JPS59122387A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS59122387A
JPS59122387A JP57234720A JP23472082A JPS59122387A JP S59122387 A JPS59122387 A JP S59122387A JP 57234720 A JP57234720 A JP 57234720A JP 23472082 A JP23472082 A JP 23472082A JP S59122387 A JPS59122387 A JP S59122387A
Authority
JP
Japan
Prior art keywords
vibration wave
vibrating body
vibrator
electrostrictive
wave motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57234720A
Other languages
Japanese (ja)
Inventor
Makoto Katsuma
勝間 真
Akira Hiramatsu
平松 明
Hiroyasu Murakami
村上 博泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57234720A priority Critical patent/JPS59122387A/en
Priority to US06/558,004 priority patent/US4495432A/en
Priority to DE19833345274 priority patent/DE3345274A1/en
Publication of JPS59122387A publication Critical patent/JPS59122387A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • Diaphragms For Cameras (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enhance the drive efficiency with a simple configuration and to enable normal or reverse rotation by generating traveling vibration wave at a vibrator, and frictionally driving a movable body pressurized in contact with the vibrator. CONSTITUTION:A part which increases in the thickness radially from the center is formed at part of an annular vibrator 2, and a constant thickness part is formed at the other part. A plurality of electrostrictive elements 3 are arranged in phase difference manner on the constant thickness part, and bonded. Alternating voltage is applied to the element, 3 to generate traveling vibration wave at the vibrator 2, thereby frictionally driving a movable body 1 pressurized in contact with the constant thickness part of the vibrator 2.

Description

【発明の詳細な説明】 本発明は進行性振動波により駆動する振動波モータの構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a vibration wave motor driven by progressive vibration waves.

振動波モータは例えば特開昭52−29182号公報に
も開示されているように、電歪素子に周波電圧を印加し
たときに生ずる振動運動を回転運動又は−次元運動に変
換するものである。従来の電磁モータに比べて巻線を必
要としないため、構造が簡単で小型になり、低速回転時
にも高トルクが得られると共に慣性モーメントが少ない
という利点があるため、最近注目されている。
As disclosed in, for example, Japanese Patent Application Laid-Open No. 52-29182, a vibration wave motor converts vibration motion generated when a frequency voltage is applied to an electrostrictive element into rotational motion or -dimensional motion. Compared to conventional electromagnetic motors, electromagnetic motors do not require windings, so they have a simpler and more compact structure, can provide high torque even when rotating at low speeds, and have the advantage of having a small moment of inertia, so they have been attracting attention recently.

ところが、従来知られている振動波モータは振動運動を
回転運動等に変換するにあたり、振動体に生じた定在振
動波で、振動体と接触するロータ等の移動体を一方向に
摩擦駆動するもので、振動の往運動時には振動体と移動
体が摩擦接触し、復運動時には離れるようになっている
。そのため振動体と移動体は微小範囲で接触する構造、
即ち点もしくは線接触に近い構造でなければならず、い
きおい摩擦駆動効率の悪いものとなってしまう。
However, conventionally known vibration wave motors use standing vibration waves generated in a vibrating body to frictionally drive a moving body such as a rotor in one direction when converting vibratory motion into rotational motion. The vibrating body and the moving body come into frictional contact during the forward motion of vibration, and separate during the backward motion. Therefore, the vibrating body and the moving body have a structure in which they contact each other within a minute range,
In other words, the structure must be close to point or line contact, which results in poor friction drive efficiency.

また駆動力は一定方向に働くものであるから移動体の移
動方向は一方向のみである。逆方向に移動させるために
は、別な振動体で振動方向を機械的に切り換える必要が
ある。従って、正逆回転が可能な振動波モータを得るに
は装置が複雑になリ、振動波モータの#徴である構造の
簡単さ、小型さが半減されてしまう。
Further, since the driving force acts in a fixed direction, the moving body moves in only one direction. In order to move in the opposite direction, it is necessary to mechanically switch the vibration direction using another vibrator. Therefore, in order to obtain a vibration wave motor capable of forward and reverse rotation, the device becomes complicated, and the simplicity and compactness of the structure, which are the characteristics of vibration wave motors, are halved.

そこで本発明は従来の振動波モータのこれら欠点を解消
し極めて簡単な構成で駆動効率の高い正逆転可能な振動
波モータを得ることを目的とするものである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to overcome these drawbacks of conventional vibration wave motors and to provide a vibration wave motor that has a very simple structure, has high drive efficiency, and is capable of forward and reverse rotation.

上記目的を達成するため本発明は、環状振動体2の一部
に中心から放射方向に向うに従い厚みが増加する部分を
設け、他の一部に一定な厚みの部分を設け、その一定の
厚み部分に、複数の電歪素子3を位相差的に配列して接
合し、又は複数に位相差的に分極処理された電歪素子3
を接合し、該電歪素子3に周波電圧を印加して該振動体
2に進行性振動波を発生させ、その進行性振動波により
、該振動体2の前記一定の厚み部分に加圧接触させた移
動体1を摩擦駆動することを特徴とする振動波モータで
ある。
In order to achieve the above object, the present invention provides a part of the annular vibrating body 2 with a part whose thickness increases in the radial direction from the center, and provides a part with a constant thickness in the other part, and the part with a constant thickness. A plurality of electrostrictive elements 3 are arranged and bonded in a phase difference manner, or a plurality of electrostrictive elements 3 are polarized in a phase difference manner.
are joined, a frequency voltage is applied to the electrostrictive element 3 to generate a progressive vibration wave in the vibrating body 2, and the progressive vibration wave brings the predetermined thickness portion of the vibrating body 2 into pressure contact. This is a vibration wave motor characterized by frictionally driving a moving body 1 that has been moved.

第1図は本発明を適用する振動波モータの実施例で各要
素別に分解したものを示している。
FIG. 1 shows an embodiment of a vibration wave motor to which the present invention is applied, disassembled into each element.

ベースとなる固定体5の中心円筒部5aに、振動吸収体
4・吸収体4側に電歪素子3を接着した金属の環状振動
体2・移動体1の順に嵌め込まれており、固定体5・吸
収体4・振動体2は各々相互に回転しないように取付け
られている。振動体2に対し移動体1は自重又は図示し
ない付勢手段で圧接されモータの一体性を保っている。
A vibration absorber 4, a metal annular vibrating body 2 with an electrostrictive element 3 bonded to the side of the absorber 4, and a movable body 1 are fitted into the central cylindrical portion 5a of the fixed body 5, which serves as a base, in this order. - The absorber 4 and the vibrator 2 are attached so that they do not rotate relative to each other. The movable body 1 is pressed against the vibrating body 2 by its own weight or a biasing means (not shown) to maintain the integrity of the motor.

複数の電歪素子3aは振動波の波長λの2分の1のピッ
チで配列され、複数の電歪素子3bも同じくλ/2ピッ
チで配列されている。なお電歪素子3は複数並べず、第
8図に示すように環状の単体の素子3にし、それを前記
ピッチに分極処理し分極処理部3aと3bにしても良い
。電歪素子3aと3bの相互ピッチは(n o + 1
 / 4 )入(但しn。=0.1.2.3・・・)ず
れた位相差的配列がなされる。電歪素子3aの各々には
吸収体4側にリード線11aが接続され電歪素子3bの
各々にはリード線11bが接続され、その各々は電源6
aと90°位相器6bに接続される(第3図参照)。ま
た金属の振動体2にはリード線11cが接続され交流電
源6aと接続される。第2図に示すように環状振動体2
は電歪素子3側では平面にし、もう一方の面は一部で放
射方向に向うに従い板厚か厚くなるような傾斜部に、残
部で平行平板になるように形成しである。移動体1の摩
擦部1aは振動体2の平行平板部分に圧接される。その
摩擦部1aは摩擦力を強くしかつ摩耗を少なくするよう
に硬質ゴム等で形成される。また吸収体4はゴム・フェ
ルト等で形成し機械的振動を固定体5に伝えないように
なっている。
The plurality of electrostrictive elements 3a are arranged at a pitch of 1/2 of the wavelength λ of the vibration wave, and the plurality of electrostrictive elements 3b are also arranged at a pitch of λ/2. Instead of arranging a plurality of electrostrictive elements 3, a single annular element 3 may be used as shown in FIG. 8, and it may be polarized at the pitch to form the polarized parts 3a and 3b. The mutual pitch between the electrostrictive elements 3a and 3b is (n o + 1
/4) (however, n.=0.1.2.3...) shifted phase difference arrangement is made. A lead wire 11a is connected to each of the electrostrictive elements 3a on the absorber 4 side, a lead wire 11b is connected to each of the electrostrictive elements 3b, and each of them is connected to a power source 6.
a and a 90° phase shifter 6b (see FIG. 3). Further, a lead wire 11c is connected to the metal vibrating body 2 and connected to an AC power source 6a. As shown in Fig. 2, the annular vibrating body 2
is a flat surface on the side of the electrostrictive element 3, and the other surface is formed so that a part thereof has an inclined part where the plate thickness becomes thicker in the radial direction, and the remaining part is formed into a parallel flat plate. The friction portion 1a of the movable body 1 is pressed against the parallel plate portion of the vibrating body 2. The friction portion 1a is made of hard rubber or the like to increase the frictional force and reduce wear. Further, the absorber 4 is made of rubber, felt, etc., so as not to transmit mechanical vibrations to the fixed body 5.

このように構成された振動波モータの動作は次のような
ものである。
The operation of the vibration wave motor configured as described above is as follows.

第3図は」二記モータの振動波の発生状態を示している
。金属の振動体2に接着された電歪素子3a及び3bは
、説明の便宜上、隣接して現わされているが、上記の入
/4の位相ずれの条件を満足しているため、第1図に示
すモータの電歪素子3a及び3bの配列と実質的に等価
なものである。
FIG. 3 shows the state in which vibration waves are generated in the motor. The electrostrictive elements 3a and 3b bonded to the metal vibrating body 2 are shown adjacent to each other for convenience of explanation, but since they satisfy the above-mentioned input/4 phase shift condition, the first This arrangement is substantially equivalent to the arrangement of electrostrictive elements 3a and 3b of the motor shown in the figure.

各電歪素子3a及び3b中のeは交流電圧が正側の周期
であるとき伸び、Oは同じく正側の周期で縮む状態にな
ることを示している。
In each of the electrostrictive elements 3a and 3b, e indicates that the alternating current voltage expands when the period is on the positive side, and O indicates that the electrostrictive element contracts when the cycle is on the positive side.

金属振動体2を電歪素子3a及び3bの一方の電極にし
、電歪素子3aには交流電源6aからV=V、sinω
tの交流電圧を印加し、電歪素子3bには交流電源6a
から900位相器6bを通してλ/4位相のずれたV=
V、5in(ωt±π/2)の交流電圧を印加する。式
中の十又−は移動体1(本図に於て省略)を動かす方向
によって位相器6bで切り換えられるもので、+側に切
り換えると+90°位相がずれ正方向に動き、−側に切
り換えると一90°位相がずれ逆方向に動く。いま−側
に切り換えてあり電歪素子3bにはV=Vos i n
 ((+) t−π/ 2)の電圧が印加されるとする
。電歪素子3aだけが単独で電圧V=VosinωLに
より振動した場合は同図(a)に示すような安在波によ
る振動が起り、電歪素子3bだけが単独テ電圧V=V(
、s i n (ωt −π/2)により振動した場合
は(b)に示すような定在波による振動が起る。上記位
相のずれた二つの交流を同時に各々の電歪素子3aと3
bに印加すると振動波は進行性になる。(イ)は時間t
=2 n w /ω、 (ロ)はt=π/2ω+2nπ
/ω、(ハ)はt=π/ω+2nπ/ω、(ニ)は七=
3π/2ω+2nπ/ωの時のもので、振動波の波面は
X方向に進行する。
The metal vibrating body 2 is used as one electrode of the electrostrictive elements 3a and 3b, and the electrostrictive element 3a is supplied with V=V, sin ω from an AC power source 6a.
An AC voltage of t is applied to the electrostrictive element 3b, and an AC power source 6a is applied to the electrostrictive element 3b.
V= with a phase shift of λ/4 from 900 through phase shifter 6b
An alternating current voltage of V, 5 in (ωt±π/2) is applied. The ten or minus in the formula is switched by the phase shifter 6b depending on the direction in which the moving body 1 (omitted in this figure) is moved; when switched to the + side, the phase shifts by +90° and moves in the positive direction, and then switched to the - side. The phase shifts by 90 degrees and moves in the opposite direction. It is now switched to the - side, and the electrostrictive element 3b has V=Vos in
Assume that a voltage of ((+)t-π/2) is applied. When only the electrostrictive element 3a vibrates independently with the voltage V=VosinωL, vibrations due to Anzai waves as shown in FIG.
, sin (ωt −π/2), vibrations due to standing waves as shown in (b) occur. The two out-of-phase alternating currents are simultaneously applied to each electrostrictive element 3a and 3.
When applied to b, the vibration wave becomes progressive. (b) is time t
=2 n w /ω, (b) is t=π/2ω+2nπ
/ω, (C) is t=π/ω+2nπ/ω, (D) is 7=
3π/2ω+2nπ/ω, and the wavefront of the vibration wave travels in the X direction.

このような進行性の振動波は縦波と横波を伴なっており
、第4図に示すように振動体2の質点Aについて着目す
ると、縦振幅Uと横振幅Wで反時計方向の回転楕円運動
をしている。振動体2の表面には移動体1が加圧接触し
ており振動面の頂点にだけ接触することになるから、頂
点に於ける質点A−A・・・の楕円運動の縦振幅Uの成
分に駆動され、移動体1は矢示N方向に移動する。
Such progressive vibration waves are accompanied by longitudinal waves and transverse waves, and if we focus on the mass point A of the vibrating body 2 as shown in FIG. Exercising. Since the movable body 1 is in pressure contact with the surface of the vibrating body 2 and comes into contact only with the apex of the vibrating surface, the component of the longitudinal amplitude U of the elliptical motion of the mass point A-A... at the apex The moving body 1 moves in the direction of arrow N.

90°位相器により+90°位相をずらせば振動波は−
X方向に進行し、移動体1はN方向と逆向きに移動する
If the phase is shifted by +90° using a 90° phase shifter, the vibration wave becomes -
Moving in the X direction, the moving body 1 moves in the opposite direction to the N direction.

このように進行性振動波によって駆動される振動波モー
タは極めて簡単な構成で正逆転の切り換えが可能となる
As described above, the vibration wave motor driven by progressive vibration waves can be switched between forward and reverse directions with an extremely simple configuration.

なお、質点Aの頂点に於ける速度はV=2πfu(fは
振動周波数)となり、移動体1の移動速度はこれに依存
すると共に、加圧接触による摩擦駆動がされるため、横
振幅Wにも依存する。即ち、移動体1の移動速度は質点
Aの楕円運動の大きさに比例し、その楕円運動の大きさ
は電歪素子に印加される電圧に比例する。
The velocity at the apex of the mass point A is V = 2πfu (f is the vibration frequency), and the moving velocity of the moving body 1 depends on this, and since it is frictionally driven by pressurized contact, the lateral amplitude W also depends. That is, the moving speed of the moving body 1 is proportional to the magnitude of the elliptical motion of the mass point A, and the magnitude of the elliptical motion is proportional to the voltage applied to the electrostrictive element.

移動体1の摩擦駆動は振動体2の進行性振動波の波面の
頂点でなされるものであるから、頂点方向(第4Iff
lZ軸方向)の波面が共振していることが駆動効率を向
上させるために必要である。入力電圧の周波数f(=2
πω)とし振動体2のヤング率E・密度ρ厚さhとして
これによってつくられる波の波長入とすると、 f=1’rン3p  πh/入2 、、、、  (1)
なる関係がありこの関係を満足する板厚りで共振するこ
とになる。
Since the frictional drive of the movable body 1 is performed at the apex of the wavefront of the progressive vibration wave of the vibrating body 2, it is
In order to improve drive efficiency, it is necessary that the wavefront in the 1Z-axis direction is resonant. Frequency f of input voltage (=2
πω), and if the wavelength of the wave created by this is Young's modulus E and density ρ and thickness h of the vibrating body 2, then f=1'rn3p πh/in2 ,,,, (1)
There is a relationship as follows, and a plate thickness that satisfies this relationship will resonate.

実施例における振動体2は環状であるため (1)式は
環の径りに於ける微小環中の範囲で成立するもので、周
長πDは波長入のn倍(nは自然数)のとき共振する。
Since the vibrating body 2 in the embodiment is annular, equation (1) is valid within the range of the micro ring in the ring diameter, and when the circumference πD is n times the wavelength input (n is a natural number). resonate.

即ち λ=πD/n、、、、、(2) となる。That is, λ=πD/n, (2) becomes.

従って (1)、  (2)式より h=、fT丁/E・wfD2/n2 、、、(3)とい
う関係が成り立つ。
Therefore, from equations (1) and (2), the following relationship holds: h=fT/E·wfD2/n2, (3).

振動体2の断面が移動体l側で形成する曲線は(3)式
を満足していることが好ましい。このとき、第4図に於
けるZ軸方向で波面が共振し極めて強力な駆動効率を得
ることができる。
It is preferable that the curve formed by the cross section of the vibrating body 2 on the movable body l side satisfies equation (3). At this time, the wavefront resonates in the Z-axis direction in FIG. 4, and extremely strong drive efficiency can be obtained.

ところが、振動体2と移動体1の接触面に於て一ヒ記関
係式を満足しなくても、高効率の駆動が可能である。
However, even if the contact surface between the vibrating body 2 and the movable body 1 does not satisfy the above relational expression, highly efficient driving is possible.

第2図に示す実施例では、振動体2の電歪素子3側は平
面に形成し移動体1側では内径D1に於ける厚さり、=
、f丁p / E・πfD12/n2に、傾斜部分の外
径D2に於ける厚さり、、=zρ/E−πfD22/n
2にしてその間を直線で結ぶ厚さに形成したものである
。この場合に於てもD2がJ薯3/)/E−・πf /
 n 2に比し充分大きいため、振動体2の共振領域が
拡大し、高い駆動効率が得られる。
In the embodiment shown in FIG. 2, the electrostrictive element 3 side of the vibrating body 2 is formed flat, and the thickness at the inner diameter D1 on the movable body 1 side is =
, f dp / E・πfD12/n2, the thickness at the outer diameter D2 of the inclined part, ,=zρ/E−πfD22/n
2 and the thickness is such that they are connected by a straight line. In this case as well, D2 is J 薯3/)/E-・πf/
Since it is sufficiently larger than n2, the resonance region of the vibrating body 2 is expanded, and high driving efficiency can be obtained.

第5図は別な実施例を示している。振動体2の電歪素子
3側に傾斜部を設けたもので傾斜部の内径D1とその位
置に於ける振動体2の厚さh1傾斜部の外径D2とその
位置に於ける振動体2の厚さh2は各前記(3)式の関
係を満足している。
FIG. 5 shows another embodiment. The vibrating body 2 has an inclined part on the electrostrictive element 3 side, and the inner diameter D1 of the inclined part and the thickness h of the vibrating body 2 at that position are the outer diameter D2 of the inclined part and the vibrating body 2 at that position. The thickness h2 satisfies the relationship of each equation (3) above.

また第6図は別な実施例を示すもので、振動体2の電歪
素子3側に傾斜部を形成し、その傾斜部を電歪素子の外
周外側に設けたものである。
FIG. 6 shows another embodiment in which a sloped portion is formed on the side of the electrostrictive element 3 of the vibrating body 2, and the sloped portion is provided outside the outer periphery of the electrostrictive element.

上記した本発明の振動波モータは進行性振動波により駆
動するため、簡単に正逆転の切替が可能で、しかもその
振動波の共振状態が良いため高い駆動効率を得られる。
Since the above-mentioned vibration wave motor of the present invention is driven by progressive vibration waves, it can easily be switched between forward and reverse directions, and the vibration waves have a good resonance state, so high driving efficiency can be obtained.

振動体2と移動体1の接触部分は水平面で接触している
ため、接触精度が良くなり、摩擦伝動効率が向上し、摩
擦による移動体1又は振動体2の摩耗も減少できる。ま
た回転むらも起りにくいものである。
Since the contact portions of the vibrating body 2 and the movable body 1 are in contact with each other on the horizontal plane, contact accuracy is improved, frictional transmission efficiency is improved, and wear of the movable body 1 or the vibrating body 2 due to friction can be reduced. Also, uneven rotation is less likely to occur.

第7図は本発明の振動波モータをスチルカメラ・ムービ
カメラ・テレビカメラ・ビデオカメラ等各種カメラ類・
映写機・引伸機・スライドブロジェツタ等の各種投影機
類及び光量測定4?i等の各種測定機類のような光学機
器のレンズの絞り駆動源として適用したものを例示して
いる。
Figure 7 shows how the vibration wave motor of the present invention can be applied to various cameras such as still cameras, movie cameras, television cameras, and video cameras.
Various projectors such as movie projectors, enlargers, slide projectors, etc. and light intensity measurements 4? This example is applied as an aperture drive source for a lens in an optical instrument such as various measuring instruments such as the I.

基台7の中心円筒部7aに吸収体4・前記ピッチに分極
処理された電歪素子3・振動体2・移動体である回転体
9の中心孔部が順に嵌め込まれ、基台7に対し吸収体4
・電歪素子3拳振動体2は回転しないようになっている
。絞り羽根12の円孔12b・円弧孔12aと基台7の
突起7b・回転体9の突起9aが各々係合し、その上を
スラストベアリング13がスペーサ14で位置決めされ
て抑え筒15に゛よって抑えられる。基台7と抑え筒1
5はバネ17によって付勢加圧され、ビス16によって
連結され絞りユニットの一体性を保つ。この絞りユニッ
トはレンズ鏡筒の一部を形成するものである。
The absorber 4, the electrostrictive element 3 polarized to the pitch, the vibrating body 2, and the center hole of the rotating body 9, which is a moving body, are fitted into the central cylindrical part 7a of the base 7 in this order, and Absorber 4
- The electrostrictive three-fist vibrating body 2 is designed not to rotate. The circular hole 12b and arcuate hole 12a of the aperture blade 12 are engaged with the protrusion 7b of the base 7 and the protrusion 9a of the rotating body 9, respectively, and the thrust bearing 13 is positioned above it by the spacer 14 and is held by the restraining cylinder 15. It can be suppressed. Base 7 and holding tube 1
5 is biased and pressurized by a spring 17 and connected by a screw 16 to maintain the integrity of the aperture unit. This aperture unit forms part of the lens barrel.

電歪素子3にリード線11a・llcとllb・lie
から各々−900位相のずれた交流を印加すると、回転
体9が回転しその突起9aに係合する絞り羽根12はそ
の円弧穴L2aに沿って軸7b・12bを中心として回
動進出する。絞り羽根12は複数の突起9aに各々設け
られているため前記回動進出したときは中心空孔部を絞
り込む。交流の位相を前記と逆に+90°ずらすと回転
体9が逆回転して絞りを開く。なお同図におけるSWは
回転体9の突起9bと絞りに開放時に当接してオン・オ
フするスイッチ、8aはくし歯電極で回転体9に取付け
られた電極8bに摺接し絞り羽根の絞り込み位置に応じ
た信号を出すもので、共に絞り制御のために必要なもの
である。
Lead wires 11a/llc and llb/lie are connected to the electrostrictive element 3.
When an alternating current having a phase shift of -900 is applied to each of the rotors 9 and 9, the rotating body 9 rotates, and the aperture blades 12 engaged with the protrusions 9a move forward and rotate around the shafts 7b and 12b along the circular arc holes L2a. Since the aperture blades 12 are provided on each of the plurality of protrusions 9a, when the aperture blades 12 are rotated forward, they narrow down the central cavity. When the phase of the alternating current is shifted by +90° in the opposite direction, the rotating body 9 rotates in the opposite direction and opens the diaphragm. In the same figure, SW is a switch that is turned on and off by contacting the protrusion 9b of the rotating body 9 and the diaphragm when the aperture is opened, and 8a is a comb-shaped electrode that slides into contact with the electrode 8b attached to the rotating body 9 and corresponds to the aperture position of the aperture blades. Both are necessary for aperture control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する振動波モータの分解斜視図、
第2図は振動波モータの一部切欠き側面図、第3図・第
4図は振動波モータの駆動原理説明図、第5図・第6図
は別な実施例の一部切欠き側面図、第7図は本発明の振
動波モータを絞り駆動源に適用した実施例の斜視図、第
8図は電歪素子の別な実施例の平面図である。 1は移動体、2は振動体、3は電歪素子、4は振動吸収
体、5は固定体である。 第7図 ノl 第2図 第5図 第6図
FIG. 1 is an exploded perspective view of a vibration wave motor to which the present invention is applied;
Fig. 2 is a partially cutaway side view of the vibration wave motor, Figs. 3 and 4 are diagrams explaining the driving principle of the vibration wave motor, and Figs. 5 and 6 are partially cutaway side views of another embodiment. 7 is a perspective view of an embodiment in which the vibration wave motor of the present invention is applied to an aperture drive source, and FIG. 8 is a plan view of another embodiment of an electrostrictive element. 1 is a moving body, 2 is a vibrating body, 3 is an electrostrictive element, 4 is a vibration absorber, and 5 is a fixed body. Figure 7 No. 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)環状振動体の一部に中心から放射方向に向うに従
い厚みが増加する部分を設け、他の一部に一定な厚みの
部分を設け、 その一定の厚みの部分に、複数の電歪素子を位相差的に
配列して接合し、又は複数に位相差的に分極処理された
電歪素子を接合し、 該電歪素子に周波電圧を印加して該振動体に進行性振動
波を発生させ、 その進行性振動波により、該振動体の前記一定の厚み部
分に加圧接触させた移動体を摩擦駆動することを特徴と
する振動波モータ。
(1) A part of the annular vibrating body is provided with a part whose thickness increases in the radial direction from the center, and another part is provided with a constant thickness, and in that constant thickness part, multiple electrostrictive The elements are arranged and bonded in a phase difference manner, or a plurality of electrostrictive elements polarized in a phase difference manner are bonded, and a frequency voltage is applied to the electrostrictive element to generate a progressive vibration wave in the vibrating body. A vibration wave motor, characterized in that the progressive vibration waves are generated and frictionally drive a movable body that is brought into pressure contact with the predetermined thickness portion of the vibrator.
JP57234720A 1982-12-15 1982-12-27 Vibration wave motor Pending JPS59122387A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57234720A JPS59122387A (en) 1982-12-27 1982-12-27 Vibration wave motor
US06/558,004 US4495432A (en) 1982-12-15 1983-12-05 Piezoelectric vibration wave motor with sloped drive surface
DE19833345274 DE3345274A1 (en) 1982-12-15 1983-12-14 VIBRATION SHAFT MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234720A JPS59122387A (en) 1982-12-27 1982-12-27 Vibration wave motor

Publications (1)

Publication Number Publication Date
JPS59122387A true JPS59122387A (en) 1984-07-14

Family

ID=16975314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234720A Pending JPS59122387A (en) 1982-12-15 1982-12-27 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS59122387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277383A (en) * 1985-05-30 1986-12-08 Marcon Electronics Co Ltd Ultrasonic wave motor
JPH01264581A (en) * 1988-04-14 1989-10-20 Matsushita Electric Ind Co Ltd Ultrasonic motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277383A (en) * 1985-05-30 1986-12-08 Marcon Electronics Co Ltd Ultrasonic wave motor
JPH01264581A (en) * 1988-04-14 1989-10-20 Matsushita Electric Ind Co Ltd Ultrasonic motor
JPH0687673B2 (en) * 1988-04-14 1994-11-02 松下電器産業株式会社 Ultrasonic motor

Similar Documents

Publication Publication Date Title
US4495432A (en) Piezoelectric vibration wave motor with sloped drive surface
JPS59117473A (en) Vibration wave motor
JP3059031B2 (en) Vibration wave drive device and device provided with vibration wave drive device
JPH0477553B2 (en)
JPH0284079A (en) Supporting device of oscillatory wave motor
JPH0474952B2 (en)
KR100485882B1 (en) Vibration element and vibration wave driving apparatus
JPS59122387A (en) Vibration wave motor
JPS59139878A (en) Vibration wave motor
JP2769151B2 (en) Ultrasonic motor
JP2994023B2 (en) Ultrasonic motor
JPH02311184A (en) Ultrasonic motor
JPS59110387A (en) Vibration wave motor
JP2725767B2 (en) Vibration wave drive
JP2003033054A (en) Ultrasonic motor device
JPS60210173A (en) Vibration wave motor
SU710660A1 (en) Vibration exciter
JPH02142366A (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
JPH07312882A (en) Ultrasonic motor
JPH0965673A (en) Vibration actuator
JPH0251379A (en) Ultrasonic motor
JP2003009556A (en) Ultrasonic motor device
JPS63245283A (en) Piezoelectric motor
JPH02142368A (en) Ultrasonic motor