JPS59119729A - Microwave treating method and device therefor - Google Patents

Microwave treating method and device therefor

Info

Publication number
JPS59119729A
JPS59119729A JP23326082A JP23326082A JPS59119729A JP S59119729 A JPS59119729 A JP S59119729A JP 23326082 A JP23326082 A JP 23326082A JP 23326082 A JP23326082 A JP 23326082A JP S59119729 A JPS59119729 A JP S59119729A
Authority
JP
Japan
Prior art keywords
cavity
waveguide
microwave
slit
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23326082A
Other languages
Japanese (ja)
Inventor
Hiroshi Yano
弘 矢野
Shuzo Fujimura
藤村 修三
Yoji Morimoto
森本 洋示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23326082A priority Critical patent/JPS59119729A/en
Publication of JPS59119729A publication Critical patent/JPS59119729A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To improve efficiency on the use of microwaves while miniaturizing the device and reducing cost by inserting a slit between a rectangular waveguide and a cavity encasing a sample to be treated and changing a propagation mode into that of a circular waveguide when microwaves from a microwave generating source are introduced into the cavity by using an antenna and the rectangular waveguide. CONSTITUTION:When a mu wave power supply 3 and the cavity 1 as a sample chamber made of Al are connected by using the waveguide 4 incorporating the antenna, the waveguide 4 is not formed to a tapered one, and is made correspond to a closing window 8 made of quartz for the cavity 1 by using the rectangular waveguide, and the slit 10 for changing modes to a circle from a rectangle is inserted. A circular hole 11 is formed at the central section of the slit 10, and a projection 12, one end thereof is directed to the center and thickness thereof is made lambda/4, is formed previously in the hole 11. A wafer 2 loaded on a sample base 13 made of quartz is entered into the cavity 1, the cavity 1 is filled with CF4 and O2 gases, and the wafer 2 is reciprocated in the direction (C) from (A) and in the vertical direction (B) and etched.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、マイクロ波を利用して加熱、プラズマ処理等
を行う装置及び方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an apparatus and method for performing heating, plasma processing, etc. using microwaves.

従来技術と問題点 負荷となる空洞(キャビティ)内に処理対象とする試料
(例えばシリコンウェハ)を収容し、そこにマイクロ波
電源からマイクロ波を導入するには一般に導波管を使用
する。第1図はその一例で、1は直方体の試料室(空洞
)、2はその内部に収容されたシリコンウェハ、3はマ
イクロ波電源、4は通゛常の矩形導波管、5はテーパを
つけた導波管、6はフランジ、7はマイクロ波電源3の
マイクロ波放射用アンテナ、8は試料室1の窓である。
Prior Art and Problems Generally, a waveguide is used to accommodate a sample to be processed (for example, a silicon wafer) in a cavity that serves as a load, and to introduce microwaves from a microwave power source into the cavity. Figure 1 shows an example of this. 1 is a rectangular parallelepiped sample chamber (cavity), 2 is a silicon wafer housed inside, 3 is a microwave power source, 4 is a normal rectangular waveguide, and 5 is a tapered waveguide. 6 is a flange, 7 is a microwave radiation antenna of the microwave power source 3, and 8 is a window of the sample chamber 1.

第1図Ta)は概要図、(b)はこれを斜視図化したも
のである。マイクロ波電源3はマグネトロンなどの発振
管およびアンテナ等からなるがfb1図ではアンテナの
み示す。プラズマエツチングの場合は空洞1内にCFa
ガス及び酸素ガスを減圧状態で封入し、マイクロ波エネ
ルギでこれを電離してプラズマとし、該プラズマ中のフ
ン素、酸素ラジカルでシリコンウェハをエツチングする
FIG. 1 Ta) is a schematic diagram, and FIG. 1B is a perspective view thereof. The microwave power source 3 consists of an oscillation tube such as a magnetron, an antenna, etc., but only the antenna is shown in the fb1 diagram. In the case of plasma etching, CFa is placed inside cavity 1.
Gas and oxygen gas are sealed under reduced pressure and ionized using microwave energy to form plasma, and the silicon wafer is etched with fluorine and oxygen radicals in the plasma.

空洞内にマイクロ波エネルギを導入するにはアンテナを
空洞内に挿し込むことも考えられるが、アンテナが上記
中性ラジカルで損傷される恐れがある。マイクロ波発振
回路の出力は所定の導波管を用いて所定のモードで取出
すよう求められている。マイクロ波電力を空洞負荷へ供
給するには導波管を介在させ、空洞開口部つまり窓8は
石英などのマイクロ波透過部材で閉鎖するのが普通であ
る。
In order to introduce microwave energy into the cavity, it is possible to insert an antenna into the cavity, but there is a risk that the antenna may be damaged by the above-mentioned neutral radicals. The output of the microwave oscillation circuit is required to be extracted in a predetermined mode using a predetermined waveguide. Typically, a waveguide is used to supply microwave power to the cavity load, and the cavity opening or window 8 is closed with a microwave transparent material such as quartz.

ところで通常のマイクロ波装置であれば空洞1の寸法を
矩形導波管4と等しくできるので、導波管4と空洞1の
結合は比較的容易である。しかし、空洞1内に大径のシ
リコンウェハ2を収容する場合には空洞1の寸法がウェ
ハ2の寸法から決定されてしまうため、導波管4をその
まま空/1i11に接続できない。つまり、導波管4を
寸法の異なる空洞1に直接結合すると境界部の不整合に
よって反射が生じ、その反射パワーが大きくなると空洞
1内に導入されるパワーが減少するだけでなく、マイク
ロ波電源3を破壊してしまう恐れがあるがらである。
By the way, in a normal microwave device, the dimensions of the cavity 1 can be made equal to those of the rectangular waveguide 4, so coupling the waveguide 4 and the cavity 1 is relatively easy. However, when a large-diameter silicon wafer 2 is housed in the cavity 1, the dimensions of the cavity 1 are determined from the dimensions of the wafer 2, so the waveguide 4 cannot be directly connected to the cavity /1i11. In other words, when the waveguide 4 is directly coupled to the cavity 1 of different dimensions, reflection occurs due to the mismatch at the boundary, and when the reflected power increases, not only the power introduced into the cavity 1 decreases, but also the microwave power source Although there is a risk of destroying 3.

このため従来は第1図に示すようにテーパ導波管5を介
在させて整合を図っている。ところが、このテーパ導波
管5の長さは、徐々に断面積を変化させる必要があるこ
とから、一般に使用するマイクロ波の管内波長λの2倍
程度は必要とされる。
For this reason, matching has conventionally been achieved by interposing a tapered waveguide 5 as shown in FIG. However, since it is necessary to gradually change the cross-sectional area of the tapered waveguide 5, the length of the tapered waveguide 5 is required to be approximately twice the guide wavelength λ of the generally used microwave.

このため2.45GHzのマイクロ波では2λ夕25c
mとなり、装置全体が大型化することは避けられない。
Therefore, in the microwave of 2.45 GHz, 2λ 25c
m, which inevitably increases the size of the entire device.

のみならずテーパ導波管5の加工が高精度に行われてい
ないと反射が生じるので、該導波管5が高価なものとな
る。さらにデーパ部を含めて導波管が方形であると、円
形のウェハ2に対し均一な電界を作用させることができ
ないため、エツチングならムラが生じる等の問題がある
。即ち矩形導波管のモードはTE、oであり、これが空
洞1内に入ると、左、右端部が外方に彎曲した形状にな
るが、か\る電界(エツチングで影響を与えるのは電界
)に円形のウェハを置くと該左、右端対応部が余りエツ
チングされないという問題を生じる。円形ウェハのプラ
ズマエ・フランジには電界が放射状となるTMo、モー
ドがよい。
In addition, if the tapered waveguide 5 is not processed with high precision, reflection will occur, making the waveguide 5 expensive. Further, if the waveguide including the tapered portion is rectangular, it is impossible to apply a uniform electric field to the circular wafer 2, which causes problems such as uneven etching. That is, the mode of the rectangular waveguide is TE, o, and when it enters the cavity 1, the left and right ends become curved outward, but the electric field (the electric field that affects etching) ), a problem arises in that the left and right end corresponding portions are not etched very much. For the plasma flange of a circular wafer, the TMo mode, in which the electric field is radial, is preferable.

また、負荷中にプラズマを発生させる場合には、プラズ
マ発光させるガスの種類、圧力により、空洞内で消費さ
れるマイクロ波電力及び反射される電力は著るしく変化
する。特にプラズマ処理の場合には圧力変動に対して安
定にプラズマが発生している事が重要である。従って負
荷変動に対して窩時安定したマイクロ波電力を供給する
必要がある。
Furthermore, when plasma is generated during a load, the microwave power consumed within the cavity and the reflected power vary significantly depending on the type and pressure of the gas that generates the plasma. Particularly in the case of plasma processing, it is important that plasma be generated stably against pressure fluctuations. Therefore, it is necessary to supply stable microwave power even when the load fluctuates.

発明の目的 本発明は、マイクロ波導波管と空洞との接続部にモード
変換用のスリットを用いることにより上述した種々の問
題点を解決しようとするものである。
OBJECTS OF THE INVENTION The present invention attempts to solve the various problems mentioned above by using a slit for mode conversion at the connection between the microwave waveguide and the cavity.

発明の構成 本発明は、マイクロ波によって試料の処理を行なうマイ
クロ波処理方法であって、該マイクロ波を円形導波管の
伝搬モードで試料上に照射することを特徴とし、また処
理対象となる試料を収容する空洞に、マイクロ波発生源
からアンテナ及び矩形導波管を用いてマイクロ波を導入
するマイクロ波処理装置において、該矩形導波管と該空
洞との間に、矩形導波管に於けるマイクロ波の伝搬モー
ドを円形導波管の伝搬モードに変換するスリットを挿入
してなることを特徴とするが、以下図示の実施例を参照
しながらこれを詳細に説明する。
Structure of the Invention The present invention is a microwave processing method for processing a sample using microwaves, and is characterized in that the microwave is irradiated onto the sample in a propagation mode of a circular waveguide, and the sample is treated with a microwave. In a microwave processing device that introduces microwaves from a microwave generation source into a cavity containing a sample using an antenna and a rectangular waveguide, a rectangular waveguide is provided between the rectangular waveguide and the cavity. It is characterized by inserting a slit that converts the microwave propagation mode in the waveguide into the circular waveguide propagation mode, and this will be explained in detail below with reference to the illustrated embodiment.

発明の実施例 第2図は本発明の一実施例で、第1図と同一部分には同
一符号が付しである。本例が第1図と異なるのはテーパ
導波管5に代えて矩形から円形へのモード変換用スリッ
トlOを用いた点である。このスリット10は例えば矩
形導波管4と空洞1の間に挿入される。第3図はスリッ
ト10の具体例で、中央部には円形の孔11が設けられ
、この孔にはその両側端部から中心に向けて一端の突起
12が設けられている。厚みはλ/ 4 (2,45G
 Hzで約30龍)に設定する。6は導波管4のフラン
ジである。試料室1は30cm立方程度の純アルミニウ
ム製の箱で、その内部には矢印A方向から未処理のウェ
ハが搬入される。搬入されたウェハ2は矢印B方向に昇
降する石英製の試料台13で図示位置に持ち上げられて
処理される。プラズマによるエツチングであれば前述の
ように内部にCF 4゜02等のガスを充填し窓8は石
英板等で閉塞しておく。所定の処理を受けたウェハ2は
試料台13が降下した位置から矢印C方向に搬出される
。スリット10の円形孔11は突起12が矩形導波管の
長辺側から垂直に突き出すように設置する。スリット1
0により試料室l内の電界は第4図(alにE′で示す
ように放射状のTMo1モードに変換される。尚、Hは
磁界である。
Embodiment of the Invention FIG. 2 shows an embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. This example differs from FIG. 1 in that a slit lO for mode conversion from rectangular to circular mode is used instead of the tapered waveguide 5. This slit 10 is inserted between the rectangular waveguide 4 and the cavity 1, for example. FIG. 3 shows a specific example of the slit 10, in which a circular hole 11 is provided in the center, and a protrusion 12 at one end is provided in this hole from both ends thereof toward the center. The thickness is λ/4 (2,45G
Set to approximately 30 Hz). 6 is a flange of the waveguide 4. The sample chamber 1 is a pure aluminum box about 30 cm cubic in size, into which unprocessed wafers are carried from the direction of arrow A. The carried-in wafer 2 is lifted to the illustrated position on a quartz sample stage 13 that moves up and down in the direction of arrow B, and is processed. In the case of plasma etching, the interior is filled with gas such as CF4.02 as described above, and the window 8 is closed with a quartz plate or the like. The wafer 2 that has undergone predetermined processing is carried out in the direction of arrow C from the position where the sample stage 13 has descended. The circular hole 11 of the slit 10 is installed so that the protrusion 12 projects perpendicularly from the long side of the rectangular waveguide. slit 1
0, the electric field in the sample chamber l is converted into a radial TMo1 mode as shown by E' in FIG. 4 (al). Note that H is a magnetic field.

空洞内の電界が同図に示すようにウェハ2の中心から放
射状に広がるパターンであると、円形のウェハをこれに
センター合せすることにより均一なエツチングが可能に
なる。また、スリットにより空洞負荷内のガス圧力、種
類の変化による共振周波数の変動に対し、マイクロ波電
源は負荷変動の影響を受けず非常に安定に動作し、負荷
に安定にマイクロ波電力を供給する。このため空洞1内
に効率良くマイクロ波を導入し得ると共に、反射パワー
でマイクロ波電源3特に発振管を破壊する恐れもない。
If the electric field in the cavity has a pattern that spreads radially from the center of the wafer 2 as shown in the figure, uniform etching can be achieved by centering the circular wafer thereon. In addition, due to the slit, the microwave power supply operates extremely stably without being affected by load fluctuations, even though the resonance frequency fluctuates due to changes in gas pressure and type within the cavity load, stably supplying microwave power to the load. . Therefore, microwaves can be efficiently introduced into the cavity 1, and there is no fear that the reflected power will destroy the microwave power source 3, especially the oscillation tube.

さらにスリット10は数0の厚みでよいため装置全体を
小型化できる。例えば第1図なら導波管4の長さが30
0tm、テーパ導波管5の長さが250111、計55
0 xtaであるが、第2図装置ではは\゛導波管4の
長さ程度に抑えることができる。またスリット10はテ
ーパ導波管5より安価に製作できる。なお、マイクロ波
の伝搬モードはT M。、モードに限らず第4図(bl
に示すTE、。
Furthermore, since the slit 10 only needs to have a thickness of several tens of digits, the entire device can be made smaller. For example, in Figure 1, the length of waveguide 4 is 30
0tm, the length of the tapered waveguide 5 is 250111, total 55
0 xta, but in the device shown in FIG. 2, it can be suppressed to about the length of the waveguide 4. Furthermore, the slit 10 can be manufactured more cheaply than the tapered waveguide 5. Note that the propagation mode of microwave is TM. , Figure 4 (bl
TE shown in .

モード等の円形導波管のモートであっても良い。It may also be a moat of a circular waveguide such as a mode.

発明の効果 以上述べたように本発明によれば、モード変換用スリッ
トの活用で、マイクロ波の使用効率が高く、均一な処理
が可能な、更にマイクロ波発振管の損傷などがない、小
型で安価なマイクロ波利用装置を実現することができる
Effects of the Invention As described above, according to the present invention, by utilizing the mode conversion slit, microwave usage efficiency is high, uniform processing is possible, and the microwave oscillation tube is not damaged and is small. An inexpensive microwave utilization device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマイクロ波利用装置の一例を示す構成図
、第2図は本発明の一実施例を示す概略図、第3図はモ
ード変換用スリットの拡大斜視図、第4図(21)、 
(b)は電界分布の説明図である。 図中、1は空洞、2は試料、3はマイクロ波電源、4は
矩形導波管、5はテーパー導波管、6はフランジ、7は
アンテナ、8は試料室窓、10はスリットである。 出願人 富士通株式会社 代理人弁理士  青  柳    稔 133 第1図 7 第2図      第8図
Fig. 1 is a configuration diagram showing an example of a conventional microwave utilization device, Fig. 2 is a schematic diagram showing an embodiment of the present invention, Fig. 3 is an enlarged perspective view of a mode conversion slit, and Fig. 4 (21 ),
(b) is an explanatory diagram of electric field distribution. In the figure, 1 is a cavity, 2 is a sample, 3 is a microwave power source, 4 is a rectangular waveguide, 5 is a tapered waveguide, 6 is a flange, 7 is an antenna, 8 is a sample chamber window, and 10 is a slit. . Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi 133 Figure 1 7 Figure 2 Figure 8

Claims (1)

【特許請求の範囲】 (11マイクロ波によって試料の処理を行なうマイクロ
波処理方法であって、該マイクロ波を円形導波管の伝搬
モードで試料上に照射することを特徴とするマイクロ波
処理方法。 (2)処理対象となる試料を収容する空洞に、マイクロ
波発生源からアンテナ及び矩形導波管を用いてマイクロ
波を導入するマイクロ波処理装置において、該矩形導波
管と該空洞との間に、矩形導波管に於けるマイクロ波の
伝搬モードを円形導波管の伝搬モードに変換するスリッ
トを挿入してなることを特徴とするマイクロ波処理装置
[Claims] (11) A microwave processing method for processing a sample using microwaves, characterized in that the microwaves are irradiated onto the sample in a propagation mode of a circular waveguide. (2) In a microwave processing device that introduces microwaves from a microwave generation source into a cavity that accommodates a sample to be processed using an antenna and a rectangular waveguide, the connection between the rectangular waveguide and the cavity is A microwave processing device characterized in that a slit is inserted between the rectangular waveguides to convert the microwave propagation mode into the circular waveguide propagation mode.
JP23326082A 1982-12-25 1982-12-25 Microwave treating method and device therefor Pending JPS59119729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23326082A JPS59119729A (en) 1982-12-25 1982-12-25 Microwave treating method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23326082A JPS59119729A (en) 1982-12-25 1982-12-25 Microwave treating method and device therefor

Publications (1)

Publication Number Publication Date
JPS59119729A true JPS59119729A (en) 1984-07-11

Family

ID=16952285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23326082A Pending JPS59119729A (en) 1982-12-25 1982-12-25 Microwave treating method and device therefor

Country Status (1)

Country Link
JP (1) JPS59119729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149486A (en) * 1984-12-13 1986-07-08 エステイーシー ピーエルシー Surface treatment and plasma reaction vessel
JPH01194419A (en) * 1988-01-29 1989-08-04 Tel Sagami Ltd Plasma processor
JPH02103932A (en) * 1988-02-05 1990-04-17 Leybold Ag Particle source
JPH08246146A (en) * 1996-03-18 1996-09-24 Hitachi Ltd Method for plasma treating and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149486A (en) * 1984-12-13 1986-07-08 エステイーシー ピーエルシー Surface treatment and plasma reaction vessel
JPH01194419A (en) * 1988-01-29 1989-08-04 Tel Sagami Ltd Plasma processor
JPH02103932A (en) * 1988-02-05 1990-04-17 Leybold Ag Particle source
JPH08246146A (en) * 1996-03-18 1996-09-24 Hitachi Ltd Method for plasma treating and device therefor

Similar Documents

Publication Publication Date Title
US6325018B1 (en) Flat antenna having openings provided with conductive materials accommodated therein and plasma processing apparatus using the flat antenna
US5202095A (en) Microwave plasma processor
KR100363820B1 (en) Plasma processor
EP1439571B1 (en) Device and method for microwave plasma processing and microwave power supply device
JP3217274B2 (en) Surface wave plasma processing equipment
US20050205016A1 (en) Plasma treatment apparatus and plasma treatment method
JPH08106994A (en) Microwave plasma processor
KR100638716B1 (en) Plasma Processor And Plasma Processing Method
JPH07263187A (en) Plasma treatment device
JP3787297B2 (en) Plasma processing equipment
US6076484A (en) Apparatus and method for microwave plasma process
JPS59119729A (en) Microwave treating method and device therefor
JP3085019B2 (en) Plasma processing method and apparatus
JPH065386A (en) Electronic cyclotron resonance device
JPH11121196A (en) Microwave plasma treatment device
JP3082331B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPH08315998A (en) Microwave plasma treatment device
KR100263902B1 (en) Surface wave coupled etching apparatus
JPH05290995A (en) Plasma generator
JPH10294199A (en) Microwave plasma processing device
JP2639292B2 (en) ECR plasma processing equipment
JPH10107011A (en) Plasma processing apparatus
JP3981240B2 (en) Apparatus and method for generating microwave plasma
JP4107723B2 (en) Microwave plasma processing equipment
JP4616951B2 (en) Plasma processing equipment