JPS59119095A - Impeller for mixed flow pump - Google Patents

Impeller for mixed flow pump

Info

Publication number
JPS59119095A
JPS59119095A JP57226266A JP22626682A JPS59119095A JP S59119095 A JPS59119095 A JP S59119095A JP 57226266 A JP57226266 A JP 57226266A JP 22626682 A JP22626682 A JP 22626682A JP S59119095 A JPS59119095 A JP S59119095A
Authority
JP
Japan
Prior art keywords
impeller
pump
hub
radius
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57226266A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Okamura
共由 岡村
Tetsuya Kondo
哲也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Sanki Engineering Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Sanki Engineering Co Ltd
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Sanki Engineering Co Ltd, Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Sanki Engineering Co Ltd
Priority to JP57226266A priority Critical patent/JPS59119095A/en
Publication of JPS59119095A publication Critical patent/JPS59119095A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/548Specially adapted for liquid pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To enable to decrease the maximum diameter of guide vanes without lowering the efficiency of the guide vanes, by minimizing separation of flow from the hub surface just on the downstream side of the inlet of the guide vanes by shaping the impeller hub and the guide vane hub to have a smooth configuration and a large radius of curvature. CONSTITUTION:The centers of the radius of curvature Rs2, Rh2 of the walls if a fluid passage at the outlet of an impeller are located on the side of the axis of the impeller. The wall surface of the hub is shaped in a convex form while the wall surface of the shroud is shaped in a concave or linear form. Therefore, separation of fluid flow from the hub surface at the inlet of guide vanes is minimized although the radius of curvature of the hub surface is large and the radius of curvature of the hub can be made large, so that it is enabled to reduce the loss of the guide vanes and to decrease the outer diameter of a pump.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、言争炉圧力容器内の底部に設置されるインタ
ーナルポンプの羽根車および案内羽根の形状に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the shape of an impeller and a guide vane of an internal pump installed at the bottom of a quartz reactor pressure vessel.

〔従来技術〕[Prior art]

第1図に従来のインターナルポンプの構造を示す。ポン
プの羽根車1および案内羽根2の水力部は原子炉圧力容
器4内に納められ、容器4の外部に取付けられているキ
ャンドモータ6によシ軸3を介して駆動される。圧力容
器4内には円筒状の隔壁5があυ、ポンプは圧力容器4
内壁とこの隔壁5との間の円環状の空間に設置されるた
めポンプ水力部の外径寸法りに制約を受け、通常の斜流
ポンプに比べ小さな外径が要求される。第2図に、羽根
車と案内羽根の子午面断面形状を示す。羽根車1の出口
近くのシュラウド面1aおよびハブ面1bの形状は、通
常、直線あるいは図に示すように、半径RI2 、 R
b2O円弧から形成される下に凸な形状である。このよ
うに構成された羽根車では、図からもわかるように、ハ
ブ側1bの流線は、羽根車1と案内羽根2間にて急激な
転向を余儀なくされ案内羽根2人口直後の2b付近にお
いて流  。
Figure 1 shows the structure of a conventional internal pump. The hydraulic parts of the impeller 1 and guide vanes 2 of the pump are housed in a reactor pressure vessel 4 and are driven by a canned motor 6 attached to the outside of the vessel 4 via a shaft 3. There is a cylindrical partition wall 5 in the pressure vessel 4, and the pump is connected to the pressure vessel 4.
Since it is installed in the annular space between the inner wall and this partition wall 5, the outer diameter of the pump hydraulic section is restricted, and a smaller outer diameter is required than that of a normal mixed flow pump. Figure 2 shows the meridional cross-sectional shapes of the impeller and guide vanes. The shape of the shroud surface 1a and the hub surface 1b near the outlet of the impeller 1 is usually a straight line or a radius RI2, R as shown in the figure.
It has a downwardly convex shape formed from a b2O arc. In the impeller configured in this way, as can be seen from the figure, the flow line on the hub side 1b is forced to make a sudden turn between the impeller 1 and the guide vane 2, and the flow line on the hub side 1b is forced to turn around 2b immediately after the guide vane 2. Flow.

れが剥離し案内羽根2の損失が増す可能性が太きいとい
う欠点を有する。一方、このように急激な転向を回避す
るには案内羽根2ノ・ブ径およびシュラウド径を犬とし
、子午面形状を破線2a′。
This has the disadvantage that there is a high possibility that the guide vanes 2 will peel off and the loss of the guide vanes 2 will increase. On the other hand, in order to avoid such a sudden turn, the diameter of the guide vane 2 and the diameter of the shroud should be set to dog, and the shape of the meridian plane should be set to the dotted line 2a'.

2b’で示すようにする必要がある。しかしこのように
すると流れの剥離の損失は低減されるが案内羽根2の最
大径は犬となシ、また、所定圧力回復を得るには軸方向
長さが犬となシ、ポンプの寸法制約条件を満たすととが
極めて困難になるという欠点がある。また、たとえ案内
羽根2の外径寸法が制約寸法内に納まっても次に羽根車
径を小さくする必要がある。羽根車径の縮少は、ポンプ
の一般性能のQ−H曲線に右上)部が存在する不安定性
能をもたらしたシ、効率の低下をもたらす。
It is necessary to do as shown in 2b'. However, although this method reduces the loss due to flow separation, the maximum diameter of the guide vane 2 must be small, and the axial length must be small to obtain a predetermined pressure recovery, which limits the size of the pump. The disadvantage is that it is extremely difficult to satisfy the conditions. Moreover, even if the outer diameter dimension of the guide vane 2 falls within the constraint dimensions, it is necessary to reduce the impeller diameter next. Reducing the impeller diameter brings about unstable performance, where the upper right part exists in the Q-H curve of the general performance of the pump, resulting in a decrease in efficiency.

このように従来技術のポンプには種々の欠点がある。Thus, prior art pumps have various drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明は斜流ポンプの性能を低下させることなしにポン
プの外径の縮少を図るか、あるいはポンプ最大径が制約
されている場合、効率および安定性の優れた斜流ポンプ
を得ることを目的とするものである。
The present invention aims to reduce the outer diameter of the mixed flow pump without reducing its performance, or to obtain a mixed flow pump with excellent efficiency and stability when the maximum pump diameter is limited. This is the purpose.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、斜流羽根車出口部
のI・ブ面の子午面形状をノ・プ面の曲率半径の中心が
シュラウド側ではなくノ・プよシ軸心側にあるように凸
面となるようにして、羽根車ノ1プと案内羽根/・ブと
の形状の連ながシを滑らかで且つ曲率半径を大として案
内羽根入口直後におけるハブ面の剥離を抑制し、案内羽
根の効率を低下させることなく案内羽根最大径の縮少を
図るようにしたものである。
In order to achieve the above object, the present invention has a meridional shape of the I-shaped surface at the outlet of the mixed flow impeller so that the center of the radius of curvature of the no-pu surface is not on the shroud side but on the side of the no-pu axis. The convex surface of the impeller knob and the guide vane is made smooth and the radius of curvature is large to suppress peeling of the hub surface immediately after the entrance of the guide vane. , the maximum diameter of the guide vane is reduced without reducing the efficiency of the guide vane.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例の子午面断面流路形状を第3図〜
第7図について説明する。なお説明上の比較のため、第
4図に従来技術による場合を示す。
Below, the meridional cross-sectional flow path shapes of the embodiments of the present invention are shown in Figures 3 to 3.
FIG. 7 will be explained. For comparison purposes, FIG. 4 shows a case according to the prior art.

両者のポンプ水力部全長り、L’、羽根車人口径DI 
、 DI’ 、羽根車外径D2 、 D2’ 、および
羽根車出口幅B2 s B2’は同一寸法としである。
Total length of both pump hydraulic parts, L', impeller diameter DI
, DI', impeller outer diameters D2, D2', and impeller outlet width B2s B2' have the same dimensions.

第3図の本発明の羽根車の出口部の流路壁の曲率半径R
sz、Rh2の中心は、羽根車の軸心側に設置すること
を特徴としている。すなわち、第3図においてハブ壁面
は凸なる形状に、シュラウド壁面は凹ないしは直線の形
状に形成されている。一方、従来のポンプでは、第4図
に示すように、羽根車出口部の流路壁の曲率半径R,′
2 、 Rh’2の中心は、羽根車の軸心と反対側に通
常設置されている。第3図と第4図を比較すると次の点
が明らかである。
The radius of curvature R of the channel wall at the outlet of the impeller of the present invention in FIG.
The center of sz and Rh2 is characterized by being installed on the axial center side of the impeller. That is, in FIG. 3, the hub wall surface is formed in a convex shape, and the shroud wall surface is formed in a concave or straight shape. On the other hand, in the conventional pump, as shown in Fig. 4, the radius of curvature R,'
2. The center of Rh'2 is usually placed on the opposite side of the axis of the impeller. Comparing Figures 3 and 4, the following points are clear.

すなわち、本発明の羽根車のハブの壁面形状は、羽根車
内において曲率の符号が変わるが、羽根車出口付近から
案内羽根入口付近にわけて大きな曲率半径をもつ上に凸
な形状となっている。一方、従来のポンプでは、羽根車
出口付近と、案内羽根入口直後においてハブ壁面形状の
曲率の符号が変化し、下に凸から上に凸な形状に変化し
ている。
That is, the wall surface shape of the hub of the impeller of the present invention has an upwardly convex shape with a large radius of curvature from near the impeller outlet to near the guide vane inlet, although the sign of the curvature changes inside the impeller. . On the other hand, in conventional pumps, the sign of the curvature of the hub wall surface changes near the impeller outlet and immediately after the guide vane inlet, changing from a downwardly convex shape to an upwardly convex shape.

また、外径D3′および軸方向長さL′の制約から案内
羽根入口付近のハブ壁の曲率半径Rh’3は、本発明の
場合の案内羽根入口直後のノ・ブ壁の曲率半径Rh a
に比べてかなシ小さくならざるを得ない一方、案内羽根
入口部のハブ面における流れの剥離は、ハブ面の曲率半
径が大きい方が生じにくいことは明らかである。したが
って、ノ・プの曲率半径を大きく設定できる本発明のポ
ンプの方が案内羽根の損失を小さくすることができる。
Furthermore, due to the constraints of the outer diameter D3' and the axial length L', the radius of curvature Rh'3 of the hub wall near the guide vane inlet is equal to the radius of curvature Rh'3 of the knob wall immediately after the guide vane inlet in the case of the present invention.
On the other hand, it is clear that flow separation at the hub surface at the guide vane inlet is less likely to occur when the radius of curvature of the hub surface is large. Therefore, the pump of the present invention, in which the radius of curvature of the nozzle can be set larger, can reduce the loss of the guide vanes.

次に、第3図と第4図を比較して明らかなように、案内
現車の外径D3とDs’は、本発明のポンプのD3の方
が、従来技術のポンプのD3′よシ小さい。すなわち、
ポンプ外径が小さくできるという利点がある。
Next, as is clear from comparing FIG. 3 and FIG. 4, the outer diameters D3 and Ds' of the guide wheel are smaller in the pump of the present invention than in the conventional pump. small. That is,
This has the advantage that the outer diameter of the pump can be made smaller.

このことは、言いかえると、ポンプ外径が制約されてい
る場合、羽根車径を相対的に大きく設定できるというこ
とである。羽根車径を大きくできるということは、ポン
プのQ−H特性曲線を、締切点から大流量側まで右下シ
の安定曲線にすることが容易となシ、安定性能がことの
ほか要求される原子力発電所用のポンプとして好都合で
ある。また適度に径が犬なるポンプは、羽根の長さも必
要にして十分な長さに設定することができ羽根車の効率
を高めることができるという利点も、もたらされる。こ
のように本発明の子午面流路形状を適用すれば、ポンプ
の水力性能の向上、あるいは、水力性能の低下をもたら
すことなしにポンプの小型化を図ることができる。
In other words, if the pump outer diameter is restricted, the impeller diameter can be set relatively large. Being able to increase the impeller diameter makes it easy to make the pump's Q-H characteristic curve a stable curve in the lower right corner from the cut-off point to the high flow rate side, which requires particularly stable performance. It is convenient as a pump for nuclear power plants. In addition, a pump having a suitable diameter also has the advantage that the impeller length can be set to a sufficient length and the efficiency of the impeller can be increased. As described above, by applying the meridional flow path shape of the present invention, it is possible to improve the hydraulic performance of the pump or downsize the pump without causing a decrease in the hydraulic performance.

なお、本発明に類似した従来技術として第5図に示すよ
うな可動翼斜流ポンプがある。このポンプの羽根車1の
シュラウド面1aおよびハブ面1bは、それぞれ半径R
8およびRhの球面で構成され、本発明の羽根車出口付
近の流路壁形状の曲率半径の中心は軸心側にあるという
本発明の必要条件に含まれる。しかし、可動翼斜流ポン
プでは、任意の羽根取付角においても羽根と流路壁との
間に隙間を設けないという必要性から球面という上に凸
なる流路形状が採られているに過ぎず、本発明の場合と
発明の目的が全く異なっている。
As a prior art similar to the present invention, there is a movable blade mixed flow pump as shown in FIG. The shroud surface 1a and hub surface 1b of the impeller 1 of this pump each have a radius R
It is included in the necessary conditions of the present invention that the center of the radius of curvature of the channel wall shape near the impeller outlet of the present invention is on the axis side. However, in movable blade mixed flow pumps, the flow path shape is only spherical and convex due to the need to avoid gaps between the blades and the flow path wall even at any arbitrary blade installation angle. , the purpose of the invention is completely different from that of the present invention.

一方第5図の公知例では羽根車入口部も球面にあり、ポ
ンプの吸込性能の上からは、好ましくない形状であシ第
3図に示す本発明の下に凸なる流路形状の方が吸込性能
が優れていることは明らかである。
On the other hand, in the known example shown in Fig. 5, the impeller inlet part is also spherical, which is an undesirable shape from the standpoint of pump suction performance. It is clear that the suction performance is excellent.

次に本発明は、従来ポンプに比べ、Q−H曲線の安定性
に優れていることを説明する。第6図に、本発明と従来
ポンプの羽根車入口および出口を同一形状とし、シュラ
ウド面とハブ面の形状のみを変えた場合の子午面形状を
示す。実線は本発明を破線は従来ポンプをそれぞれ示す
。羽根車外径の縮少を図るべく大きな羽根出口角を有す
る羽根車をもつポンプでは、前述のように第7図に実線
で示すようなポンプのQ−H曲線に不安定部が発生する
場合が多い。これは低流量域のA点において、羽根車内
の流れに大きな剥離が生じ失速状態となる。その後B点
では、流れは第6図の流線にて示したように、羽根車入
口部では吸込側へ逆流する流れが生じるほか、。羽根車
出口付近では流線のシュラウド側への移動が生じる。こ
のようなフローパタンにおける全揚程が第7図のB点の
全揚程である。不安定性能はこのB点の全揚程が低いか
ら生じるのであって、A点の全揚程まで高まれば安定性
能となる。しかるに本発明の羽根車においては、第6図
に示されるように出口付近のシュラウド面は、その回転
半径が従来の羽根車に比べ大きくなっている。したがっ
て、その付近を通る流線8aの流れに作用する遠心力は
大となシ、その結果、羽根車出口で得られる全揚程は、
従来羽根車に比べ高い全揚程が得られる。その結果、第
7図B点の全揚程が高まシ、一点鎖勝で示すような安定
なQ−H曲線が得られる。
Next, it will be explained that the present invention has superior QH curve stability compared to conventional pumps. FIG. 6 shows the meridional plane shapes of the present invention and the conventional pump in which the impeller inlet and outlet have the same shape and only the shapes of the shroud surface and hub surface are changed. The solid line shows the present invention, and the broken line shows the conventional pump. In a pump having an impeller with a large blade outlet angle in order to reduce the impeller outer diameter, an unstable part may occur in the pump's Q-H curve as shown by the solid line in Figure 7, as described above. many. This is because at point A in the low flow rate region, a large separation occurs in the flow inside the impeller, resulting in a stall state. Thereafter, at point B, as shown by the streamlines in Figure 6, the flow is reversed to the suction side at the impeller inlet. Near the impeller outlet, the streamlines shift toward the shroud. The total head in such a flow pattern is the total head at point B in FIG. The unstable performance occurs because the total head at point B is low, and if the total head increases to the total head at point A, the performance becomes stable. However, in the impeller of the present invention, as shown in FIG. 6, the radius of rotation of the shroud surface near the outlet is larger than that of the conventional impeller. Therefore, the centrifugal force acting on the flow of the streamline 8a passing near it is large, and as a result, the total head obtained at the impeller outlet is:
A higher total head can be obtained compared to conventional impellers. As a result, the total head at point B in FIG. 7 is high, and a stable QH curve as shown by a single point chain is obtained.

以上、原子炉用のポンプに対して説明したが本発明は、
通常の揚水用の斜流ポンプおよび多段斜流ポンプに対し
ても同様に適用可能であることは言うまでもない。
The above description has been made regarding a pump for a nuclear reactor, but the present invention
It goes without saying that the present invention is similarly applicable to ordinary mixed-flow pumps and multi-stage mixed-flow pumps.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、斜流ポンプの性能を低下させることな
しに、斜流ポンプの外径および軸方向寸法の縮少が可能
で、ポンプの小型化が実現できる。
According to the present invention, the outer diameter and axial dimension of the mixed flow pump can be reduced without reducing the performance of the mixed flow pump, and the pump can be made smaller.

逆に、ポンプの外径、軸方向寸法に制約を受けるとき、
効率およびQ−H曲線の安定性の優れた斜流ポンプを実
現できる。
Conversely, when there are constraints on the pump's outer diameter and axial dimensions,
A mixed flow pump with excellent efficiency and QH curve stability can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のインターナルポンプの構造を示す縦断
面図、第2図は、第1図のポンプの羽根車と案内羽根部
の詳細を示す縦断面図、第3図は、本発明の実施例の流
路形状を示す概略断面図、第4図は従来技術のポンプの
流路形状を示す概略断面図、第5図は、従来の可動翼斜
流ポンプの要部断面図、第6図は、ポンプの低流量域の
流れを示す概略断面図、第7図は、斜流ポンプの一般性
能を示す線図である。 1・・・羽根車、2・・・案内羽根、3・・・ポンプ軸
、4・・・原子炉圧力容器、5・・・炉内隔壁、6・・
・キャンドモータ、7・・・吸込側への逆流の流線、8
・・・低流量域第  1  凹 l 罰2図 罰 4 図   η 3 図 \ □□↑− 刀 5 図 % 2 図 第 7 図 ■ 手続補正書(方式) 1・小作の表示 昭和57年特許願第 226266  号2、発明の名
称 斜流ポンプの羽根車 3、補正をする者 /’、   +4f51 Q印式会H口  立  ・製
  作  所4’:  +%  バ  三   1) 
 1jh   茂4、代  理  人 7・補正の内容 別紙の通シ。
FIG. 1 is a longitudinal sectional view showing the structure of a conventional internal pump, FIG. 2 is a longitudinal sectional view showing details of the impeller and guide vane of the pump shown in FIG. 1, and FIG. 3 is a longitudinal sectional view showing the structure of the conventional internal pump. FIG. 4 is a schematic cross-sectional view showing the flow path shape of a conventional pump; FIG. 5 is a cross-sectional view of essential parts of a conventional movable blade mixed flow pump; FIG. 6 is a schematic sectional view showing the flow in the low flow rate region of the pump, and FIG. 7 is a diagram showing the general performance of the mixed flow pump. DESCRIPTION OF SYMBOLS 1... Impeller, 2... Guide vane, 3... Pump shaft, 4... Reactor pressure vessel, 5... Reactor partition wall, 6...
・Canned motor, 7... Streamline of reverse flow to the suction side, 8
...Low flow area 1st recess l Penalty 2 Figure Penalty 4 Figure η 3 Figure \ □□↑- Sword 5 Figure % 2 Figure 7 Figure ■ Procedural amendment (method) 1. Indication of tenancy 1988 patent application No. 226266 2, Name of the invention Mixed flow pump impeller 3, Person making the correction/', +4f51 Q seal ceremony H mouth stand/manufacturer 4': +% Ba 3 1)
1jh Shigeru 4, Agent 7 Contents of amendment Attached circular.

Claims (1)

【特許請求の範囲】 1、羽根車の子午面流路形状において、羽根の前縁付近
のシュラウド面およびハブ面の形状を示す円弧の中心を
、それぞれの面よシ回転軸からの距離が大きい側に設け
、且つ、羽根の後縁付近のハブ面の形状を示す円弧の中
心は、ハブ面よシ回転軸側に設け、前縁から後縁まで滑
らかな曲線で結んで子午面流路を形成したことを特徴と
する斜流ポンプの羽根車。 2、特許請求の範囲第1項において、羽根車子午面流路
形状の、羽根後縁付近のシュラウド面の形状を示す円弧
の中心を、シュラウド面よシ回転軸側に設けたことを特
徴とする斜流ポンプの羽根車。
[Claims] 1. In the meridional plane flow path shape of the impeller, the center of the arc representing the shape of the shroud surface and hub surface near the leading edge of the blade is located at a larger distance from the rotation axis than each surface. The center of the arc, which is provided on the side and indicates the shape of the hub surface near the trailing edge of the blade, is provided on the rotation axis side of the hub surface, and is connected with a smooth curve from the leading edge to the trailing edge to form a meridian flow path. An impeller for a mixed flow pump, characterized by the following: 2. Claim 1 is characterized in that the center of the arc representing the shape of the shroud surface near the trailing edge of the blade in the meridional flow path shape of the impeller is provided on the rotation axis side of the shroud surface. Impeller of mixed flow pump.
JP57226266A 1982-12-24 1982-12-24 Impeller for mixed flow pump Pending JPS59119095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226266A JPS59119095A (en) 1982-12-24 1982-12-24 Impeller for mixed flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226266A JPS59119095A (en) 1982-12-24 1982-12-24 Impeller for mixed flow pump

Publications (1)

Publication Number Publication Date
JPS59119095A true JPS59119095A (en) 1984-07-10

Family

ID=16842507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226266A Pending JPS59119095A (en) 1982-12-24 1982-12-24 Impeller for mixed flow pump

Country Status (1)

Country Link
JP (1) JPS59119095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084690A (en) * 1994-06-13 1996-01-09 Carrier Corp Centrifugal-blower inlet orifice and assembly for rotary vane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084690A (en) * 1994-06-13 1996-01-09 Carrier Corp Centrifugal-blower inlet orifice and assembly for rotary vane

Similar Documents

Publication Publication Date Title
KR960002023B1 (en) Centrifugal compressor with high efficiency and wide operating
US3788765A (en) Low specific speed compressor
US5178516A (en) Centrifugal compressor
US9541094B2 (en) Scroll structure of centrifugal compressor
US9163642B2 (en) Impeller and rotary machine
US3986791A (en) Hydrodynamic multi-stage pump
EP0490308B1 (en) Orificed shroud for axial flow fan
JPH06241197A (en) Diffuser having impeller for centrifugal and mixed flow pump
US20050163610A1 (en) Diffuser for centrifugal compressor and method of producing the same
JP3025668B2 (en) Centrifugal pump
CN110107539B (en) A return guide vane structure for fluid machinery
JP3841391B2 (en) Turbo machine
JP2004353655A (en) Radial impeller
JPH03264796A (en) Mixed flow compressor
JPS59119095A (en) Impeller for mixed flow pump
JP3350934B2 (en) Centrifugal fluid machine
EP4317702A1 (en) Centrifugal fan blade, fan and air conditioning system
CN115929686A (en) Efficient anti-blocking sewage pump
JP3899829B2 (en) pump
US6514034B2 (en) Pump
JP3746740B2 (en) Centrifugal compressor
CN101027493A (en) Centrifugal impeller and pump apparatus
CN215444525U (en) Integrated axial flow impeller
CN110410259B (en) Blade head overhanging type rotating wheel
JP2001082392A (en) Turbo machine and pumping plant using the machine