/m i
n was supplied, and heating was performed in the same manner. The pitch ball was able to be infusible without causing any softening, melting, or crushing, and a molded product with a yield of 0.35% (7'Ow t%) was obtained.

実施例 9 実施例−6で使用したピッチ繊維約1000本を同一の
りアクタ−に吊し、その後平均粒径1μm1比表面積1
200m2/gr、細孔容積1.3 ml/ g rの
活性炭微粉体o、18Kgを充てんした。加熱は40℃
/hrの昇温速度で50℃よシ550℃迄行った。’e
−r IJギヤースとしてはN2を用い、0.15Nf
l/minの量を供給した。不融化後のピッチ繊維は軟
化点320℃以上で、実際上軟化点を示さず、H/Cは
0,45であった。このように繊維状ピッチは、軟化、
融着、破砕などを起こすことなく不融化することができ
、常法によシ炭化、グラファイト化することにより炭素
繊維を得ることができた。
Example 9 Approximately 1000 pitch fibers used in Example 6 were hung on the same glue actor, and then the average particle diameter was 1 μm, the specific surface area was 1
It was filled with 18 kg of activated carbon fine powder of 200 m2/gr and pore volume of 1.3 ml/gr. Heating is 40℃
The temperature was raised from 50°C to 550°C at a heating rate of /hr. 'e
-r Use N2 as IJ gear, 0.15Nf
1/min was supplied. The pitch fiber after infusibility had a softening point of 320° C. or higher, practically no softening point, and H/C was 0.45. In this way, fibrous pitch softens,
It was possible to make it infusible without causing any fusion or crushing, and it was possible to obtain carbon fibers by carbonizing and graphitizing using conventional methods.

実施例 10 実施例−2で使用した軟化点138℃のピッチ球、5 
N9を実施例−1と同じアルミナ微粉体30に2と混合
し、同じ流動層装置を使用して、加熱処理した。
Example 10 Pitch ball with a softening point of 138°C used in Example-2, 5
N9 was mixed with 2 in the same alumina fine powder 30 as in Example-1, and heat-treated using the same fluidized bed apparatus.

空塔速度20(7)/ S e (!のスチームで流動
させ、昇温速度1℃/ m l nで105℃より30
0℃迄加熱処理し、次いで常温まで急冷した。ピッチ球
は軟化、融着、破砕などを起すことなく回収され、約4
に9(67wt%)のピッチ球が回収された。得られた
ピッチ球の軟化点は248℃、この時の揮発分(含油率
)は32.5 w t%であった。(このピッチ球は燃
料として充分な燃焼性を有するものである)また、同一
ピッチ球を使用して同様の方法で軟化点を上昇させる実
験を行い、熱処理ピッチ球に関し、その軟化点と揮発分
との関係を求めた。その結果を図面にグラフとして示す
。この実験結果から、本発明の場合は、ピッチ成形体は
、熱処理の進行と共にその軟化点を高めて難融性のもの
になり、との難融性ピッチを経由して不融化されること
が理解される。
Fluidized with steam at a superficial velocity of 20(7)/S e (!) from 105°C to 30°C at a heating rate of 1°C/ml n.
The mixture was heated to 0°C and then rapidly cooled to room temperature. The pitch ball was recovered without softening, fusion, or crushing, and the pitch was approximately 4.
Nine (67 wt%) pitch balls were recovered. The softening point of the obtained pitch ball was 248°C, and the volatile content (oil content) at this time was 32.5 wt%. (This pitch ball has sufficient flammability as a fuel.) We also conducted an experiment to raise the softening point using the same method using the same pitch ball, and determined the softening point and volatile content of the heat-treated pitch ball. I sought a relationship with. The results are shown as a graph in the drawing. From this experimental result, in the case of the present invention, as the heat treatment progresses, the pitch molded product increases its softening point and becomes refractory, and becomes infusible through the refractory pitch. be understood.

【図面の簡単な説明】[Brief explanation of drawings]

図面はピンチ成形体を本発明法により熱処理した場合に
得られる熱処理ピンチ中に含まれる揮発分とピッチ軟化
点との関係を示すグラフである。 592 手  続  補  正  書 昭和58年6月9日 特許庁長官  若 杉 和 夫  殿 ■、事件の表示 昭和57年特許願第233008号 2、発明の名称   難融性又は不融性ピッチ成形体の
製造方法 3、補正をする者 事件との関係  特許出願人 住 所  東京都千代田区内幸町2丁目2番2号氏 名
  富士スタンダードリサーチ株式会社代表者五味真平 4、代理人〒151 住 所  東京都渋谷区代々木1丁目58番10号8、
補正の内容 本願明細書中において次の通り補正を行います。 (1)第6頁第10行のrioμm〜1000μm」を
、[10mμ〜1000μm」に訂正します。 (2)第12頁下がら第4行の「加熱処理は過程」を、
「加熱処理の過程」に訂正します。
The drawing is a graph showing the relationship between the volatile content contained in the heat-treated pinch obtained when the pinch molded body is heat-treated by the method of the present invention and the pitch softening point. 592 Proceedings Amendment Written June 9, 1982 Kazuo Wakasugi, Commissioner of the Patent Office ■, Indication of the case Patent Application No. 233008 of 1982 2, Title of Invention: Refractory or infusible pitch molded product Manufacturing method 3, relationship with the case of the person making the amendment Patent applicant Address: 2-2-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo Name: Fuji Standard Research Co., Ltd. Representative: Shinpei Gomi 4, Agent: 151 Address: Shibuya, Tokyo 1-58-10-8 Yoyogi Ward,
Contents of amendment The following amendments will be made to the specification of the application. (1) Correct "rioμm~1000μm" on page 6, line 10 to "10mμ~1000μm". (2) “Heating treatment is a process” in the fourth line from the bottom of page 12,
Corrected to "heat treatment process".

Claims (2)

【特許請求の範囲】[Claims] (1)石油系又は石炭系ピンチ成形体を、多孔性微粉体
との接触下で加熱処理することを特徴とする難融性又は
不融性ピンチ成形体の製造方法。
(1) A method for producing a refractory or infusible pinch molded body, which comprises heating a petroleum-based or coal-based pinch molded body in contact with porous fine powder.
(2)石油系又は石炭系ピッチ成形体を、多孔性微粉体
との接触下、酸化性ガスの存在下で加熱処理することを
特徴とする難融性又は不融性ピッチ成形体の製造方法。
(2) A method for producing a refractory or infusible pitch molded product, which comprises heating a petroleum-based or coal-based pitch molded product in contact with porous fine powder and in the presence of an oxidizing gas. .
JP23300882A 1982-12-28 1982-12-28 Production of molded slightly fusible or infusible pitch Pending JPS59122587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23300882A JPS59122587A (en) 1982-12-28 1982-12-28 Production of molded slightly fusible or infusible pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23300882A JPS59122587A (en) 1982-12-28 1982-12-28 Production of molded slightly fusible or infusible pitch

Publications (1)

Publication Number Publication Date
JPS59122587A true JPS59122587A (en) 1984-07-16

Family

ID=16948365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23300882A Pending JPS59122587A (en) 1982-12-28 1982-12-28 Production of molded slightly fusible or infusible pitch

Country Status (1)

Country Link
JP (1) JPS59122587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127390A (en) * 1985-11-28 1987-06-09 Agency Of Ind Science & Technol Method of fluid heat treatment for coal liquefaction residual pitch
JPH0299593A (en) * 1988-08-04 1990-04-11 Degussa Ag Flowable bituminous granule and manufacture thereof
EP1127842A1 (en) * 2000-02-21 2001-08-29 Mitsubishi Gas Chemical Company, Inc. Carbon material comprising particles having a coarsely granular surface and process for the production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127390A (en) * 1985-11-28 1987-06-09 Agency Of Ind Science & Technol Method of fluid heat treatment for coal liquefaction residual pitch
JPH0437876B2 (en) * 1985-11-28 1992-06-22 Kogyo Gijutsuin
JPH0299593A (en) * 1988-08-04 1990-04-11 Degussa Ag Flowable bituminous granule and manufacture thereof
JPH0470351B2 (en) * 1988-08-04 1992-11-10 Degussa
EP1127842A1 (en) * 2000-02-21 2001-08-29 Mitsubishi Gas Chemical Company, Inc. Carbon material comprising particles having a coarsely granular surface and process for the production thereof

Similar Documents

Publication Publication Date Title
SU1047388A3 (en) Process for producing activated carbon spheres
US3801513A (en) Carbon containing molecular sieves
US3909449A (en) Method for the production of activated carbon spheres
US4069024A (en) Two-stage gasification system
US4742040A (en) Process for manufacturing a carbon molecular sieve
US7781370B2 (en) Process for producing spherical activated carbon
US4024076A (en) Process for producing granular sulfurized material, granular carbon or granular activated carbon
US3852188A (en) Hydrocarbon cracking in a regenerable molten media
US3253890A (en) Manufacture of carbon black
US2721169A (en) Desulfurization of fluid coke with oxygen and hydrogen
US3979330A (en) Carbon containing molecular sieves
US2549298A (en) Manufacture of activated carbon
DE19912153B4 (en) Process for the production of shaped high-performance adsorbents
US3843559A (en) Process for making activated carbon from agglomerative coal with water injection temperature control in a fluidized oxidation stage
JPS59122587A (en) Production of molded slightly fusible or infusible pitch
JPH01164717A (en) Method and apparatus for manufacturing non-sintered briquette for manufacture of silicon, silicon carbide or ferro silicon
JP4349627B2 (en) Method for producing spherical activated carbon
US2585454A (en) Preparation of a sulfur-containing activated carbon
JPS5857368B2 (en) Manufacturing method of boron trichloride
US2819204A (en) Fluid coke calcination utilizing an evolved hydrogen
JPS63156542A (en) Method for regenerating activated carbon
US3322550A (en) Process for treating petroleum coke
KR100495789B1 (en) CATALYST FOR NOx DECOMPOSITION AND PREPARATION METHOD OF THE SAME
US4002533A (en) Two-step process for conditioning sized coal and resulting product
JP2001048515A (en) Active carbon made from plastic waste