JPS59116342A - Production of shape memory alloy - Google Patents

Production of shape memory alloy

Info

Publication number
JPS59116342A
JPS59116342A JP23208282A JP23208282A JPS59116342A JP S59116342 A JPS59116342 A JP S59116342A JP 23208282 A JP23208282 A JP 23208282A JP 23208282 A JP23208282 A JP 23208282A JP S59116342 A JPS59116342 A JP S59116342A
Authority
JP
Japan
Prior art keywords
shape
shape memory
memory alloy
phase
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23208282A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23208282A priority Critical patent/JPS59116342A/en
Publication of JPS59116342A publication Critical patent/JPS59116342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To produce inexpensively a shape memory alloy member which is large in the change rate of shape and generates a continuous shape change in a relatively wide temp. range by bringing a Ti material and an Ni material into tight contact with each other then heating the materials to form a TiNi phase having a concn. gradient. CONSTITUTION:A Ti material 1 and an Ni material 2 are brought into tight contact with each other by joining and the materials are heated to form a TiNi phase 3 by mutual diffusion. A concn. gradient exists in the phase 3 as is evident from the figure showing the concn. of Ni in the thickness direction. It is generally known that the transformation temp. of a TiNi shape memory alloy changes by about 10 deg.C when the compsn. thereof deviates by 0.1%. Therefore the transformation temp. that varies according to the compsn. is distributed continuously in the phase 3 having the concn. gradient shown in the figure. The temp. range for the change in shape is thus made in an extremely wide range, such as, for example, 50-100 deg.C. The large rate and power of the shape recovery which are the characteristic intrinsic to the uniform shape memory alloy are maintained without decrease in the phase 3 having such concn. gradient.

Description

【発明の詳細な説明】 発明の分野 この発明は、たとえば感温素子あるいは各種のアクチュ
エータなどに用いられる、形状配憶合金    ゛の製
造方法に関づる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a shape memory alloy used, for example, in temperature sensing devices or various actuators.

先行技術の説明 従来より感温余子として、異種金属の熱膨張係数の差を
利用したバイメタルなどが実用化されている。しかしな
がら、異種金層の熱膨張係数の差を利用するものである
ため、温度変化に基づく形状の変化量ならびに形状変化
に伴い発生ブる力に限界か存在した。そこで、近年、形
状配憶合金部月よりなる感温素子が提案されている。形
状記憶合金とは、形状記憶効果を有づる含金部材であり
、この形状記憶効果はマルデンリイト変態と逆変態とに
より現出づるものであり、変態温度より低温で変形した
後にis湯温度り高温側に加熱すれば変形前の高温側で
の形状に戻るものである。したかって、形状記憶合金で
は温度に基づく形状の変化は逆変態点の近傍で生じる。
Description of Prior Art Bimetals and the like, which utilize the difference in thermal expansion coefficients of different metals, have been put into practical use as temperature-sensitive resistors. However, since it utilizes the difference in thermal expansion coefficients between different gold layers, there are limits to the amount of change in shape due to temperature changes and the force that can be generated due to the change in shape. Therefore, in recent years, temperature sensing elements made of shape memory alloy parts have been proposed. A shape memory alloy is a metal-containing member that has a shape memory effect, and this shape memory effect appears through maldenritt transformation and reverse transformation, and after being deformed at a temperature lower than the transformation temperature, it is If it is heated to the side, it will return to its shape on the high temperature side before deformation. Therefore, in shape memory alloys, changes in shape due to temperature occur near the reverse transformation point.

ところで逆変態点は合金の組成により−S的に決定され
るものであり、それゆえに形状配憶合金を用いるもので
は形状の変化W1および変形に伴い発生する力を大きく
することは可能であるが、狭い温度範囲でしか形状変化
が起こらないという欠点が存在する。したがって、31
!続的な温度変化に対応することがC゛きないものであ
った。
By the way, the reverse transformation point is determined by the composition of the alloy in a -S manner, and therefore, with shape memory alloys, it is possible to increase the shape change W1 and the force generated due to deformation. However, the disadvantage is that the shape change only occurs within a narrow temperature range. Therefore, 31
! It was difficult to cope with continuous temperature changes.

また、形状記憶合金は、溶解−均質化焼鈍〜熱間圧延−
冷間圧延−中間軟化(中間軟化工程は冷間圧延工程との
間でN返される。)−線または条への加ニー形状記憶効
果を与えるための熱処理などの多数の工程を経て製造さ
れる。したがってコストが極めて高いという問題も存在
した。
In addition, shape memory alloys undergo melting, homogenization annealing, hot rolling,
Cold rolling - Intermediate softening (The intermediate softening process is N returned between the cold rolling process.) - Manufactured through a number of processes such as kneading into a wire or strip and heat treatment to give a shape memory effect. . Therefore, there was also the problem that the cost was extremely high.

発明の目的 それゆえに、この発明の主たる目的は、上述の欠点を解
消し、形状変化量が大きくかつ比較的広い温度範囲で連
続的な形状変化を発生する形状記憶合金部材の安価な製
造方法を提供することにある。
OBJECTS OF THE INVENTION Therefore, the main object of the present invention is to eliminate the above-mentioned drawbacks and to provide an inexpensive manufacturing method for shape memory alloy members that have a large amount of shape change and undergo continuous shape changes over a relatively wide temperature range. It is about providing.

この発明は、要約すれば、TI材とN1材とを密着させ
た後、加熱することにより、8I痩勾配を有するTIN
l相を生成させることを特徴とでる、形状記憶合金材の
IJ’l造方法である。
In summary, the present invention can produce a TIN material with a lean slope of 8I by bringing a TI material and an N1 material into close contact with each other and then heating the material.
This is an IJ'l manufacturing method for a shape memory alloy material, which is characterized by the generation of an l phase.

この明細−において[]−1祠」および「N1材」とは
、王1またはNiからなる条、枳、バイブ、板状部材あ
るいは膜状部祠などの様々な形状の材料をい)ものとす
る。
In this specification, "[]-1 material" and "N1 material" refer to materials of various shapes such as strips, strings, vibrators, plate-like members, and membrane-like materials made of Ni or Ni. do.

第1図に例示的に示すように接合により密着されたT1
材1とN1材2を、加熱づると第2図に示4ように相互
拡散によりTI Ni材3が生成する。ところで、この
”jiNi相3では、厚み方向のニッケルIIを示す第
3図から明らかなように、濃度勾配が存在する。すなわ
ち1“iNiNi材3一な相ではなく、N1材側でニッ
ケル濃度が高くなっている。
T1 closely adhered by bonding as exemplarily shown in FIG.
When material 1 and N1 material 2 are heated, TI Ni material 3 is produced by mutual diffusion as shown in FIG. 2. By the way, in this "jiNi phase 3, there is a concentration gradient, as is clear from FIG. It's getting expensive.

ところで、TINI系形状記憶合金の変ffl温度は、
その組成が0.1%ずれると約10℃変化することが知
られている。したがって、第3図に示すような濃度勾配
を持ったTlNi相η゛はて−の組成に応じ異なる変態
温度が連続的に分布していることになる。それゆえに、
形状の回楕ちまた温度変化に応じて連続的に発生ずる。
By the way, the ffl temperature of the TINI-based shape memory alloy is
It is known that if the composition shifts by 0.1%, it changes by about 10°C. Therefore, there is a continuous distribution of different transformation temperatures depending on the composition of the TlNi phase η' having a concentration gradient as shown in FIG. Hence,
The elliptical shape also occurs continuously in response to temperature changes.

この形状変化の温度範囲は、たとえば−50℃〜100
℃のような極めて広い範囲にすることが可能である。こ
のように111度勾配を有するl+Ni相3であつ又も
、均一な形状記憶合金の特徴である形状回復1および回
復力の大きさを損うことはない。r1材およびN1材は
、第4図に示づように、バイ°ブ状のN1材2に、’I
 I 11を挿入・接合づ−ることにより密着させても
よい。これを加熱1”れば、第5図に示Jにうに、Ti
線′1とN1パイプ2との間に濃度勾配をhづる11N
i相3が形成される。
The temperature range for this shape change is, for example, -50°C to 100°C.
It is possible to have a very wide range such as °C. Even though the l+Ni phase 3 has a 111 degree gradient as described above, it does not impair the shape recovery 1 and the large recovery force, which are characteristics of a uniform shape memory alloy. The r1 material and the N1 material are attached to the bib-shaped N1 material 2 as shown in FIG.
They may be brought into close contact by inserting and bonding I11. If this is heated 1", the Ti
A concentration gradient of 11N is created between line '1 and N1 pipe 2.
i-phase 3 is formed.

このように、11月とNi材との「密着」は、接合、湿
式めっき、乾式めっきおよび蒸ηなどの様々な公知の手
段により達成され19るっ好ましくは、11材とNi材
との接合後、冷間もしく LJ湿温間少なくとも10%
以上の断面率で加工が行なわれるっこの加1(にに加熱
することにより濃度勾配を拮つl:=1−INI相が得
られる。冷間または温間で少なくとも10%以上の断面
率で加工を施すことにより、加工の困難なTI N1合
金となってからの加IIを減らプことができ、所望の形
状の合金部材をより一層容易に轡ることが可能となる。
As described above, the "adhesion" between the material and the Ni material is achieved by various known means such as bonding, wet plating, dry plating, and steaming. After that, cold or LJ humidity at least 10%
In this case, processing is carried out with a cross-section ratio of at least 10% (1). By performing the processing, it is possible to reduce the addition of the TI N1 alloy, which is difficult to process, and it becomes possible to more easily form an alloy member in a desired shape.

この発明のその他の特徴は、以下の詳細な説明にJ:り
一層明らかとなろう。
Other features of the invention will become more apparent from the detailed description below.

実施例の説明 友瀝例1 厚さQ、5111111.幅51111の11条とN1
条と各重ね、温間几延および冷間辻延にて全体を厚さ0
゜5mmに接合し、た後、真空中で1100℃の澗喰で
90時間加熱した。第6図に示1ように、このようにし
て作成した条10を、平たい形状に固定し、500℃で
15分間加熱した。次に、液体窒素(−196℃)に浸
漬しつつ、90″の曲げ角度を有するように曲げ変形し
加熱したところ、−50“0から形状回復が始まり、1
00”Cの濡FJで完全に元の平らな形状に戻った。
Description of Examples Example 1 Thickness Q, 5111111. 11th article with a width of 51111 and N1
The overall thickness is 0 through warm rolling and cold rolling.
After bonding to a thickness of 5 mm, they were heated in a vacuum at 1100° C. for 90 hours. As shown in FIG. 6, the strip 10 thus produced was fixed in a flat shape and heated at 500° C. for 15 minutes. Next, while immersed in liquid nitrogen (-196°C), it was bent and deformed to have a bending angle of 90" and heated. The shape recovery started from -50"0, and 1
After wet FJ at 00''C, it completely returned to its original flat shape.

実施例 内径11IIIn、肉厚0.21の「iパイプに外径0
゜9mmのN1線を住人し、外径が0.8IIII11
となるまで伸線し、950℃の湯境で100時間加熱し
た。
Example: I-pipe with an inner diameter of 11IIIn and a wall thickness of 0.21 has an outer diameter of 0.
゜9mm N1 wire, outer diameter 0.8III11
The wire was drawn until it became , and heated in a hot water bath at 950°C for 100 hours.

このようにしC得た線を外110111111のステン
レス棒に台に巻回固定し、400℃の湿度で30分間加
熱した。次に、液体窒素中C引沖ばし加工を施し加熱し
たところ、−20℃からコイルが縮み始め、80℃の温
1良で完全にんの密なコイルに戻った。
The wire obtained in this way was wound around a stainless steel rod (110111111) and fixed on a stand, and heated at 400° C. and humidity for 30 minutes. Next, when the coil was subjected to C drawing process and heated in liquid nitrogen, the coil began to shrink at -20°C and returned to a completely dense coil at 80°C.

L直1− 外径1.5mn+のF)線に電気めっきによりN1を厚
さQ、3mmとなるように付着させ、これを1゜811
1111の外径を有するように伸線した後、10 (、
) 0℃の温度て808.’r間間中空中おいて加熱し
た。作成し!ζ線を直線状に固定して、450℃の湿度
で20分間加熱し、直線形状を記憶させた。このように
して青た直線形状の合金部材を、トライアイスーエヂル
アルコール液中で曲げ変形した後、加熱したところ、−
20℃の温度で形状の回復が始まり、90℃で完全に元
の直線形状に戻った。
L straight 1 - F) wire with outer diameter 1.5mm+ is coated with N1 to a thickness Q of 3mm by electroplating, and this is 1°811
After drawing the wire to have an outer diameter of 1111,
) At a temperature of 0℃808. The mixture was heated in the air for a period of 30 minutes. make! The zeta line was fixed in a straight line and heated at 450° C. humidity for 20 minutes to memorize the straight line shape. In this way, after bending and deforming the blue linear alloy member in the Tri-I-E-Dil alcohol solution, when it was heated, -
The shape began to recover at a temperature of 20°C and completely returned to its original linear shape at 90°C.

発明の効果 以上のように、この発明によれば、Ti材とNi材とを
密着させた後、加熱することにより′IAr!l勾配を
有する丁IN1相を生成させるものであるため、変Rm
度が連続的に変化し、そのため形状が広い温度範囲にわ
たり連続的に変化する形状記憶合金部材を得ることが可
能となる。また、変態温度が連続的に分布しているので
、加熱過程において任意の温度で一義的にその形状を決
定することができるため、形状回復量を任意に制御し得
る。
Effects of the Invention As described above, according to the present invention, by heating the Ti material and the Ni material after bringing them into close contact with each other, 'IAr! Since it generates a phase with a gradient of Rm
It is therefore possible to obtain a shape memory alloy member whose temperature changes continuously and whose shape changes continuously over a wide temperature range. In addition, since the transformation temperature is continuously distributed, the shape can be uniquely determined at any temperature during the heating process, so the amount of shape recovery can be arbitrarily controlled.

また、形状記憶効果を□用いるものであるため、形状回
mmおよび回復力に優れた形状記憶合金部材を得ること
が可能となる。さらに、この発明の製造方法では、T1
材およびN1材を密着させた侵、反応拡散によりTI 
Ni材を得るものであるため、加エエ稈が極めて単純で
あり、したがって形状記憶合金部材のコストを極めて効
果的に低減し得る。
Moreover, since the shape memory effect is used, it is possible to obtain a shape memory alloy member having excellent shape rotation mm and recovery force. Furthermore, in the manufacturing method of the present invention, T1
TI is achieved by penetration and reaction diffusion when the material and N1 material are brought into close contact with each other.
Since the Ni material is obtained, the processing process is extremely simple, and therefore the cost of the shape memory alloy member can be extremely effectively reduced.

この発明の方法は、バイメタル、感温素子、および各種
のアクチュエータなどを製造するのに有利に用いられ得
る。
The method of the present invention can be advantageously used to manufacture bimetals, temperature-sensitive elements, various actuators, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、この発明の製造方法を説明プる
ための概゛略断面図であり、第1図は反応拡散前の状態
を、第2図はTI Ni材が生成した状態を示す図であ
る。第3図は、第2図の形状記憶合金部材におけるl 
Ni材の11度勾配を示づグラフである。14図および
第5図は、この発明の方法の他の例を説明するための概
略斜視図であり、第4図は拡散前の状態を、第5図はT
I Ni材が生成した状態を示す図である。第6図は、
この発明の一実施例を説明するための概略平面図である
。 図において、1はT1材、2はN1材、3はTlNi相
を示す。 特許出願人 住友電気工業株式会社 −21: 掬 6図 −214− δO″C
Figures 1 and 2 are schematic cross-sectional views for explaining the manufacturing method of the present invention, with Figure 1 showing the state before reaction and diffusion, and Figure 2 showing the state after the TI Ni material has been produced. FIG. FIG. 3 shows l in the shape memory alloy member of FIG.
It is a graph showing an 11 degree slope of Ni material. 14 and 5 are schematic perspective views for explaining other examples of the method of the present invention, FIG. 4 shows the state before diffusion, and FIG. 5 shows the state before diffusion.
FIG. 3 is a diagram showing a state in which I Ni material is generated. Figure 6 shows
FIG. 1 is a schematic plan view for explaining one embodiment of the present invention. In the figure, 1 indicates T1 material, 2 indicates N1 material, and 3 indicates TlNi phase. Patent applicant Sumitomo Electric Industries, Ltd.-21: Scoop Figure 6-214- δO″C

Claims (3)

【特許請求の範囲】[Claims] (1)  [−1材どN11flとを密着させた後、加
熱づることにより濃度勾配を有するl’iNi相を生成
させることを特徴とする、形状記憶合金の製造方法。
(1) A method for producing a shape memory alloy, which comprises bringing the -1 material into close contact with N11fl and then heating it to generate an l'iNi phase having a concentration gradient.
(2) 前記゛「i材とNi材との密着は、前記1−1
6よびN1の条、線またはパイプを接合づることにより
なされる、特許請求の範囲第1項記載の形状記憶合金の
製造方法。
(2) The adhesion between the i material and the Ni material is as described in 1-1 above.
A method for manufacturing a shape memory alloy according to claim 1, which is performed by joining strips, wires, or pipes of 6 and N1.
(3) 前記Ti材とNi材との密着は、前記1’ l
またはN1材にN1またはTiを乾式または湿式めっき
することによりなされる、特許請求の範囲第1項記載の
形状記憶合金の製造方法。 (4ン 前記11材とN1月とを密着し、冷間または温
間において少なくとも10%以上の断面率(゛加工した
後に、前記加熱が行なわれる、特許請求の範囲第1項な
いし第3項のいずれかに記載の形状記憶合金の製造方法
(3) The adhesion between the Ti material and the Ni material is as follows.
Alternatively, the method for producing a shape memory alloy according to claim 1, which is performed by dry or wet plating N1 or Ti on N1 material. (4) The material 11 and the material N1 are brought into close contact with each other and have a cross-section ratio of at least 10% or more in cold or warm working. A method for producing a shape memory alloy according to any one of the above.
JP23208282A 1982-12-24 1982-12-24 Production of shape memory alloy Pending JPS59116342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23208282A JPS59116342A (en) 1982-12-24 1982-12-24 Production of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23208282A JPS59116342A (en) 1982-12-24 1982-12-24 Production of shape memory alloy

Publications (1)

Publication Number Publication Date
JPS59116342A true JPS59116342A (en) 1984-07-05

Family

ID=16933707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23208282A Pending JPS59116342A (en) 1982-12-24 1982-12-24 Production of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS59116342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145342A (en) * 1984-01-05 1985-07-31 Mitsubishi Electric Corp Alloy having concentration gradient in composition
US5004143A (en) * 1986-07-31 1991-04-02 Sumitomo Metal Industries, Ltd. Method of manufacturing clad bar
GB2238320A (en) * 1989-11-20 1991-05-29 Nippon Yakin Kogyo Co Ltd Ni-Ti alloy production
US5242759A (en) * 1991-05-21 1993-09-07 Cook Incorporated Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal
US5354623A (en) * 1991-05-21 1994-10-11 Cook Incorporated Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal
US6689486B2 (en) * 2000-02-29 2004-02-10 Ken K. Ho Bimorphic, compositionally-graded, sputter-deposited, thin film shape memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114389A (en) * 1973-02-27 1974-10-31
JPS5152944A (en) * 1974-11-06 1976-05-11 Nippon Musical Instruments Mfg Arupaamugokinno seizoho
JPS5857944A (en) * 1981-10-02 1983-04-06 ヤマハ株式会社 Composite metallic pipe and its manufacture
JPS5983735A (en) * 1982-11-05 1984-05-15 Nippon Gakki Seizo Kk Preparation of frame parts of spectacles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114389A (en) * 1973-02-27 1974-10-31
JPS5152944A (en) * 1974-11-06 1976-05-11 Nippon Musical Instruments Mfg Arupaamugokinno seizoho
JPS5857944A (en) * 1981-10-02 1983-04-06 ヤマハ株式会社 Composite metallic pipe and its manufacture
JPS5983735A (en) * 1982-11-05 1984-05-15 Nippon Gakki Seizo Kk Preparation of frame parts of spectacles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145342A (en) * 1984-01-05 1985-07-31 Mitsubishi Electric Corp Alloy having concentration gradient in composition
US5004143A (en) * 1986-07-31 1991-04-02 Sumitomo Metal Industries, Ltd. Method of manufacturing clad bar
GB2238320A (en) * 1989-11-20 1991-05-29 Nippon Yakin Kogyo Co Ltd Ni-Ti alloy production
US5242759A (en) * 1991-05-21 1993-09-07 Cook Incorporated Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal
US5354623A (en) * 1991-05-21 1994-10-11 Cook Incorporated Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal
US6689486B2 (en) * 2000-02-29 2004-02-10 Ken K. Ho Bimorphic, compositionally-graded, sputter-deposited, thin film shape memory device

Similar Documents

Publication Publication Date Title
JP2580843B2 (en) Method for producing base material having porous surface
JPS59116342A (en) Production of shape memory alloy
CN204505585U (en) A kind of structural type cutting steel wire
JPS61165244A (en) Production of niti shape memory alloy coil spring
JPS59179767A (en) Production of reversible shape memory element
JPS59170247A (en) Manufacture of niti type shape memory material
JP2985302B2 (en) Corrosion resistant Mo member and method of manufacturing the same
JPS59116343A (en) Production of shape memory alloy member
JPS58167087A (en) Production of conductive rod
JPH046788B2 (en)
JP2502058B2 (en) Manufacturing method of NiTi alloy
JP2974030B2 (en) Heat treatment equipment
JP2799992B2 (en) Shape memory alloy wire for clothing
JP2577568B2 (en) Manufacturing method of reaction tube for heat treatment
JPH035137A (en) Clad material
JPS6268640A (en) Manufacture of contour-shaped body subjected to shape memory processing, and jig used for its manufacture
JPH0539437Y2 (en)
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPH09180864A (en) Electric heating material and manufacture thereof
JP2640461B2 (en) Medical guidewire and medical catheter
JPS59162262A (en) Production of spring having two-way shape memory effect
JPH0885855A (en) Production of titanium-nickel superelastic material
JPS62247578A (en) Multilayer thin film composed of metal and inorganic insulating substance
JPS63169367A (en) Production of shape memory ni-ti alloy element for spring
JPH0454549B2 (en)