JPS59119841A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59119841A
JPS59119841A JP57228351A JP22835182A JPS59119841A JP S59119841 A JPS59119841 A JP S59119841A JP 57228351 A JP57228351 A JP 57228351A JP 22835182 A JP22835182 A JP 22835182A JP S59119841 A JPS59119841 A JP S59119841A
Authority
JP
Japan
Prior art keywords
film
substrate
silicon
silicon nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57228351A
Other languages
Japanese (ja)
Other versions
JPH0628259B2 (en
Inventor
Ichiro Kato
一郎 加藤
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57228351A priority Critical patent/JPH0628259B2/en
Publication of JPS59119841A publication Critical patent/JPS59119841A/en
Publication of JPH0628259B2 publication Critical patent/JPH0628259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To enable to selectively remove a nitride film from a substrate without giving damage and the like on the substrate by a method wherein the silicon nitride film formed on the silicon semiconductor substrate is oxidized in the oxygen plasma containing harogen element, and the oxidized film is removed by performing etching. CONSTITUTION:A silicon nitride fill 2 is formed on an Si substrate 1, said silicon nitride film 2 is oxidized using plasma which is generated by introducing O2 containing CF4, for example, and a silicon oxide or silicon oxide-nitride film 3 is formed. Then, the oxidized film 3 is removed by performing a wet etching method, and a silicon dioxide film 4 is formed on the surface of the Si substrate. Besides, etching is performed on the silicon dioxide film 4 and a silicon dioxide film 5 is formed. Subsequently, the electrodes 6 and 7 of MOS diode are formed using aluminum (Al). As a result, the nitride film can be selectively removed without having damage and contamination on the Si substrate.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置の製造方法、特にシリコン半導体基
体上に形成されたシリコン窒化物皮膜の選択的除去方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for selectively removing a silicon nitride film formed on a silicon semiconductor substrate.

(b)  技術の背景 情報処理装置r7を始とする各種の電子応用装置に用い
られる半導体装置、特に論理及び記憶集積回路装置等に
おいては、MO8電界効果トランジスタ(以下MO8F
ETと略称する)が、その構造大規模、高密度の集積化
に適することから現在トランジスタ素子の主力となって
いる。
(b) Technical background In semiconductor devices used in various electronic application devices including information processing device R7, especially in logic and memory integrated circuit devices, MO8 field effect transistors (hereinafter referred to as MO8F
(abbreviated as ET) is currently the mainstay of transistor devices because its structure is suitable for large-scale, high-density integration.

同一シリコン(Si)基板上にMOS FETを集積形
成する場合には、MOS FET素ヨー相互間の干渉を
遮断するためにSi基板上の各MO8FFT素子間を分
離することが必要であって、その手段として素子相互間
にSi基板の尾択的1夜化によって形成される二酸化シ
リコン(5i02 )膜を設けることが一般に行なわれ
ている。
When MOS FETs are integrated on the same silicon (Si) substrate, it is necessary to isolate each MO8FFT element on the Si substrate in order to block interference between the MOS FET elements. As a means, it is generally practiced to provide a silicon dioxide (5i02) film formed by selectively heating a Si substrate overnight between the elements.

(c)  従来技術と問題点 先に述べた素子間分離用二ば化シリコン膜(以下フィー
ルド開化j俣という)をSi基板上に、形成する方法と
して従来下目己の製造方法が実施されている。。
(c) Prior art and problems As a method for forming the silicon dibaride film for element isolation (hereinafter referred to as field opening) on a Si substrate, the manufacturing method described below has been used in the past. There is. .

その第1の方法としては、81基板に助い二酸化シリコ
ン$を熱酸化法によって、次いで屋化シリコン(5ia
N4)膜を化学気相1メ長方法(以−1・CVD法と略
称する)によって順次形成し、リングラフィ法及びプラ
ズマエツチング法等によってフィールド酸化膜形成予定
領域の前記窒化シリコン膜及び二酸化シリコン膜を選択
的に除去する。
The first method is to apply silicon dioxide onto an 81 substrate using a thermal oxidation method, and then apply silicon dioxide (5ia
N4) Films are sequentially formed by a chemical vapor phase one-meter long method (hereinafter referred to as CVD method), and the silicon nitride film and silicon dioxide in the area where the field oxide film is to be formed are removed by phosphorography, plasma etching, etc. Selectively remove the membrane.

次いで残置された窒化シリコン膜をマスクとして熱酸化
によってフィールド酸化膜を形成する。
Next, a field oxide film is formed by thermal oxidation using the remaining silicon nitride film as a mask.

しかしながら本方法を適用する場合には、マスクとする
窒化シリコン膜の端において、フィールド酸化膜が窒化
シリコン膜の下に延伸して一般にバーズビークと呼ばれ
る部分が形成されて来る。
However, when this method is applied, the field oxide film extends below the silicon nitride film at the end of the silicon nitride film used as a mask, forming a portion generally called a bird's beak.

このバーズビークは集積照度の向上には不都合である。This bird's beak is inconvenient for improving integrated illuminance.

この欠点を除くための第2の方法として、Si基板に二
酸化シリコン膜を介することなく直接に窒化シリコン膜
ヲ形成して、これ全マスクとしてフィールド酸化膜を形
成する方法が知られている0直接形成された窒化シリコ
ン膜はSi基板との密着力が強固であるために、フィー
ルド酸化膜の形成の際の窒化7リコン膜下への拡がシが
短編される。この場合の窒化シリコン1mの形成方法と
して熱窒化法を適用するならば、耐酸化マスク効果をC
VD法による窒化シリコン膜に比較して遥に薄い皮膜厚
さで得ることができて、フィールド酸化工程においてS
i基板と窒化シリコン膜との熱膨張係数の差によって動
作領域のSj結晶に発生する歪が減少する。
As a second method to eliminate this drawback, there is a known method in which a silicon nitride film is formed directly on the Si substrate without intervening a silicon dioxide film, and a field oxide film is formed using this as a mask. Since the formed silicon nitride film has strong adhesion to the Si substrate, the amount of time for the field oxide film to spread under the 7-licon nitride film during formation of the field oxide film is shortened. In this case, if thermal nitridation is applied as a method for forming 1 m of silicon nitride, the oxidation-resistant mask effect can be reduced by C.
Compared to silicon nitride films produced by the VD method, it is possible to obtain a film with a much thinner film thickness, and S
The difference in thermal expansion coefficient between the i-substrate and the silicon nitride film reduces strain occurring in the Sj crystal in the operating region.

先立って除去されねばならない。半導体基体表面のN膜
の除去方法には大別してウェットエツチング法とドライ
エツチング法の2方法がおるが、それぞれ一長一短であ
ることは周知のとおシである。
must be removed first. There are two methods for removing the N film on the surface of a semiconductor substrate: wet etching and dry etching, and it is well known that each method has its own advantages and disadvantages.

すなわち、ウェットエツチング法は、(イ)一般に指向
性がないなど超微側加工に適しない、(口汐°ロセスが
クリーンでないなどの欠点から夕、またドライエツチン
グ法は、(イ)半導体基体に損傷を与え易い、(ロ)材
料を異にする部分相互間の選択性が得離い、e9処理後
の半導体基体面上に炭素等を含む高分子化合物等が残渣
として付着することが多い。
In other words, the wet etching method (a) is generally not suitable for ultra-fine side processing due to lack of directionality, and has drawbacks such as the process is not clean, and the dry etching method is (b) (b) Selectivity between parts made of different materials is poor, and polymer compounds containing carbon etc. often adhere as residues on the semiconductor substrate surface after e9 processing.

などの短所がある。There are disadvantages such as

特に熱窒化シリコン)f!jaを選択的に除去する場合
に、ウェットエツチング法を弗酸(HF )にょって実
施するならば熱窒化シリコン膜のエツチング速度が低い
ためにフィールド酸化)lσのエツチング減少を無視で
きない0寸だ熱窒化シリコン1.li、%に結晶化した
部分がある場合等には完全には除去されず、ゲート酸化
膜形成の際にその部分の酸化膜形成が妨害されてゲート
耐電圧が不足する結果を招き易い。更に熱窒化シリコン
膜が除去された後に基体表面付近に窒素原子が残存して
ゲート哨化膜形成に同様な影IP!に与え易い。
Especially thermal silicon nitride) f! When selectively removing ja, if wet etching is performed using hydrofluoric acid (HF), the etching reduction in field oxidation (lσ) cannot be ignored due to the low etching rate of the thermal silicon nitride film. Thermal silicon nitride1. If there is a crystallized portion in li, %, it will not be removed completely, and the formation of an oxide film on that portion will be hindered during formation of the gate oxide film, resulting in insufficient gate withstand voltage. Furthermore, after the thermal silicon nitride film is removed, nitrogen atoms remain near the substrate surface, causing a similar shadow to the gate barrier film formation! Easy to give.

ドライエツチング法については、熱ヤト化シリコンノ漠
を選択的にエツチングして81基板面か光量すればエツ
チングが停止する方式は未だす<、イオンや岨子の衝撃
による基板表面付近の歪の発生残渣である炭素系高分子
の付着も解決されない。
Regarding the dry etching method, there is still a method that selectively etches the thermally converted silicon layer and stops the etching when the amount of light reaches the substrate surface. The adhesion of residual carbon-based polymers also remains unsolved.

以上のような窒化シリコン膜の選択的除去に伴なう問題
点は熱望化シリコン膜に限られるものではなく、CVD
法など他の方法によって形成された窒化シリコン膜につ
いても同様に問題とされている。また窒化シリコン膜は
フィールド酸化膜形成のマスクに適するのみではなく、
例えばDRAMのキャパシター絶縁膜、ゲート絶縁膜、
 およびEAROMのトンネル絶縁膜などにも集積回路
装置の高集積化、高性能化の達成のために応用される気
運が見られる。
The problems associated with the selective removal of silicon nitride films as described above are not limited to aspiration silicon films, but are
A similar problem exists with respect to silicon nitride films formed by other methods such as the method. In addition, silicon nitride film is not only suitable as a mask for field oxide film formation;
For example, DRAM capacitor insulating film, gate insulating film,
There is also a tendency to apply it to the tunnel insulating film of EAROM, etc. to achieve higher integration and higher performance of integrated circuit devices.

これらの場合において、81表面に形成された窒化シリ
コン膜を完全に、かつsi基体に問題となる如き影響を
残すことなく選択的に除去する方法が要望されている。
In these cases, there is a need for a method for selectively removing the silicon nitride film formed on the surface of the silicon substrate 81 completely and without leaving any harmful effects on the Si substrate.

(d)  発明の目的 本発明はシリコン半尋体基体上に形成された/リコン窒
化物よりなる皮膜を、シリコン半導体基体に損傷もしく
は汚染等を与えることなく、完全に選択的に除去する製
造方法を提供することを目的とする。
(d) Purpose of the Invention The present invention provides a manufacturing method for completely and selectively removing a silicon nitride film formed on a silicon semiconducting substrate without damaging or contaminating the silicon semiconductor substrate. The purpose is to provide

(e)  発明の構成 本発明の前記目的は、シリコン半専体基体上にシリコン
窒化物よシなる皮膜を形成する工程と、ハロゲン元素を
含む酸素プラズマ中において該皮膜の少なくとも一部を
酸化する工程と、該酸化された皮膜をエツチング除去す
る工程とを含む半導体装置の製造方法により達成される
(e) Structure of the Invention The object of the present invention is to form a film made of silicon nitride on a semi-silicon substrate, and to oxidize at least a portion of the film in an oxygen plasma containing a halogen element. This is achieved by a method of manufacturing a semiconductor device including a step of etching away the oxidized film.

即ち本発明の製造方法は、本発明の発明者の一人が先に
特願昭57−052770号によって提供した半導体装
置の製造方法と同様に、シリコン窒化物膜を酸化性プラ
ズマ中において一旦酸化することによって該皮膜を容易
かつ完全に選択除去するものであり、特に該皮膜を酸化
せしめるプラズマに弗素に)等のハロゲン元素を添加す
ることによって、シリコン窒化物の酸化が促進されて酸
化工程の低温化7時間短縮が実現されることを特徴とす
る0 (f)  発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
That is, the manufacturing method of the present invention is similar to the semiconductor device manufacturing method previously provided by one of the inventors of the present invention in Japanese Patent Application No. 57-052770, in which a silicon nitride film is once oxidized in an oxidizing plasma. In particular, by adding a halogen element such as fluorine to the plasma that oxidizes the film, the oxidation of silicon nitride is promoted and the oxidation process is performed at a low temperature. (f) Embodiments of the Invention The present invention will be described in detail below using embodiments with reference to the drawings.

本発明の実施例である下記の試料11従来方法による比
較試料として下記試料■を製造し、窒化シリコン膜除去
後のSl基体の評価を各試料に、MOSダイオードを形
成して行なう。
Sample 11 below, which is an example of the present invention, and Sample 1 below, which is a comparative sample, were manufactured using a conventional method, and an MOS diode was formed on each sample to evaluate the Sl substrate after removing the silicon nitride film.

本発明の実施例である試料Iは、第1図(a)乃至(g
)に@■図を宗す如く、下記の様に製造される。
Sample I, which is an example of the present invention, is shown in FIGS. 1(a) to (g).
) is manufactured as follows, following the @■ diagram.

(i)  s1基板1上にプラズマ窒化法によって、窒
化シリコン膜2を厚さ例えば約10 (nm)に形成す
る。(第1図(a)参照) (11)前記Si基板1を収容したプラズマ酸化処理装
置内に、例えば四弗化炭素(CF4)を含む酸素(02
)を導入してプラズマを発生せしめて前記窒化シリコン
膜2を酸化して、酸化シリコン乃至酸化窒化シリコン膜
3を形成する。(第1図(b)参照)本実施例において
は、CF4の組成比(体積化)を1乃至10〔%〕程度
とし基板温度を100OC’C:)程度として時間約6
0分間で酸化処理が完了している。
(i) A silicon nitride film 2 is formed on the s1 substrate 1 to a thickness of, for example, about 10 (nm) by plasma nitriding. (See FIG. 1(a)) (11) In the plasma oxidation treatment apparatus containing the Si substrate 1, oxygen (02
) is introduced to generate plasma and oxidize the silicon nitride film 2 to form a silicon oxide or silicon oxynitride film 3. (See Fig. 1(b)) In this example, the composition ratio (volume) of CF4 is about 1 to 10 [%], the substrate temperature is about 100OC'C:), and the time is about 6 hours.
The oxidation treatment was completed in 0 minutes.

011)前記の敢化された皮膜3をウェットエツチング
法で除去する。(第1図(C)参照)エツチング液とし
て本実施例においては弗酸(HF)稀釈液を用いている
が、酸化シリコン膜の選択的除去に用いられる溶液の何
れを用いてもよい。
011) The hardened film 3 is removed by wet etching. (See FIG. 1C) In this embodiment, a hydrofluoric acid (HF) diluted solution is used as the etching solution, but any solution used for selectively removing a silicon oxide film may be used.

くψ 前記(11)と同様の条件でSi基板面に二酸化
シリコン膜4を厚さ例えば10[nm]程度形成する。
ψ A silicon dioxide film 4 having a thickness of, for example, about 10 [nm] is formed on the Si substrate surface under the same conditions as in (11) above.

(第1図(d)参照)この二酸化シリコン膜4は熱酸化
法によって形成してもよい。
(See FIG. 1(d)) This silicon dioxide film 4 may be formed by a thermal oxidation method.

(v)該二酸化シリコン膜4を前記010と同様にエツ
チング除去する。(第1図(e)参照)これらの工程(
ψ及び(V)はSi基板面を更に清浄化するために実施
するものであって、(イ)窒化シリコン膜形成工程(i
)で発生するおそれのあるSl基板表面近傍の歪、結晶
化した窒化シリコン或いは付着する不純物、(ロ)プラ
ズマ酸化工程(11)で発生するおそれのある81基板
表面近傍の損傷或いは付着する不純物などを除去するこ
とを目的としている。
(v) The silicon dioxide film 4 is removed by etching in the same manner as in step 010 above. (See Figure 1(e)) These steps (
ψ and (V) are carried out to further clean the Si substrate surface, and (a) silicon nitride film forming step (i)
) Strain near the surface of the Sl substrate that may occur in the crystallized silicon nitride or attached impurities; (b) Damage near the surface of the 81 substrate that may occur in the plasma oxidation step (11) or impurities attached, etc. is intended to remove.

(vt  MOSダイオード形成のための二酸化シリコ
ン膜5q厚さ例えば15 (nm)程度に形成する。
(vt A silicon dioxide film 5q for forming a MOS diode is formed to have a thickness of, for example, about 15 (nm).

(第1図(f)参照) (Vll)  MOSダイオードの電極6及び7をアル
ミニウム(ロ)によって形成する。(第1図(g)&照
)次に比較試料■は、前記実施例の試料Iの製造工8(
ii)のプラズマ酸化を実施することすく、製造工)?
iO:t+のウェットエツチングによって蓋化シリコン
膜2を除去する0その他の工程は試料Iと同様である。
(See FIG. 1(f)) (Vll) The electrodes 6 and 7 of the MOS diode are formed of aluminum (b). (Figure 1 (g) & see) Next, comparative sample (2) is manufactured by manufacturing process 8 (2) of sample I in the above example.
ii) Is it possible to carry out plasma oxidation (manufacturer)?
The other steps are the same as those for sample I except that the capping silicon film 2 is removed by iO:t+ wet etching.

以上の如く製造された試料l及びHのMOSダイオード
を通ずる′曲流が1〔μA〕となる印加電圧値の度数分
布の例を、本発明の実施例である試料Iについて第2図
(a)に、比較試料■について第2図(b)に示す。
FIG. ), and comparative sample ■ is shown in FIG. 2(b).

かかる結果より明らかな如く、本発明の実施例である試
料Iは窒化シリコン膜の形成、除去を行なうことなくM
OSダイオードを形成した場合に近い電圧値が得られ従
来技術による比較試料Hに比べて電圧値が高くかつその
分散が少なく、本発明の効果が明らかに現われている。
As is clear from these results, Sample I, which is an example of the present invention, has M
A voltage value close to that obtained when an OS diode is formed is obtained, and the voltage value is higher and the dispersion thereof is smaller than that of comparative sample H according to the prior art, clearly demonstrating the effects of the present invention.

窒化シリコン族、特に熱窒化シリコン族は熱ば化に対す
る耐性が犬きく、ハ化きれ難い。従って窒化シリコン膜
を酸化する場合に晒化反応を促進する手段としてガスの
プラズマ化を先に提案したが、プラズマ中に反応性の高
いハロゲン元素を徐加することによって酸化反応が促進
される。
The silicon nitride group, especially the thermal silicon nitride group, has very high resistance to thermal heating and is difficult to completely oxidize. Therefore, when oxidizing a silicon nitride film, turning a gas into plasma was proposed as a means of promoting the exposure reaction, but the oxidation reaction is promoted by gradually adding a highly reactive halogen element to the plasma.

また前記実施例においては、前記工程010及び(V)
においてウェットエツチング法を適用しているが、Si
半導体基体等に及ぼす損傷が少ないドライエノチッグ法
を適用してもよい。
Further, in the embodiment, the steps 010 and (V)
We applied the wet etching method in the
A dry enochig method that causes less damage to the semiconductor substrate etc. may be applied.

(g)  発明の詳細 な説明した如く本発明によれば、81半導体基体上に形
成されたシリコン窒化物よりなる皮膜の選択的除去に際
して、低温度でかつ短時間の処理を施し該皮膜を酸化す
ることによって、81基体にほとんど損傷及び汚染を残
すことなく、かつ例えばフィールド酸化験などの減少を
僅少に止めることが可能となり、犬頬、模半導体集慣回
路装置等の各素子の特性ならびに集伊踏度等の向上を更
に推進することができる。
(g) As described in detail, according to the present invention, when selectively removing a film made of silicon nitride formed on a semiconductor substrate, the film is oxidized by performing a treatment at a low temperature for a short time. By doing so, it is possible to leave almost no damage or contamination on the 81 substrate, and to minimize the decrease in field oxidation, for example, and to improve the characteristics of each element such as dog cheeks, simulated semiconductor integrated circuit devices, etc. It is possible to further promote the improvement of Ito degree, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(g)Iri本発明の実施例を示す断
m1図第2図(a)及び(b)は本発明の実施例及び比
較試料についてu′屯圧の例を示す図表である。 図において、1はSl基板、2は窒化シリコン膜、3は
酸化シリコン乃至咳化窒化/リコン膜、4及び5は二酸
化シリコン族、6及び7は電極を第 1  口 (α」(C〕 (b)                      
           (f)(Oと)       
                         
        7寥 2 口 宙と  汀J
Figures 1 (a) to (g) are cross-sectional views showing examples of the present invention. Figures 2 (a) and (b) are graphs showing examples of u' tonne pressure for examples of the present invention and comparative samples. It is. In the figure, 1 is an Sl substrate, 2 is a silicon nitride film, 3 is a silicon oxide or nitride/recon film, 4 and 5 are silicon dioxide groups, and 6 and 7 are electrodes. b)
(f) (with O)

7 寥 2 Kuchi Sora and Tei J

Claims (1)

【特許請求の範囲】[Claims] /リコン半導体基体上にシリコン捧化物よりなる皮11
1力を形成する工作と、ハロゲン元素を含む酸素プラズ
マ中において該皮膜の少なくとも一部を淑化する工程と
、該酸化された皮膜をエツチング除広−ノ′る工作とを
含んでなることを特徴とする半、jic体装置f’tの
製造方法
/Skin made of silicone compound on silicon semiconductor substrate 11
The method includes a step of forming a single layer, a step of oxidizing at least a part of the film in an oxygen plasma containing a halogen element, and a step of etching and removing the oxidized film. Features: Manufacturing method of semi-jic body device f't
JP57228351A 1982-12-27 1982-12-27 Method for manufacturing semiconductor device Expired - Lifetime JPH0628259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228351A JPH0628259B2 (en) 1982-12-27 1982-12-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228351A JPH0628259B2 (en) 1982-12-27 1982-12-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS59119841A true JPS59119841A (en) 1984-07-11
JPH0628259B2 JPH0628259B2 (en) 1994-04-13

Family

ID=16875096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228351A Expired - Lifetime JPH0628259B2 (en) 1982-12-27 1982-12-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0628259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013692A (en) * 1988-12-08 1991-05-07 Sharp Kabushiki Kaisha Process for preparing a silicon nitride insulating film for semiconductor memory device
JP2006202874A (en) * 2005-01-19 2006-08-03 Sharp Corp Thin film transistor and manufacturing method thereof
KR100643493B1 (en) 2004-09-23 2006-11-10 삼성전자주식회사 Method for forming silicon oxynitride layer in semiconductor device and fabricating equipment thereof
KR100880747B1 (en) 2006-06-29 2009-02-02 도쿄엘렉트론가부시키가이샤 Substrate processing method and substrate processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940888A (en) * 1972-08-25 1974-04-17
JPS57167632A (en) * 1981-03-25 1982-10-15 Fujitsu Ltd Surface treating method for semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940888A (en) * 1972-08-25 1974-04-17
JPS57167632A (en) * 1981-03-25 1982-10-15 Fujitsu Ltd Surface treating method for semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013692A (en) * 1988-12-08 1991-05-07 Sharp Kabushiki Kaisha Process for preparing a silicon nitride insulating film for semiconductor memory device
KR100643493B1 (en) 2004-09-23 2006-11-10 삼성전자주식회사 Method for forming silicon oxynitride layer in semiconductor device and fabricating equipment thereof
JP2006202874A (en) * 2005-01-19 2006-08-03 Sharp Corp Thin film transistor and manufacturing method thereof
KR100880747B1 (en) 2006-06-29 2009-02-02 도쿄엘렉트론가부시키가이샤 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JPH0628259B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US6953727B2 (en) Manufacture method of semiconductor device with gate insulating films of different thickness
US6727134B1 (en) Method of forming a nitride gate dielectric layer for advanced CMOS devices
US6458650B1 (en) CU second electrode process with in situ ashing and oxidation process
JPH06204496A (en) Method for growing high-quality oxide film
KR101097964B1 (en) Method for integrating a high-k gate dielectric in a transistor fabrication process
JPS59119841A (en) Manufacture of semiconductor device
JP4358556B2 (en) Manufacturing method of semiconductor device
US20050124160A1 (en) Novel multi-gate formation procedure for gate oxide quality improvement
JP2875972B2 (en) Semiconductor device isolation method
JPH08186260A (en) Preparation of mos transistor
US7056836B2 (en) Manufacturing method for a semiconductor device
JP2000357688A (en) Method of forming thermal oxide film
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
US5747357A (en) Modified poly-buffered isolation
JP2005019944A (en) Method of forming tunnel oxide film in semiconductor device
JP3348262B2 (en) Method for manufacturing semiconductor device
JPH0799178A (en) Manufacture of semiconductor device
JPS62293728A (en) Manufacture of semiconductor device
JPH11214386A (en) Semiconductor and method for forming insulating film on semiconductor substrate surface
JPH0578193B2 (en)
KR970009864B1 (en) Forming method of gate oxide-film in the semiconductor device
JPH1050695A (en) Manufacture of semiconductor device
JP2002270848A (en) Manufacturing method of semiconductor device
JPH0513359A (en) Manufacture of semiconductor device
JPH0217931B2 (en)