JPS59119254A - Ion selective protective separating membrane and ion electrode using said membrane - Google Patents

Ion selective protective separating membrane and ion electrode using said membrane

Info

Publication number
JPS59119254A
JPS59119254A JP57232683A JP23268382A JPS59119254A JP S59119254 A JPS59119254 A JP S59119254A JP 57232683 A JP57232683 A JP 57232683A JP 23268382 A JP23268382 A JP 23268382A JP S59119254 A JPS59119254 A JP S59119254A
Authority
JP
Japan
Prior art keywords
polymer
ion
membrane
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57232683A
Other languages
Japanese (ja)
Other versions
JPH037263B2 (en
Inventor
Takeshi Shimomura
猛 下村
Noboru Koyama
昇 小山
Norihiko Ushizawa
牛沢 典彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57232683A priority Critical patent/JPS59119254A/en
Publication of JPS59119254A publication Critical patent/JPS59119254A/en
Publication of JPH037263B2 publication Critical patent/JPH037263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions

Abstract

PURPOSE:To hold stably a material layer having the function of oxidation reduction reaction on a conductive surface by covering the material layer having the function of oxidation reduction reaction with a high polymer film having ion selective permeability. CONSTITUTION:A thin conductive film 12 consisting of a conductive or semiconductor material is formed on an insulating plate-shaped body 11, and a lead wire 16 is connected to the film 12. A layer 13 consisting of a material having the function of oxidation reduction reaction is formed on the surface of the film 12. There are, for example, a ferrocene deriv. having the activity center of redox reaction, polynitrostyrene, etc. as the material for the layer 13. A high polymer film 14 having ion selective permeability such as cellulosic high polymer, PVC and its copolymer, silicone rubber, fluororesin or the like is formed on the layer 13 to cover the same. If the separating membrane is formed in such a way, oxidation reduction seeds do not pass through the high polymer film and are therefore stably held on the thin conductive film surface.

Description

【発明の詳細な説明】 ■7発明の背景 〔技術分野〕 この発明は溶液中に存在する金属イオン種や金属系錯イ
オンを選択分離、濃縮、および分別することのできるイ
オン選択保護分離膜およびそれを用いたイオン電極に関
する。
Detailed Description of the Invention ■7 Background of the Invention [Technical Field] The present invention provides an ion selective protection separation membrane that can selectively separate, concentrate, and fractionate metal ion species and metal complex ions present in a solution. This invention relates to an ion electrode using the same.

〔先行技術および問題蔗〕□ 種々々化合物全導電体表面に保持することにより新しい
機能性を探索する研究は活発化している。しかしながら
、機能性を持った多くの化合物は翫それらを安定に導電
体表面に保持することは困難である。
[Prior Art and Problems] □ Research is intensifying to explore new functionality by retaining various compounds on the surface of all conductors. However, it is difficult to stably hold many functional compounds on the surface of a conductor.

■0発明の目的 したがって、この発明の目的は試料溶液中のイオン濃度
によって影響を受けずに比較的長期に渡って安定にイオ
ンの選択分離をおこなえるイオン選択保護分離膜および
それを用いたイオン電極を提供することにある。
■0 Purpose of the Invention Therefore, the purpose of the present invention is to provide an ion selective protection separation membrane that can selectively separate ions stably over a relatively long period of time without being affected by the ion concentration in a sample solution, and an ion electrode using the same. Our goal is to provide the following.

この発明によれば、導゛亀性表面に接する表面を一方に
有する酸化還元機能材料層と、その他方の表面に接する
イオン選択透過性を有する高分子層とからなること’f
%徴とするイオン選択保護分離膜が提供される。
According to the present invention, the redox-functional material layer has one surface in contact with the electroconductive surface, and the other surface has a polymer layer having ion-selective permselectivity.
An ion-selective protection separation membrane is provided.

また、この発明によれば、4電体表面に支持された形態
にある、酸化還元反応機能を有する材料の層をイオン選
択透過性を有する高分子膜で被覆してなるイオン電極が
提供される。
Further, according to the present invention, there is provided an ion electrode in which a layer of a material having a redox reaction function, which is supported on the surface of a four-electrode body, is covered with a polymer membrane having selective ion permeability. .

一般に前記酸化還元反応機能を有する材料は高分子金属
錯体化合物または高分子−高分子間電荷移動型錯体であ
る。
Generally, the material having the redox reaction function is a polymer metal complex compound or a polymer-polymer charge transfer type complex.

才た、イオン選択透過性を有する高分子は、ナフィオン
、セルロース系高分子、ポリ塩化ビニルおよびその共重
合体、ポリ塩化ビニリデン、シリコーンゴム、ポリスル
ホンよりなる群の中から選ばれる。
The polymer having excellent ion permselectivity is selected from the group consisting of Nafion, cellulose polymers, polyvinyl chloride and its copolymers, polyvinylidene chloride, silicone rubber, and polysulfone.

また、導電体は、通常、白金系金属以外の導電材料の表
面に金又は白金系金属の層を真空蓄積によって形成して
なるものである。
Further, the conductor is usually formed by forming a layer of gold or platinum-based metal on the surface of a conductive material other than platinum-based metal by vacuum accumulation.

111、発明の詳細な説明 以下、図面に沿って、この発明の詳細な説明する。111. Detailed description of the invention The present invention will be described in detail below with reference to the drawings.

第1図は、この発明のイオン選択保護分離膜が基盤に担
持されている態様を示している。金、白金などの導電性
物質および5n02 r TiO2r RuO□。
FIG. 1 shows an embodiment in which the ion selective protection separation membrane of the present invention is supported on a substrate. Conductive materials such as gold, platinum and 5n02r TiO2r RuO□.

In2O3などの半導体物質がガラスあるいはフィルム
等の絶縁性板状体1ノ上にスzJ?ツタ法により導電性
薄膜12として形成されている。さらに、薄膜12辰面
に酸化還元反応機能を有する材料からなる層13が形成
されている。この酸化還元反応機能を有する材料には、
レドックス反応活性中心を持った高分子化合物であるフ
ェロセン誘導体、ポリニトロスチレン、ポリアニリンな
ど、あるいは高分子配位子化合物に金属錯体が配位した
高分子金属錯体化合物、例えば、ポリビニルピリジン(
pvp )に配位したルテニウム錯体、あるいは高分子
電解質化合物とイオン種との間の静電的相互作用によっ
て作製された高分子錯体化合物、例えば、プロトン付加
したPvP膜中に固定されたMo(CN)λ74−錯体
、ポリキシリルビオロゲンとポリスチレンスルホン酸と
の錯体化合物などがある。
A semiconductor material such as In2O3 is placed on an insulating plate such as glass or film. The conductive thin film 12 is formed by the vine method. Furthermore, a layer 13 made of a material having an oxidation-reduction reaction function is formed on the side surface of the thin film 12. Materials with this redox reaction function include
Polymer compounds with redox reaction active centers such as ferrocene derivatives, polynitrostyrene, polyaniline, etc., or polymeric metal complex compounds in which a metal complex is coordinated to a polymeric ligand compound, such as polyvinylpyridine (
ruthenium complexes coordinated to pvp) or polymeric complex compounds prepared by electrostatic interactions between polyelectrolyte compounds and ionic species, such as Mo(CN) immobilized in protonated PvP membranes. ) λ74-complex, a complex compound of polyxylyl viologen and polystyrene sulfonic acid, etc.

この層13ば、上記の高分子化合物あるいは高分子錯体
の溶液を薄膜12上に塗布するキャスト法によって薄膜
12上に形成できる。
This layer 13 can be formed on the thin film 12 by a casting method in which a solution of the above-mentioned polymer compound or polymer complex is applied onto the thin film 12.

層13を覆ってイオン選択透過性を有する高分子化合物
の膜14が形成されている。この高分子膜14はセルロ
ース系高分子(セルロース、アセチルセルロース、ニト
ロセルロース、エチルセルロース、トリアセチルセルロ
ース、セルロースアセテートブチレート等)、ポリ塩化
ビニルおよびその共重合体、7j?す塩化ビニリデン、
シリコーンゴム、フ・素樹脂(例えば、tテレロン)、
ナフィオン、ポリスルホン等で形成されている。この高
分子膜14は所定のイオンを選択的に透過させる機能を
有するとともに、溶液中において前記の酸化還元反応機
能を有する材料が当該溶液中に溶離することを防止し、
かつその1層13を薄膜12に安定に固定化する機能を
有する。
A film 14 of a polymer compound having ion selective permeability is formed to cover the layer 13 . This polymer membrane 14 is made of cellulose-based polymers (cellulose, acetylcellulose, nitrocellulose, ethylcellulose, triacetylcellulose, cellulose acetate butyrate, etc.), polyvinyl chloride and its copolymer, 7j? vinylidene chloride,
silicone rubber, fluororesin (e.g. telelon),
Made of Nafion, polysulfone, etc. This polymer membrane 14 has a function of selectively transmitting predetermined ions, and also prevents the material having the redox reaction function from eluting into the solution.
Moreover, it has a function of stably fixing that one layer 13 to the thin film 12.

薄膜12、酸化還元反応層13および高分子膜14の周
辺部を覆って、例えばエポキシ樹脂からなる絶縁層15
が形成されている。リード線16は例えば、銀ペースト
17を介して薄膜12に接続している。
An insulating layer 15 made of, for example, epoxy resin covers the peripheral parts of the thin film 12, the redox reaction layer 13, and the polymer film 14.
is formed. Lead wire 16 is connected to thin film 12 via silver paste 17, for example.

■0発明の具体的作用 以上述べた構成のイオン選択分離膜を被覆した導電体を
試料水溶液に浸漬しその電気化学的応答を両ぺると、導
電性薄膜表面に保持された酸化還元種は、イオン選択分
離膜を通しての対イオンの移動により酸化還元反応を行
なう。一方、該高分子膜は、酸化還元種を通過せず、溶
液への拡散を抑え、表面での保持安定性に寄与する。
■0Specific function of the invention When a conductor coated with an ion-selective separation membrane having the above-mentioned configuration is immersed in an aqueous sample solution and its electrochemical response is observed, the redox species retained on the surface of the conductive thin film are as follows: The redox reaction is carried out by the movement of counterions through the ion-selective separation membrane. On the other hand, the polymer membrane does not allow redox species to pass through, suppresses diffusion into the solution, and contributes to retention stability on the surface.

以下、実施例を示す。Examples are shown below.

実施例1 ガラス板に金薄膜をス・ぐツタ法により作製し、その片
すみから、銀ペーストによ)銅線を接触させて、リード
線をとった。次に、金薄膜上で4.97ミリモル/lポ
リビニルピリジン(PVP :平均重合度Pn=19 
)メタノール溶液と25.0ミリモル/ !l K4M
o(CN)6水溶液をキャスト法により混合し常温で製
膜し、次いで、キュグロファンをその上に被覆し、電極
の周囲をエポキシ樹脂で絶縁して電極面積0.28 y
n2の(金薄膜/PVP−Mo(CN)B /キュプロ
ファン膜)組成膜電極を作製した。
Example 1 A thin gold film was formed on a glass plate by the suction method, and a lead wire was taken by contacting a copper wire (using silver paste) from one corner of the film. Next, 4.97 mmol/l polyvinylpyridine (PVP: average degree of polymerization Pn=19
) methanol solution and 25.0 mmol/! l K4M
o(CN)6 aqueous solution was mixed by a casting method and formed into a film at room temperature. Then, Kyglophane was coated on top of it, and the electrode was insulated with epoxy resin to give an electrode area of 0.28 y.
A composition film electrode of n2 (gold thin film/PVP-Mo(CN)B/cuprophane film) was prepared.

3電極式セルを使用し、動作電極に本発明の膜被覆電極
、対極として白金網、基準電極として飽和塩化ナトリウ
ムカロメル電極(sscgと略称)を用い、0.2 M
 CF3 COONa支持電解質溶液(PH1,52>
中でMO(CN)Bの酸化還元反応のサイクリックボル
タモダラムを測定(掃引速度100 mV/秒)し膜の
特性を調べたところ第2図に示す酸化ピーク(+ 0.
6 V対5SCE )、還元ピーク(+0.45V対5
8CE )が観測され、各々のピークは徐々に増加し3
0分経過後一定化し1時間経てもピークが減少すること
無しに、一定の直を接続することが認められた。一方、
金電極に直接(PVP−Mo(CN)8)膜を被覆した
電極では、上記電極とほぼ同電位値(V対5SCE)K
酸化還元ピークが現われるが、電極を溶液浸漬後1分以
内で30チ位のピーク電流の減少がみられ掃引30分以
内でこのピーク電流はゼロ近く壕で減少することが観測
された(第3図)。
A three-electrode cell was used, with the membrane-covered electrode of the present invention as the working electrode, a platinum mesh as the counter electrode, and a saturated sodium chloride calomel electrode (abbreviated as SSCG) as the reference electrode.
CF3 COONa supporting electrolyte solution (PH1,52>
When the cyclic voltammodalum of the redox reaction of MO(CN)B was measured (sweep rate 100 mV/sec) and the properties of the film were investigated, the oxidation peak (+0.
6 V vs. 5SCE), reduction peak (+0.45 V vs. 5SCE), reduction peak (+0.45V vs.
8CE) was observed, and each peak gradually increased to 3
It was confirmed that the peak was constant after 0 minutes had elapsed, and the peak did not decrease even after 1 hour had passed, allowing a constant direct connection. on the other hand,
An electrode in which a gold electrode is directly coated with a (PVP-Mo(CN)8) film has approximately the same potential value (V vs. 5SCE) K as the above electrode.
A redox peak appears, but within 1 minute after the electrode is immersed in the solution, a decrease in the peak current of about 30 degrees is observed, and within 30 minutes of sweeping, this peak current is observed to decrease to near zero. figure).

これらのことにより11、キュプロファン膜はイオン選
択分離膜として、(PVP−Mo(CN)B )の電極
表面への被着安定性に著しく寄与することがわかった。
Based on these findings, it was found that the cuprophane membrane, as an ion-selective separation membrane, significantly contributes to the stability of adhesion of (PVP-Mo(CN)B) to the electrode surface.

また、キュプロファン膜の代わりに酢酸セルロースある
いはニトロセルロース膜を使用し、上記ト同1(711
iT (金薄膜/ PVP−Mo(CN)s /酢酸セ
ルロース膜)あるいは(金薄膜/PVP−Mo(CN)
a / ”トロセルロース膜)′t−使用し、上記と同
様の方法でサイクリックポルタモグラムを測定し、膜の
特性を調べたところ、酸化ピーク(+0.64V対5S
CE )及び還元ピーク(+0.33V対5SCE)の
ビーク電流は徐々に増加し30分経過後数時間経ても一
定の飽和瞳全持続した。
In addition, cellulose acetate or nitrocellulose membrane is used instead of the cuprophane membrane, and
iT (gold thin film/PVP-Mo(CN)s/cellulose acetate film) or (gold thin film/PVP-Mo(CN)
a/"Trocellulose membrane)'t-" was used, and the cyclic portamogram was measured in the same manner as above, and the characteristics of the membrane were investigated.
CE ) and the peak current at the reduction peak (+0.33 V vs. 5 SCE) gradually increased and remained constant throughout the saturation pupil even after 30 minutes and several hours.

シタがって、酢酸セルロース膜及びニトロセルロース膜
は、(PVP−Mo(CN)B)膜i金薄膜表面上に安
定に保持した保護膜およびイオン選択分離膜であること
がわかった。
It was found that the cellulose acetate membrane and the nitrocellulose membrane were a protective membrane and an ion-selective separation membrane that were stably held on the surface of the (PVP-Mo(CN)B) membrane i gold thin membrane.

イオン選択保護分離膜として、(、キュプロフデン、及
び酢酸セルロースを使用し、電極表面に保持する化学f
j]J ’kかえて上記表1に掲げた組成膜電極を作製
した。電極作製法については以下に述べる。
The chemical f
j] J'k Instead, membrane electrodes with the compositions listed in Table 1 above were produced. The electrode manufacturing method will be described below.

実施例2・・・金薄膜上に4.97ミIJモル/1Pv
Pメタノール溶液と19.1ミリモル/1K4W(CN
)a水溶液をキャスト法により混合、製膜し、次いで、
・キープロファン膜を被覆し、電極を作製した。
Example 2: 4.97 mmol/1Pv on gold thin film
P methanol solution and 19.1 mmol/1K4W (CN
) A aqueous solution is mixed and formed into a film by a casting method, and then
・An electrode was fabricated by covering it with a keyprofan film.

実施例3・・・金薄膜上に1重量飴ポIJ m−キシリ
ルビオローゲン(m−PXV ) −yJe ’Jスチ
レンスルホン酸(PSS )錯体(混合モル比1:2)
のNaBr/H20/アセトン(30155/15 )
溶液をキャスト法により、製膜し、次いで、キュゾロフ
ァン膜を被覆し電極を作製した。
Example 3: 1 weight candy PoIJ m-xylylviologen (m-PXV) -yJe'J styrene sulfonic acid (PSS) complex (mixed molar ratio 1:2) on a gold thin film
NaBr/H20/acetone (30155/15)
A film was formed from the solution by a casting method, and then a cusolophane film was coated to prepare an electrode.

実施例4・・・金薄膜上に1重量係ポリビニルフェロセ
ン(PVF )のジクロロメタン溶液をキャスト法によ
り製膜し、次いで酢酸セルロース膜を被覆し電極を作製
した。
Example 4 A dichloromethane solution of 1 weight polyvinylferrocene (PVF) was formed on a gold thin film by a casting method, and then covered with a cellulose acetate film to prepare an electrode.

上記表1に掲げた組成膜電極を0.2 MCF3COO
Na (pH6、86)あるいは0.2 M NaCl
O2(pH5,9)の支持電解質溶液中に浸漬し、実施
例1と同様の方法でサイクリックデルタモグラムを測定
し膜の特性を調べた結果、酸化、還元波ピーク電位呟は
表1に示すようになり、いずれの組成膜電極も、ピーク
電流は徐々に増加し30分経過後、ピーク電流は減少す
ることなく、一定の飽和1直を接続することが認められ
た。一方、金薄膜に(PVP−W(CN)B )膜、(
m−PXV−(PSS)2)暎あるいf/i PVF膜
だけを被覆し7た電極では、掃引30分以内にピーク電
流はゼロ付近まで減少することが認められた。したがっ
て、キュプロファン膜及び酢酸セルロース膜を被覆した
本発明のイオン選択保護分離膜は、その導電性薄膜表面
上に(PVP−W(CN)B ) 、(m−PXV−(
PSS)2 )あるいはPVFのような酸化還元物質を
安定に保持することがわかった。
The composition film electrode listed in Table 1 above is 0.2 MCF3COO
Na (pH 6, 86) or 0.2 M NaCl
The membrane characteristics were investigated by immersing it in a supporting electrolyte solution of O2 (pH 5, 9) and measuring the cyclic delta tomogram in the same manner as in Example 1. As a result, the oxidation and reduction wave peak potentials are shown in Table 1. As shown, the peak current gradually increased for all the composition film electrodes, and after 30 minutes, the peak current did not decrease, and it was observed that a constant saturated single circuit was connected. On the other hand, (PVP-W(CN)B) film, (
m-PXV-(PSS) 2) A or f/i With the electrode covered only with a PVF film, it was observed that the peak current decreased to near zero within 30 minutes of sweeping. Therefore, the ion-selective protective separation membrane of the present invention coated with a cuprophane membrane and a cellulose acetate membrane has (PVP-W(CN)B), (m-PXV-(
It was found that redox substances such as PSS)2) or PVF can be stably retained.

実施例5 第4図に示すように、ポリアミドフィルム2ノ辰面に白
金薄膜22をスパッタ法により被覆し、次に、白金薄膜
22上で4.97ミリモVI PVPメタノール溶液と
25.0ミリモル/lK4Mo (CN)a水酸液をキ
ャスト法により常温で混合、製膜23し次いでナフィオ
ン膜24をその上に被覆し、この膜被覆電極の両側から
穴(φ6、4 mm )のあいたシリコーンゴム25で
ノやツキングした。これを、第5図に示すような両側1
c連通する電解液室31.32f有するすり合せガラス
板33.34の間にはきんで外側をばねつき留め金で同
定し、実施例1と同様の方法でサイクリックデルタモグ
ラムを測定し、膜の特性音調べた。この場合、MO(C
N)8錯体の酸化還元波のピーク電位を表2の5−Aに
示した。ピーク電流11fは電位走査開始後30分経過
しても減少することなしに、一定の飽和匝を持続するこ
とが認められた。したがって、本作製の組成電極は、導
電体表面に担持させた( PVP−Mo (CN)a)
高分子錯体1!:電極外に溶離すること全防止し、電解
質溶液中の対イオンを取り込むことができることかわか
った。
Example 5 As shown in FIG. 4, a thin platinum film 22 was coated on the polyamide film 2 by sputtering, and then a 4.97 mmol VI PVP methanol solution and 25.0 mmol/25.0 mmol/m were coated on the platinum thin film 22. A hydroxyl solution of lK4Mo (CN)a is mixed at room temperature by a casting method to form a film 23, and then a Nafion membrane 24 is coated thereon, and a silicone rubber 25 with holes (φ6, 4 mm) perforated from both sides of the membrane-covered electrode is formed. Denoya Tsuking. This is done on both sides as shown in Figure 5.
(c) between the ground glass plates 33 and 34 having the communicating electrolyte chambers 31 and 32f, and identifying the outside with a spring-loaded clasp, and measuring the cyclic delta tomogram in the same manner as in Example 1; The characteristic sound of the membrane was investigated. In this case, MO(C
The peak potential of the redox wave of the N)8 complex is shown in 5-A of Table 2. It was observed that the peak current 11f did not decrease even after 30 minutes had passed after the start of the potential scan and maintained a constant saturation level. Therefore, the composition electrode of this fabrication was made by supporting (PVP-Mo(CN)a) on the surface of the conductor.
Polymer complex 1! : It was found that counter ions in the electrolyte solution could be taken in, completely preventing elution outside the electrode.

上記と同様にして(?リアミド/白金薄膜/PVP−M
o (CN)a /ナフィオリ)組成電極を作製し、ナ
フィオンの測定試料鹸液に接触する面以外はすべてエポ
キシ樹脂で被覆した。この電極を使用し、実施例1と同
様の方法でサイクリックデルタモグラムを測定し膜の特
性を調べた結果、ピーク直流直は電位走査後30分経過
しても減少すること々しl/C、一定の飽和呟に持続す
ることが認められた。この結果1.ナフイオレを被覆し
たことにより導電体表面上に(’PVP−Mo(CN)
6 )膜が安定に保持されることがわかった。また、イ
オン選択分離機能を有することもわかった。
In the same manner as above (?Ryamide/Platinum thin film/PVP-M
o (CN)a/Nafioli) composition electrode was prepared, and the entire surface other than the surface in contact with the Nafion measurement sample soap was coated with epoxy resin. Using this electrode, we measured the cyclic delta tomogram in the same manner as in Example 1 and investigated the properties of the membrane. As a result, we found that the peak DC often decreased even after 30 minutes had passed after potential scanning. C. Persistent saturation was observed. This result 1. By coating Nafiole on the conductor surface ('PVP-Mo(CN)
6) It was found that the membrane was stably maintained. It was also found that it has an ion selective separation function.

以上の結果を表2に示す。The above results are shown in Table 2.

実施例6 ポリアミドフィルム表面に白金薄膜をスパッタ法によシ
被覆し、次に、白金薄膜上で4.97ミリモル/1PV
Pメタトル溶液と25,0ミリモル/ l! K4Mo
(CN)a水溶液をキャスト法により常温で混合、製膜
し、次いでニトロセルロースをその上に被徨し、両側か
ら穴のあいたシリコーンゴムでバッキングし、第5図に
示すすりガラス板にはさみ実施例1と同様の方法でサイ
クリックポルタムグラムを測定し膜の特性を調べた結果
、表3(6−A)のようになり、ピーク電流値は30分
経過後も減少することなしに、一定の飽和値を持続する
ことが認められた。したがって、本作製の組成膜電極は
導電体表面に担持させた( PVP−Mo(CN)a 
)高分子錯体を電極外 −に溶離することを防止し、電
解液中の対イオンを覗極内に取シ込むことができる特性
を持つことがわかった。
Example 6 A thin platinum film was coated on the surface of a polyamide film by sputtering, and then 4.97 mmol/1 PV was applied on the platinum thin film.
P methanol solution and 25,0 mmol/l! K4Mo
(CN)a aqueous solution was mixed and formed into a film by casting method at room temperature, then nitrocellulose was deposited on top of it, backed with silicone rubber with holes on both sides, and sandwiched between frosted glass plates as shown in Fig. 5. As a result of measuring the cyclic portumgram and examining the membrane characteristics in the same manner as in 1, the results are as shown in Table 3 (6-A), and the peak current value remained constant without decreasing even after 30 minutes. It was observed that the saturation value of was maintained. Therefore, the composition membrane electrode of this fabrication was supported on the surface of the conductor (PVP-Mo(CN)a
) It was found that it has the property of preventing the elution of the polymer complex to the outside of the electrode and allowing the counter ions in the electrolyte to be taken into the viewing electrode.

上記と同様にして(ポリアミド/白金薄膜/PVP−M
o(CN)8/ 二) oセ/l/ CI −ス)組成
電極を作製し、ナフィオンの測定試料溶液に接触する面
取外はすべてエポキシ樹脂で被覆した。この電極を使用
して実施例1と同様の方法でサイクリックがルタモグラ
ムを測定した結果、1:li2化還光還元電位3の6−
Hのようになり、ピーク電流値は30分経過後も減少す
ることなしに、一定の飽和値を持続することが認められ
た。この結果ニトロセルロースを被層した本発明の膜は
、導電体表面上に(PVP−Mo(CN)6 )膜を安
定に保持する保護膜および対イオンに対するイオン透過
膜であることがわかった。
In the same manner as above (polyamide/platinum thin film/PVP-M
o(CN)8/2) oce/l/CI-su) composition electrode was prepared, and all the outside of the chamfer that came into contact with the Nafion measurement sample solution was coated with epoxy resin. Using this electrode, a cyclic rutamogram was measured in the same manner as in Example 1. As a result, the 6-
It was observed that the peak current value did not decrease even after 30 minutes and maintained a constant saturation value. As a result, it was found that the membrane of the present invention coated with nitrocellulose is a protective membrane that stably maintains the (PVP-Mo(CN)6) membrane on the surface of the conductor and an ion-permeable membrane for counterions.

実施例7 ナフィオン(デュポン社製)膜表面に白金薄膜をス・ぐ
ツタ法あるいは無電解めっき法により作製し、次に、白
金薄膜上に4.97ミlJモル/l PVPメタノール
溶液と25.0ミリモル/lK4Mo(CN)B水溶液
をキャスト法により常温で混合、製膜し、次いで、曳ナ
フィオンをその上に被覆し、電極の周囲を工?キン樹脂
で絶縁し、第4図に示すと同様の構造の(ナフィオン/
白金薄膜/ PVP−Mo(CN)6 /ナフィオン)
組成電極を作製した。この電極f 0.2 M CF3
CO0Na (pH1,5)の支持電解質溶液中に浸漬
し、実施例1と同様の方法で、サイクリックポルタモグ
ラムを測定し膜の特性を調べた結果、ピータ電流は徐々
に増加し、30分経過後、ビーク電流は減少することな
く、一定の呟を持続することが認められた。
Example 7 A platinum thin film was formed on the surface of a Nafion (manufactured by DuPont) membrane by the Stainless Steel method or electroless plating method, and then a 4.97 ml J mol/l PVP methanol solution and 25. A 0 mmol/l K4Mo(CN)B aqueous solution was mixed and formed into a film at room temperature by a casting method, and then Nafion was coated on top of it, and the area around the electrode was machined. (Nafion/
Platinum thin film/PVP-Mo(CN)6/Nafion)
A composition electrode was prepared. This electrode f 0.2 M CF3
The membrane was immersed in a supporting electrolyte solution of CO0Na (pH 1,5), and its cyclic portamogram was measured in the same manner as in Example 1 to investigate the properties of the membrane. As a result, the Peter current gradually increased and after 30 minutes After the elapsed time, it was observed that the peak current did not decrease and maintained a constant murmur.

したがって本作製の組成膜電極は導電体表面上に(PV
P−Mo(CN)a )膜を安定に保持する効果を有す
ることがわかった。
Therefore, the composition membrane electrode of this fabrication is formed on the surface of the conductor (PV
It was found that it has the effect of stably holding the P-Mo(CN)a) film.

■8発明の具体的効果 以上述べたこの発明のイオン選択保護分離膜は、酸化還
元反応機能を有する材料層をイオン選択透過性高分子膜
で覆うことによって上記酸化還元反応機能を有する材料
層を導電性表面に安定に保持することができ、その機能
を充分に発現させることができる。また、この発明のイ
オン電極は上記のようなイオン選択保護膜を有するので
、特定イオンに対して選択的に上記材料層を感応1せる
ことができる。
■8 Specific Effects of the Invention The ion-selective protective separation membrane of the present invention described above covers the material layer having the redox reaction function with an ion-selective permeable polymer membrane. It can be stably held on a conductive surface and its function can be fully expressed. Furthermore, since the ion electrode of the present invention has the ion-selective protective film as described above, the material layer can be selectively sensitized to specific ions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のイオン選択保護分離膜を基盤に支持
された形態で示す図であって、(A)は平[i 図、(
B) fl (A) +7)線B−BIC?iiっだ断
面図、第2図および第3図はそれぞれこの発明のイオン
選択保護分離膜および比較例に関するサイクリラス板と
電解液室からなる装置の断面図。 12.22・・・導電体、13.23・・・酸化還元反
応機能膜、14.24・・・保護膜。 第1図 第 2 図 〔王カ0艷刀己(V吋5SCE) 第3図 卯力0tJE (Vt:fsscE)
FIG. 1 is a diagram showing the ion-selective protection separation membrane of the present invention in a form supported on a base;
B) fl (A) +7) Line B-BIC? ii. FIGS. 2 and 3 are cross-sectional views of an ion-selective protective separation membrane of the present invention and a device comprising a cyclilas plate and an electrolyte chamber for a comparative example, respectively. 12.22... Conductor, 13.23... Redox reaction functional film, 14.24... Protective film. Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)  導電性表面に接する表面を一方に有する酸化
還元反応機能材料層と、その他方の面に接するイオン選
択透過性を有する高分子層とからなることを特徴とする
イオン選択保護分離膜。
(1) An ion selective protection separation membrane comprising a redox reaction functional material layer having one surface in contact with a conductive surface and a polymer layer having ion selective permeability in contact with the other surface.
(2)酸化還元反応機能材料が高分子金属錯体化合物ま
たは高分子−高分子間電荷移動型錯体である特許請求の
範囲第1項記載のイオン選択保護分離膜。
(2) The ion selective protection separation membrane according to claim 1, wherein the redox reaction functional material is a polymer metal complex compound or a polymer-polymer charge transfer type complex.
(3)  イオン選択透過性を有する高分子がナフィオ
ン−、ノセルロース系高分子、ポリ塩化ビニルおよびそ
の共重合体、ポリ塩化ビニリデン、シリコーンゴム、ポ
リスルホンよシなる群の中から選ばれる特許請求の範囲
第1項または第2項記載のイオン選択保護分離膜。
(3) A patent claim in which the polymer having ion selective permeability is selected from the group consisting of Nafion, cellulosic polymer, polyvinyl chloride and its copolymer, polyvinylidene chloride, silicone rubber, and polysulfone. The ion selective protection separation membrane according to item 1 or 2.
(4)溝車体表面に支持された形態にある、酸化還元反
応機能を有する材料の層をイオン選択透過性を有する高
分子層で被覆してなるイオン電極。
(4) An ion electrode formed by covering a layer of a material having an oxidation-reduction reaction function with a polymer layer having ion selective permeability, which is supported on the surface of a grooved vehicle body.
(5)酸化還元反応機能を有する材料が高分子金属錯体
化合物または高分子−高分子間電荷移動型錯体である特
許請求の範囲第4項記載のイルロース系高分子、ポリ塩
化ビニルおよびその共重合体、ポリ塩化ビニリデン、シ
リコーンゴム、ポリスルホンより々る群の中から選ばれ
る特許請求の範囲第4項または第5項記載のイオン電極
。 (力 導電体は、白金系金属以外の導電材料の表面に金
又は白金系金属の層を真空蓄積によって形成してなる特
許請求の範囲第4項ないし第6項のいずれかに記載のイ
オン電極。
(5) The ylulose-based polymer, polyvinyl chloride, and its copolymer according to claim 4, wherein the material having a redox reaction function is a polymer metal complex compound or a polymer-polymer charge transfer type complex. The ion electrode according to claim 4 or 5, which is selected from the group consisting of polyvinylidene, polyvinylidene chloride, silicone rubber, and polysulfone. (The power conductor is an ion electrode according to any one of claims 4 to 6, which is formed by forming a layer of gold or a platinum-based metal on the surface of a conductive material other than a platinum-based metal by vacuum accumulation. .
JP57232683A 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane Granted JPS59119254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232683A JPS59119254A (en) 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232683A JPS59119254A (en) 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane

Publications (2)

Publication Number Publication Date
JPS59119254A true JPS59119254A (en) 1984-07-10
JPH037263B2 JPH037263B2 (en) 1991-02-01

Family

ID=16943151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232683A Granted JPS59119254A (en) 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane

Country Status (1)

Country Link
JP (1) JPS59119254A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012417A3 (en) * 2001-08-02 2004-03-18 Oxford Biosensors Ltd Voltammetric ion-selective biosensor
US6934994B2 (en) 2002-05-22 2005-08-30 Samsung Gwangju Electronics Co., Ltd. Vacuum cleaner
WO2006040588A1 (en) * 2004-10-15 2006-04-20 Oxford Biosensors Limited Voltammetric ion sensor
WO2021200735A1 (en) * 2020-03-31 2021-10-07 株式会社エイアンドティー Ion-selective electrode, method for manufacturing ion-selective electrode, and electrolyte analysis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142584A (en) * 1976-05-19 1977-11-28 Eastman Kodak Co Ion selective electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142584A (en) * 1976-05-19 1977-11-28 Eastman Kodak Co Ion selective electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012417A3 (en) * 2001-08-02 2004-03-18 Oxford Biosensors Ltd Voltammetric ion-selective biosensor
JP2004537723A (en) * 2001-08-02 2004-12-16 オックスフォード バイオセンサーズ リミテッド Ion-selective biosensor for voltammetry
AU2002317998B2 (en) * 2001-08-02 2007-07-05 F. Hoffmann-La Roche Ag Voltammetric ion-selective biosensor
US6934994B2 (en) 2002-05-22 2005-08-30 Samsung Gwangju Electronics Co., Ltd. Vacuum cleaner
WO2006040588A1 (en) * 2004-10-15 2006-04-20 Oxford Biosensors Limited Voltammetric ion sensor
US7799204B2 (en) 2004-10-15 2010-09-21 Oxford Biosensors Limited Voltammetric Ion Sensor
WO2021200735A1 (en) * 2020-03-31 2021-10-07 株式会社エイアンドティー Ion-selective electrode, method for manufacturing ion-selective electrode, and electrolyte analysis device

Also Published As

Publication number Publication date
JPH037263B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
US4957615A (en) Oxygen sensor
US4555274A (en) Ion selective electrode and process of preparing the same
JPS5924242A (en) Reference electrode
JP2003515097A5 (en)
GB2102963A (en) Film-form ion selective electrode and method of measuring ion activity using the same
CN107957440B (en) Planar ammonia selective sensing electrode and method for fabricating the same
JPS63500742A (en) Ion-sensitive electrochemical sensor
US20180105941A1 (en) Planar dissolved oxygen sensing electrode and manufacturing method thereof
JPS59119254A (en) Ion selective protective separating membrane and ion electrode using said membrane
JPS61155949A (en) Ph sensor
EP0227281A2 (en) Electrochemical testing system
JP2970534B2 (en) Manufacturing method of reference electrode
Okada et al. Role of plasticizers on the characteristics of poly (vinyl chloride)-membrane lithium-selective electrodes based on phenanthroline derivatives
Wetstone et al. Interpolymer ion-selective membranes. III. Preparation and characterization of quaternary ammonium-Dynel anion-selective membranes
JPS5930055A (en) Ion activity measuring apparatus
Lingane Chronopotentiometric study of the redox characteristics of PtCl62− and PtCl42− at a platinum electrode
EP0230573B1 (en) Selectively ion-permeable dry electrodes for analyzing selected ions in aqueous solution
Toniolo et al. Amperometric determination of peroxides by glassy carbon electrodes modified with copper‐phenanthroline complexes
JPS5865775A (en) Ion contact preventing membrane
RU2054666C1 (en) Membrane of lead-selective electrode
JP2948423B2 (en) Ion selective electrode for potassium ion analysis
JPH0672859B2 (en) Oxygen sensor
US10473610B2 (en) Planar ammonia selective sensing electrode and manufacturing method thereof
JPS58219447A (en) Oxygen chemical sensor for hydrophilic membrane
JPH021537A (en) Oxygen sensor