JPS59119111A - O2 controller for boiler - Google Patents

O2 controller for boiler

Info

Publication number
JPS59119111A
JPS59119111A JP23167382A JP23167382A JPS59119111A JP S59119111 A JPS59119111 A JP S59119111A JP 23167382 A JP23167382 A JP 23167382A JP 23167382 A JP23167382 A JP 23167382A JP S59119111 A JPS59119111 A JP S59119111A
Authority
JP
Japan
Prior art keywords
gas
signal
circuit
concentration
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23167382A
Other languages
Japanese (ja)
Other versions
JPS649530B2 (en
Inventor
Masao Kuki
久木 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP23167382A priority Critical patent/JPS59119111A/en
Publication of JPS59119111A publication Critical patent/JPS59119111A/en
Publication of JPS649530B2 publication Critical patent/JPS649530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To achieve an optimal O2 concentration control by performing an intermittent integrating operation only when the shortage of O2 continues while the adjusting function is basically locked against a load variation. CONSTITUTION:As a main steam flow rate signal SF varies exceeding a preset load variation factor, a monitor 23 turns ON. Upon the turning ON of the monitor 23, a signal thereof enters a transfer contact 20 through a delay 24 and with the switching of the contact from (b) to (a), a target value SV of O2 concentration is inputted into a low selector 4'. In the normal case, the SV value is selected from the low selector 4' to enter an adjustor 5 and therefore, deviation of the adjustor 5 turns to 0 and a locking is done without integrating operation. On the other hand, when O2 concentration (d) or (e) lowers below the target value SV, a signal either A or B is outputted from the low selector 4' to has the adjustor 5 performing an intermittent integrating operation and a control is done to elevate the O2 concentration.

Description

【発明の詳細な説明】 本発明は、ボイラの負荷変動時においても最適なガス0
2濃度制御を行うことのできる制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides optimal gas zero maintenance even during boiler load fluctuations.
The present invention relates to a control device capable of performing two-concentration control.

ボイラの運転においては、排ガス中の酸素濃度(ガス0
2儂度)はシステムの運転に重大な影響を与える。ガス
0゜濃度が高くなるということは排ガス中のNOx、 
SOx量増大の要因となりかつそれだけ燃焼室への注入
空気量が増大したことになり、このことは押込通風機(
以下FDPという)の消費電力が増大したことになり公
害、省エネルギー、低コスト運転の見地から好ましくな
い。一方、ガス02濃度が低くなると、燃焼室内に黒煙
を発生させるので好ましくない。従って、ガスo2儂度
を一定値に保つことは経済運転上もまた安全運転上も重
要である。
During boiler operation, the oxygen concentration in the exhaust gas (gas 0
2 degrees) has a significant impact on the operation of the system. An increase in the 0° gas concentration means that NOx in the exhaust gas,
This caused an increase in the amount of SOx, and the amount of air injected into the combustion chamber increased accordingly.
This increases the power consumption of the FDP (hereinafter referred to as FDP), which is undesirable from the viewpoints of pollution, energy saving, and low-cost operation. On the other hand, if the gas 02 concentration becomes low, black smoke will be generated in the combustion chamber, which is not preferable. Therefore, it is important for economical and safe operation to maintain the gas o2 temperature at a constant value.

第1−一は、従来のガス02制御装置の一例を示す構成
図である。図においては、2個の燃焼ルートが設けられ
ておりそのルートをそれぞれA、Bとする。各ルートご
との空気流量信号は、演算器1で加算平均された後、関
数発生器2で所定のプロセス定数に変換され、演算器3
に入る。一方、ガス0□濃度信号は、ローセレクタ4で
小さい方が選択されて測定値pvとして調節計5に入る
。該調節計の他方の入力には、主蒸気流量(以下SFと
いう)信号から関数発生器6によってつくり出されたガ
ス0□濃度目標値SVが入っている。調節計5は、Pv
とSVの偏差を間欠積分する。
1-1 is a configuration diagram showing an example of a conventional gas 02 control device. In the figure, two combustion routes are provided, and these routes are designated A and B, respectively. The air flow rate signal for each route is averaged by a computing unit 1, and then converted into a predetermined process constant by a function generator 2.
to go into. On the other hand, the smaller one of the gas 0□ concentration signals is selected by the low selector 4 and input to the controller 5 as the measured value pv. The other input of the controller contains the gas 0□ concentration target value SV generated by the function generator 6 from the main steam flow rate (hereinafter referred to as SF) signal. The controller 5 is Pv
The deviation between and SV is integrated intermittently.

調節計5の出力と、手動調節用のアナログメモリ7の出
力は、トランスファー接点8で何れか一方が選択されて
出力されハイローリミッタ(以下H/Lリミッタという
)9に入る。H/Lリミッタ?の出力の一部は、積分飽
和防止回路10に入って、積分器が飽和しないような信
号を調節計5に与える。H/Lljミ、りの他の出力は
、空燃比設定レンジによるゲイン合わせ回路11を経て
前記演算器3に空燃比補正信号として入力する。演算器
3によって空燃比補正がなされたプロセス定数は、Pv
値としてpID調節計12に入るロ 一方、ボイラマスタ(以下BMという)信号は、演算器
13で微分され、演算器14で通常のBM倍信号加算さ
れハイリミッタ15に入る。ハイリミッタ15には、燃
料流量(以下FFという)信号と信号発生器16からの
信号が入力されており、高い値をもつものが選択されて
目標値SVとして調節計12に入っている。調節計12
の出力はFDPを駆動し、ボイラ燃焼室に入る空気流量
が調節されることになる。
One of the outputs of the controller 5 and the output of the analog memory 7 for manual adjustment is selected by a transfer contact 8 and outputted, and then enters a high/low limiter (hereinafter referred to as an H/L limiter) 9. H/L limiter? A part of the output enters the integral saturation prevention circuit 10 and provides the controller 5 with a signal that prevents the integrator from becoming saturated. The other outputs of H/Llj, MI, and RI are input to the arithmetic unit 3 as an air-fuel ratio correction signal through a gain adjustment circuit 11 based on the air-fuel ratio setting range. The process constant after air-fuel ratio correction by the calculator 3 is Pv
A boiler master (hereinafter referred to as BM) signal is input as a value to the pID controller 12. On the other hand, a boiler master (hereinafter referred to as BM) signal is differentiated by an arithmetic unit 13, added to a normal BM times signal by an arithmetic unit 14, and input to a high limiter 15. A fuel flow rate (hereinafter referred to as FF) signal and a signal from a signal generator 16 are input to the high limiter 15, and the one having the highest value is selected and entered into the controller 12 as the target value SV. Controller 12
The output of will drive the FDP and the air flow rate entering the boiler combustion chamber will be regulated.

系統負荷の調整のため中部のボイラーの起動停止は日常
化され、このときの負荷変動は通常数十分から数時間継
続する。これらボイラの多くは、FDP コントロール
ドライブや空気ダクトの容量遅れの他、バーナ点消火時
に必要なトーチ点消火(多くの場合軽油によるが、燃料
流量には加算されていない)等の影響でガス0不足にな
ることを防止するため、BM倍信号演算器:L3.14
で微分加算を付加している。このため、ボイラ計装シス
テムのリプレース時にガス0制御による空燃比補正を付
加した場合、負荷変動時の上記原因と考えられる外乱に
よって酸素過剰で推移した場合、間欠積分演算器5の補
正積分量で絞られた分だけ、負荷整定時にガス02不足
をきたす等の不具合が生じ1、ガス0制御を自動的に行
うことができない。また、バーナ点消火時には酸素濃度
が大きく変動するため、偏差警報を発生する場合も起き
る。
Boilers in the central part of the system are routinely started and stopped to adjust the system load, and the load fluctuations at this time usually last from several minutes to several hours. In many of these boilers, in addition to the capacity delay of the FDP control drive and air duct, the gas is 0. To prevent shortage, BM double signal calculator: L3.14
Adds differential addition. For this reason, when air-fuel ratio correction is added using zero-gas control when replacing the boiler instrumentation system, if excess oxygen occurs due to disturbances that are thought to be the cause of the above during load fluctuations, the correction integral amount of the intermittent integral calculator 5 The throttled amount causes problems such as gas 02 shortage during load stabilization (1), and gas 0 control cannot be performed automatically. Furthermore, since the oxygen concentration fluctuates greatly when the burner is extinguished, a deviation alarm may be issued.

′ガス02濃度制御のように無駄時間の比較的太きい系
では、無駄時間補償や間欠積分制御を必要とするがこの
種の制御は負荷変動時に行うものではなく、負荷安定時
にボイラの経年変化や燃料の性状変化等による空燃比補
正を自動的に行う場合に用いるべきであり、このため負
荷変動時は空燃比1で待機するように調節計をロックし
てしまうととが必要である。一方、このようなメーカ側
の主、  張に対し、ユーザ側では負荷変動時でも何ら
かの原因でガス02不足で推移する場合は危険であるか
らガス0□制御がなされなければならないと考えている
'In a system with relatively large dead time, such as gas 02 concentration control, dead time compensation and intermittent integral control are required, but this type of control is not performed when the load fluctuates, but when the load is stable and the boiler changes over time. This should be used when automatically correcting the air-fuel ratio due to changes in fuel properties, etc. Therefore, it is necessary to lock the controller so that it stands by at the air-fuel ratio of 1 when the load fluctuates. On the other hand, in contrast to the manufacturer's opinion, the user side believes that gas 0□ control must be performed because it is dangerous if the gas 02 is insufficient for some reason even during load fluctuations.

本発明は、このような点に鑑みてなされたものであって
、負荷変動時においては基本的には調節機能を口、りし
ながらも、ガス02不足が継続的に推移した場合にのみ
間欠積分動作が行われるようにして、最適なガス02a
度制御を行うことのできるガス02制御装置を実現した
ものである。
The present invention has been made in view of these points, and although it basically uses the adjustment function during load fluctuations, it provides intermittent control only when the gas 02 shortage continues. The optimum gas 02a is obtained by performing an integral operation.
This realizes a gas 02 control device that can perform temperature control.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は、本発明の一実施例を示す構成図である。第1
図と同一のものは同一の番号を付し、調節計12の目標
値SVを与える回路は第1図と同様であるので省略しで
ある。Bルートのガス0o度信号は直接ローセレクタ4
Iに入ると共に、トランスファー接点20のb接点側に
も入力している。SF信号は演算器21で微分された後
、ギャップ付演算器22に入っている。演W、器22の
ギャップでノイズが除去された信号は、他の系のダイナ
ミック補償信号として出力される他、−モニタ23に入
る。主蒸気流量(負荷)°信号SFの微分値がある値以
上になったとき、モニタ23はオン信号を発生し、その
信号はオンディレー24を介してトランスファー接点2
00制御信号として接点に入力する。また、本発明では
ガス02濃度の目標値SVを主蒸気流量信号SFではな
く、ボイラマスタ信号BMからつくり出している0これ
は、BM倍信号用いた方がオーツく−ファイアリング又
はアンダーファイアリングも表現でき、単なる燃料信号
のようなバーナ点消火等によるキックもないからである
。目標値Svは、トランスファー接点20のC接点に接
続され、該トランスファー接点の出力(C接点)はロー
セレクタ4瞥に入力している。このように構成された装
置の動作を説明すれば、以下のとおりである。
FIG. 2 is a configuration diagram showing an embodiment of the present invention. 1st
Components that are the same as those in the figure are given the same numbers, and the circuit that provides the target value SV of the controller 12 is the same as in FIG. 1, so it is omitted. The B route gas 0o degree signal is directly connected to low selector 4.
At the same time, it is also input to the B contact side of the transfer contact 20. After the SF signal is differentiated by the computing unit 21, it enters the gapped computing unit 22. The signal from which noise has been removed by the gap of the controller 22 is outputted as a dynamic compensation signal to another system, and is also input to the monitor 23. When the differential value of the main steam flow rate (load) ° signal SF exceeds a certain value, the monitor 23 generates an on signal, which is sent to the transfer contact 2 via the on delay 24.
Input to the contact as a 00 control signal. In addition, in the present invention, the target value SV of the gas 02 concentration is generated from the boiler master signal BM rather than the main steam flow rate signal SF. This is more automatic if the BM multiplied signal is used to express firing or underfiring. This is because there is no kick caused by burner point extinguishing, etc., unlike a simple fuel signal. The target value Sv is connected to the C contact of the transfer contact 20, and the output of the transfer contact (C contact) is input to the low selector 4. The operation of the device configured as described above will be explained as follows.

主蒸気流量信号SFが変動して、その変化率が大となり
予め定められた負荷変化率以上になるとモ・二夕23が
オンになる。該モニタがオンになるとその信号は、ディ
レー24を介してトランスファー接点20に入り接点を
bからaK切換え、ガス0□濃度目標値Svがローセレ
クタに入力される。通常の場合は、ガスO信号A又はB
の方が目標値SVよりも高めに推移するので、ローセレ
クタ4IからはSv値が選択されて調節計5に入る。従
って、該調節計の偏差は0になるので積分動作は行われ
ずロックされる。
When the main steam flow rate signal SF fluctuates and its rate of change becomes large enough to exceed a predetermined load change rate, the steam generator 23 is turned on. When the monitor is turned on, the signal enters the transfer contact 20 via the delay 24, switches the contact from b to aK, and the gas 0□ concentration target value Sv is input to the low selector. In normal cases, gas O signal A or B
Since the Sv value changes higher than the target value SV, the Sv value is selected from the low selector 4I and entered into the controller 5. Therefore, since the deviation of the controller becomes 0, no integral operation is performed and the controller is locked.

一方、ガス02濃度A又はBが低下して目標値SVを下
回った場合、ローセレクタ4雪からはA又はB何れかの
信号が出力され、調節計5は間欠積分動作を行い、ガス
02濃度を引上げる向きに制御が行われる。負荷(SF
倍信号が目標値に達し整定すれば、モニタ23はオフに
なるが、オーバーファイアリング或いはアンダーファイ
アリングがあってまだボイラは変動が継続しているので
、オフディレー24で一定時間遅らせた後トランスファ
ー接点をaからbに戻すようにしている。そして、定常
動作状態では、ガス0□濃度信号A又はBの何れか低い
方が選択されて安全性を保つようになっている。
On the other hand, when the gas 02 concentration A or B decreases and falls below the target value SV, the low selector 4 outputs either the signal A or B, and the controller 5 performs intermittent integration operation to increase the gas 02 concentration. Control is performed in the direction of pulling up. Load (SF
When the double signal reaches the target value and stabilizes, the monitor 23 turns off, but since the boiler is still fluctuating due to overfiring or underfiring, the transfer is turned off after a certain period of delay with the off delay 24. The contact point is returned from a to b. In a steady state of operation, either the gas 0□ concentration signal A or B, whichever is lower, is selected to maintain safety.

第3図は、従来装置による各部の動作波形を示す図、第
4図は本発明装置による各部の動作波形を示す図である
。何れも(−)は主蒸気流量SFを、(b)は燃料流量
FFを、(C)はガス02濃度のpv値とSV値を、(
d)は間欠積分出力をそれぞれ示している。(C)にお
いて実線がpv値、波線がSv値である。また、第4図
の(d)ではオフディレー24によって一定時間遅らせ
た後項分動゛作を行わしめている。flが積分出力、f
2がオフディレー出力である。これら動作波形より明ら
かなように、本発明装置においてはガス02濃度のpv
値(測定値)は第3図に示すそれよシも変動が大幅に少
くなっていることがわかる。
FIG. 3 is a diagram showing the operating waveforms of each part in the conventional device, and FIG. 4 is a diagram showing the operating waveforms of each part in the device of the present invention. (-) is the main steam flow rate SF, (b) is the fuel flow rate FF, (C) is the pv value and SV value of the gas 02 concentration, (
d) shows the intermittent integral output. In (C), the solid line is the pv value and the wavy line is the Sv value. In addition, in FIG. 4(d), the partial operation is performed after being delayed by an off-delay 24 for a certain period of time. fl is the integral output, f
2 is an off-delay output. As is clear from these operation waveforms, in the device of the present invention, the pv of the gas 02 concentration
It can be seen that the values (measured values) fluctuate much less than those shown in FIG.

々お、ガス02とガスC0(−酸化炭素)の空燃費に対
する関係は第5図に示すようになっており、ガス02が
増大するとガスcoは減少し、ガスo2が減少するとガ
スCOが増大する関係にある。図中f□がガス00曲線
、f2がガス02曲線である。そこで、ガス02による
制御の代わシにガスCOを用いても空気流量制御を行う
ことができる。但しこの場合は、第6図に示すようにロ
ーセレクタ41ではなくハイセレクタ4++を用いる必
要がある。
The relationship between gas 02 and gas C0 (-carbon oxide) on air fuel efficiency is shown in Figure 5. When gas 02 increases, gas CO decreases, and when gas O2 decreases, gas CO increases. There is a relationship where In the figure, f□ is the gas 00 curve, and f2 is the gas 02 curve. Therefore, air flow rate control can be performed by using gas CO instead of the control using gas 02. However, in this case, as shown in FIG. 6, it is necessary to use the high selector 4++ instead of the low selector 41.

以上、詳細に説明したように、本発明によれば負荷変動
時においては基本的に調節計をロックしながらも、ガス
02不足が継続的に推移した場合にのみ間欠積分動作が
行われるようにして、最適なガス0□濃度制御を行うこ
とができるガス02制御装置を実現することができる。
As explained above in detail, according to the present invention, the controller is basically locked during load fluctuations, but the intermittent integral operation is performed only when the gas 02 shortage continues. Thus, it is possible to realize a gas 02 control device that can perform optimal gas 0□ concentration control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一例を示す構成図、第2図は本発明
の一実施例を示す構成図、第3図は従来装置の各部の動
作波形を示す図、第4図は本発明装置の各部の動作波形
を示す図、第5図は02.COの空燃比特性を示す図、
第6図は構成の一部を示す図である。 1.3°、 13.14.21・・・演算器、2,6・
・・関数発生器、4.4瞥・・・ローリミッタ、5.1
2 ・・・調節計、7・・・アナログメモリ、8.20
・・・トランスファー接点、9・・・H/Lリミッタ、
10・・・積分飽和防止回路、11・・・ゲイン合わせ
回路、4°゛、15・・・ハイリミッタ、16・・・信
号発生器、22・・・ギャップ付演算器、23・・・モ
ニタ、24・・・オフディレー。 第3 図 茅、f 図 仝痒罠 第 4 図 第6 図
FIG. 1 is a block diagram showing an example of a conventional device, FIG. 2 is a block diagram showing an embodiment of the present invention, FIG. 3 is a diagram showing operating waveforms of each part of the conventional device, and FIG. 4 is a block diagram of the device of the present invention. FIG. 5 is a diagram showing the operation waveforms of each part of 02. A diagram showing the air-fuel ratio characteristics of CO,
FIG. 6 is a diagram showing a part of the configuration. 1.3°, 13.14.21... Arithmetic unit, 2,6.
...Function generator, 4.4 glance...Low limiter, 5.1
2...Controller, 7...Analog memory, 8.20
...Transfer contact, 9...H/L limiter,
10... Integral saturation prevention circuit, 11... Gain adjustment circuit, 4°゛, 15... High limiter, 16... Signal generator, 22... Arithmetic unit with gap, 23... Monitor , 24...off delay. Fig. 3, Fig. f Fig. 4 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 複数のルートの空気流量信号から所定のプロセス定数を
つくり出す第1の回路と、前記ルートに対応した排ガス
中のガスo2濃度信号を受けて低い方のガス02濃度信
号を選択しこれとガスo2濃度目標値との偏差を間欠積
分して空燃比補正信号を得てこれを第1の回路に補正信
号として与える第2の回路と、ボイラマスタ信号から必
要空気流量の目標値をつくシ出す第3の回路よシ構成さ
れ、第1の回路出力と第3の回路出力の偏差をPID演
算してボイラ燃焼室に注入する空気量の制御信号を発生
させるようにした装置において、主蒸気流量の変化率が
成る値を越えたときには第2の回路の間欠積分出力をホ
ールドして制御機能をロックし、ガス02不足が継続的
に推移したときには間欠積分を動作させるようにしたこ
とを特徴とするボイラのガス02制御装置。
A first circuit that generates a predetermined process constant from air flow signals of a plurality of routes; and a first circuit that receives gas O2 concentration signals in exhaust gas corresponding to the routes, selects the lower gas O2 concentration signal, and selects the lower gas O2 concentration signal and the gas O2 concentration signal. a second circuit which obtains an air-fuel ratio correction signal by intermittent integration of the deviation from the target value and supplies it to the first circuit as a correction signal; and a third circuit which calculates the target value of the required air flow rate from the boiler master signal. In a device configured as a circuit and configured to generate a control signal for the amount of air injected into the boiler combustion chamber by PID calculation of the deviation between the first circuit output and the third circuit output, the change rate of the main steam flow rate is The boiler is characterized in that when the value exceeds the value, the intermittent integral output of the second circuit is held and the control function is locked, and when the gas 02 shortage continues, the intermittent integral is operated. Gas 02 control device.
JP23167382A 1982-12-24 1982-12-24 O2 controller for boiler Granted JPS59119111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23167382A JPS59119111A (en) 1982-12-24 1982-12-24 O2 controller for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23167382A JPS59119111A (en) 1982-12-24 1982-12-24 O2 controller for boiler

Publications (2)

Publication Number Publication Date
JPS59119111A true JPS59119111A (en) 1984-07-10
JPS649530B2 JPS649530B2 (en) 1989-02-17

Family

ID=16927186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23167382A Granted JPS59119111A (en) 1982-12-24 1982-12-24 O2 controller for boiler

Country Status (1)

Country Link
JP (1) JPS59119111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981087A (en) * 1988-07-29 1991-01-01 Martin Gmbh Fur Umwelt-Und Engerie-Technik Method for regulating the furnace output in incineration plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981087A (en) * 1988-07-29 1991-01-01 Martin Gmbh Fur Umwelt-Und Engerie-Technik Method for regulating the furnace output in incineration plants

Also Published As

Publication number Publication date
JPS649530B2 (en) 1989-02-17

Similar Documents

Publication Publication Date Title
US8561555B2 (en) Oxyfuel combustion boiler plant and operating method for the same
KR101523543B1 (en) Boiler system
JP5534055B1 (en) Boiler system
JPS59119111A (en) O2 controller for boiler
JP3771677B2 (en) Pilot ratio automatic adjustment device
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
RU2027110C1 (en) Method of automatic combustion control in thermal units
JP2004190913A (en) Automatic calorific power correction device for coal fired boiler
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
JP3792853B2 (en) Combined cycle control device and gas turbine control device
JPS6324359Y2 (en)
JPH05149544A (en) Controller for gas turbine
JP6551005B2 (en) Boiler system
JPS599281Y2 (en) Mixed combustion fuel control device
JPS6342721A (en) Controlling device for injection amount of ammonia
JPH01266420A (en) Control device for excess air ratio
JP3809971B2 (en) Boiler combustion control system
JPS5933804B2 (en) Reheat steam temperature control device
JPH0321808B2 (en)
JPS60524B2 (en) Combined cycle plant output control device
JPH0336420A (en) Combustion control system
SU1002730A1 (en) System for automatic control of boiler with pulverized coal direct blow-in system
SU1695034A1 (en) Temperature correction system of straight-through boiler water - fuel ratio
JPS62166220A (en) Fuel control unit
JPS63131918A (en) Combustion control device for boiler