JPS59116339A - Recovering method of zn from zn-containing dust - Google Patents

Recovering method of zn from zn-containing dust

Info

Publication number
JPS59116339A
JPS59116339A JP57225428A JP22542882A JPS59116339A JP S59116339 A JPS59116339 A JP S59116339A JP 57225428 A JP57225428 A JP 57225428A JP 22542882 A JP22542882 A JP 22542882A JP S59116339 A JPS59116339 A JP S59116339A
Authority
JP
Japan
Prior art keywords
liquid
contg
dust
leaching
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225428A
Other languages
Japanese (ja)
Inventor
Takao Hashimoto
孝夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57225428A priority Critical patent/JPS59116339A/en
Publication of JPS59116339A publication Critical patent/JPS59116339A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To recover surely high purity Zn from the extraction residue by leaching Zn-contg. dust, contg. Fe and Pb with sulfuric acid, removing the Pb-component as an insoluble residue, then extracting the Fe<3+> obtd. by oxidizing Fe<2+> with an acidic extracting agent. CONSTITUTION:Zn-contg. dust, contg. Fe and Pb (i.e.; blast furnace dust) 1 is charged into a leaching tank 2 and is subjected to a leaching treatment with an aq. sulfuric acid soln. so that the Zn component and the Fe component are dissolved as ZnSO4 and FeSO4. On the other hand, PbSO4 having low solubility is settled as an insoluble residue 4. The residue 4 is filtered away by an insoluble residue removing tank 5. The filtrate is oxidized 6 by an oxidizing agent 7, such as HNO3 to oxidize Fe<2+> to Fe<3+>. The oxidized liquid is fed to a solvent extraction stage 8, where the liquid is subjected to solvent extraction by an acidic extracting agent 9, such as D-2EHPA. An alkali liquid 13, such as NH4OH, is added to the ZnSO4 soln. (residual liquid of extraction) to neutralize the soln. and the formed Zn(OH)2 14 is recovered by a solid-liquid sepn. 15. It is also possible to recover Zn in the form of ZnO 18 by subjecting Zn(OH)2 to drying and decomposing 17 according to need.

Description

【発明の詳細な説明】 本発明は、Feおよびpbを含むZn含有ダストからZ
n(OH)ztたはZ n O等の形で高純度Znを回
収する方法に関する0 高炉ダストには、2〜4係程度のZn、およびPb、さ
らにかなり多量のFe分も含有されてい乙。そこで、ダ
ストをその゛まま投棄するのではなく、上記Fe分を高
炉のFe源として再利用することか行なわれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Zn-containing dust containing Fe and PB.
0 Regarding the method of recovering high-purity Zn in the form of n(OH)zt or ZnO, etc. Blast furnace dust contains about 2 to 4 parts of Zn and Pb, as well as a considerably large amount of Fe. . Therefore, rather than dumping the dust as it is, attempts are being made to reuse the Fe content as an Fe source for blast furnaces.

この場合、Zn分を含んだままでFe源とすることは、
高炉内においていわゆるZnアタックの問題があるため
、予めZn分を分離せねはならない。
In this case, using it as an Fe source while still containing Zn means:
Since there is a problem of so-called Zn attack in the blast furnace, it is necessary to separate the Zn component in advance.

そこで、ダスト中のZnの除去に際して、工業的に湿式
処理方法′1.たは乾式処理方法が採用されている。湿
式処理法の代表例は、ダストにNaOH水溶液を接触さ
せてZn分をZ n (OR)42−とじて溶解分離除
去するものであるが、設備コストのみならずN a O
Hを使用するためランニングコストが嵩み、さらにZn
除去後の残漬を高炉原料として再使用する際にNaが残
留して支障となる。湿式処理法の他の例として、ロダン
廃液抽出法もあるが、この方法もv1■記処理法と設備
において、具体的にはロータリーキルンにおいてZn化
合物を還元して、Znを揮発除去するものである。しか
し、この方法は設備費および熱エネルギーが嵩むし、か
つZnの純度が50%程度であり、このまま他の用途に
使用することは到底できない。さらに、pbの除去率が
よくない問題もある。
Therefore, when removing Zn from dust, wet treatment method '1. or dry processing methods are used. A typical example of a wet treatment method is to bring dust into contact with an aqueous NaOH solution to dissolve and separate the Zn component as Zn(OR)42-, but this not only increases the equipment cost but also the NaOH aqueous solution.
Running costs increase due to the use of H, and Zn
When the residue after removal is reused as blast furnace raw material, Na remains and becomes a problem. Another example of the wet treatment method is the Rodan waste liquid extraction method, which also uses the treatment method and equipment described in v1. Specifically, the Zn compound is reduced in a rotary kiln and the Zn is removed by volatilization. . However, this method requires high equipment costs and thermal energy, and the purity of Zn is about 50%, so it cannot be used as is for other purposes. Furthermore, there is also the problem that the removal rate of PB is not good.

本発明は、前記問題のある従来法に代えて、Feおよび
pb分を確実に除去して高純度Znとして回収すること
ができるZn回収方法を提供するものである。
The present invention provides a Zn recovery method that can reliably remove Fe and PB and recover high-purity Zn in place of the conventional method with the aforementioned problems.

本発明の要旨は、Feおよびpbを含むZn含有ダスト
をH2SO4水溶液に浸出し、不溶解残漬としてpb分
を除去し、その後酸化剤により Fe2+をFe3+に
転化し、続いてFe3+と親和力がある酸性抽出剤によ
りF e3+を酸性抽出剤(1]+1に移行させてFe
分を抽出分1唯し、抽出残液から高純度Zn化合物を回
収することを特徴とするZn含有ダストからのZn回収
方法、にある。
The gist of the present invention is that Zn-containing dust containing Fe and PB is leached into an H2SO4 aqueous solution, the PB content is removed as an undissolved residue, and then Fe2+ is converted to Fe3+ by an oxidizing agent, and then Zn-containing dust that has an affinity for Fe3+ is extracted. Transfer Fe3+ to acidic extractant (1]+1 using acidic extractant to obtain Fe
A method for recovering Zn from Zn-containing dust, characterized in that a high-purity Zn compound is recovered from an extraction residual liquid, with only one extraction fraction.

次に本発明法を図面を参照しながらさらに詳述すると、
少くともFe、pt)を含むZnn含有スス11、たと
えば高炉ダストもしくは前述のキルンから排出さ扛たキ
ルンダストあるいは両者の混合ダストを、浸出槽2に投
入1〜、H2S 04水溶液3で浸出操作を行う。この
浸出によって、ZnおよびFe分は、Z n S 04
およびFe50.+となって溶解するが、PbSO4は
溶解度が低いので、不溶解残漬となって沈澱するO ここで、他の酸、たとえばHCl−? H,N03の使
用も考えられるが、Zn、Feおよびpb分の全てが溶
解してしまいpb分を除去することができない。H,2
SO4水溶液による浸出に当って、勿論撹拌あるいは必
要ならば加温を加えることができる。次いで、不溶解残
漬4は、不溶解残漬除去槽5において1過除去するO その後、浸出r液に対して、酸化工程6においてH,N
 O3等の酸化剤7により酸化させる0この酸化に当っ
て、過酸化水素やオゾンを用いることもできるけれども
、続く溶媒抽出工程8で酸性抽出剤9としてD−2EH
PAを使用する場合には、その劣化があるため、酸化剤
としてはHNO3が望ましv′10酸化によって、Fe
2+はFe3+に酸化されるOこの場合、浸出P液中の
溶解Feに対して通常2当量の硝酸が添加される。
Next, the method of the present invention will be explained in more detail with reference to the drawings.
Znn-containing soot 11 containing at least Fe, pt), such as blast furnace dust, kiln dust discharged from the above-mentioned kiln, or a mixture of both, is charged into a leaching tank 2 1 - and leaching operation is performed with an H2S04 aqueous solution 3 . Through this leaching, the Zn and Fe contents are reduced to Zn S 04
and Fe50. However, since PbSO4 has low solubility, it remains undissolved and precipitates. Here, other acids, such as HCl-? Although it is possible to use H and N03, all of the Zn, Fe and PB components are dissolved, making it impossible to remove the PB component. H,2
During the leaching with the SO4 aqueous solution, it is of course possible to add stirring or heating if necessary. Next, the undissolved residue 4 is removed once in an undissolved residue removal tank 5. After that, the leaching solution is subjected to an oxidation step 6 in which H, N and
Oxidized with an oxidizing agent 7 such as O3 Although hydrogen peroxide or ozone can also be used for this oxidation, D-2EH is used as the acidic extracting agent 9 in the subsequent solvent extraction step 8.
When using PA, HNO3 is preferable as the oxidizing agent because of its deterioration.
2+ is oxidized to Fe3+. In this case, 2 equivalents of nitric acid are usually added to the dissolved Fe in the leached P solution.

次に、酸化滴液は、溶媒抽出工程8において、酸性抽出
剤9たとえばD −2EHPA (D −2エチルへキ
/ルフォスフォリックアシッド)により溶媒抽出を行う
。D−2EHPAの構造式は次の通りである。
Next, the oxidized droplets are subjected to solvent extraction in a solvent extraction step 8 using an acidic extractant 9 such as D-2EHPA (D-2 ethylhexyl/phosphoric acid). The structural formula of D-2EHPA is as follows.

このD −2EHPAは3価のFeイオンときわめて高
い親和力を示し、Fe3+との接触により、OH基のH
十がFe3+と置換され、次記の化合物となるD−2E
HPA / Fe  −D−2EHPA \ D−2EHPA そして、この化合物は比重の軽い酸性抽出剤1111に
移行するため、Zn5On溶液10とFe抽出液11と
を分離できる。Fe抽出液は、その後の処理を経て高純
度のFeあるいはFe2O3として回収される。
This D-2EHPA shows an extremely high affinity for trivalent Fe ions, and upon contact with Fe3+, the OH group
D-2E in which 10 is replaced with Fe3+, resulting in the following compound
HPA / Fe -D-2EHPA \ D-2EHPA Since this compound transfers to the acidic extractant 1111 with a light specific gravity, the Zn5On solution 10 and the Fe extract 11 can be separated. The Fe extract is recovered as highly pure Fe or Fe2O3 through subsequent processing.

一方、回収したZnSO4溶液(抽出残液)は、Zn系
のメッキ液あるいは電解亜鉛原料等にそのまま利用する
か、これを中和工程12に移す0中和はNH4OHまた
はNaOHのアルカリ液13によシ行い、生成するZn
(OH)z 14は固液分離機15によジ分離回収する
。中和液16、すなわち(NH4)2804またはNa
2SO4は肥料あるいはガラス原料等に使用可能である
On the other hand, the recovered ZnSO4 solution (extraction residual liquid) can be used as it is as a Zn-based plating solution or electrolytic zinc raw material, or can be transferred to the neutralization step 12. Neutralization can be carried out using an alkaline solution 13 of NH4OH or NaOH. The Zn produced by
(OH)z 14 is separated and recovered by a solid-liquid separator 15. Neutralizing solution 16, i.e. (NH4)2804 or Na
2SO4 can be used as fertilizer or raw material for glass.

回収したZn(OH)zは、必要ならば乾燥分解工程1
7を経て、ZnO18として回収するとともできる。
The recovered Zn(OH)z is subjected to dry decomposition step 1 if necessary.
7, it can be recovered as ZnO18.

このようにして、分離回収したZnは後述の実施例で示
すように、きわめて高い純度を示すばかりでなく、分離
の過程でpbを確実に除去できる。
In this way, the separated and recovered Zn not only exhibits extremely high purity, but also ensures the removal of PB during the separation process, as shown in Examples below.

なお、酸性抽出剤としては、Fe3+の親和力のある抽
出剤であれば、D−2EHPAに限定されるものではな
い0 次に実施例を示す0 (実施例) 製鉄所で発生する第1表の組成(wt % )のZn含
有ダストからZn回収の実験を行った。
Note that the acidic extractant is not limited to D-2EHPA as long as it has an affinity for Fe3+0 Examples are shown below0 (Example) An experiment was conducted to recover Zn from Zn-containing dust having the following composition (wt %).

上記ダス)50.!9をH2SO4水溶液(317n)
3QQccで常温下で浸出した。このとき、マグネチッ
クスターラーで1時間撹拌した。浸出率係は、第2表の
通りであった。
Das above) 50. ! 9 in H2SO4 aqueous solution (317n)
Leaching was carried out at room temperature using 3QQcc. At this time, the mixture was stirred for 1 hour using a magnetic stirrer. The leaching rate was as shown in Table 2.

第2表 て、浸出FeK対する2当楽の硝酸をもって硝酸酸化し
た後、50 Q ccに調整した液に、30%濃度のD
 −2Ef(PAを500cc添加し、常温で10分間
据とうしてFe”十の溶媒抽出を行った。
Table 2 shows that after oxidizing the leached FeK with nitric acid using 20% nitric acid, 30% concentration of D was added to the solution adjusted to 50 Q cc.
500 cc of -2Ef (PA) was added and allowed to stand at room temperature for 10 minutes to perform solvent extraction of Fe''.

またこの抽出を3回まで繰返した。そのときの1i’e
除去率は、第3表の通りであった。
This extraction was also repeated up to three times. 1i'e at that time
The removal rate was as shown in Table 3.

3回抽出まで行うと、Feをioo s抽出除去できる
ことが判る。続いて各抽出回数のそれぞれの抽残液水相
にアンモニア水を加え、pH−6,5を終点として中和
処理した。そして生成したZn(OH)2を脱水乾燥後
、500℃の雰囲気に3時間保持し、ZnOを得た。得
られたZ n Qの純度(ppm)を調べたところ、第
4表の通9であった。
It can be seen that if the extraction is performed up to three times, Fe can be extracted and removed by IOOS. Subsequently, aqueous ammonia was added to the raffinate aqueous phase of each extraction, and neutralization was performed with pH-6.5 as the end point. After dehydrating and drying the generated Zn(OH)2, it was held in an atmosphere at 500° C. for 3 hours to obtain ZnO. The purity (ppm) of the obtained Z n Q was examined and found to be 9 in Table 4.

そして、Fe 3回抽出時のZnO純度として999チ
を得た。
Then, a ZnO purity of 999 was obtained when Fe was extracted three times.

このように、従来法によっては得られない高純度Znを
回収できるとともに、pbおよびFeをそれぞれ確実に
分離できることが明らかとなった○ 以上の通り、本発明によれば、pbの除去率が高くなる
とともに、Feと共に、高純度Znを回収でき、かつプ
ロセスとしても経済的となる0
In this way, it has become clear that high-purity Zn, which cannot be obtained by conventional methods, can be recovered and that PB and Fe can be separated reliably. As described above, according to the present invention, the removal rate of PB is high. At the same time, high-purity Zn can be recovered together with Fe, and the process is also economical.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明法の工程例を示す説明図である。 nO The drawings are explanatory diagrams showing an example of the process of the method of the present invention. nO

Claims (1)

【特許請求の範囲】[Claims] (1)  FeおよびPbを含むZn含有ダストをH2
SO4水溶液で浸出し、不溶解残漬としてPb分を除去
し、その後酸化剤によりFe2+をFe3+に転化し、
続いてFe3→−と親和力がある酸性抽出剤によりFe
”+を酸性抽出剤側に移行させてFe分を抽出分離し、
抽出残液から高純度Zn化合物を回収することを特徴と
するZn含有ダストからのZn回収方法。
(1) Zn-containing dust containing Fe and Pb was heated to H2
Leaching with SO4 aqueous solution to remove Pb as undissolved residue, then converting Fe2+ to Fe3+ with an oxidizing agent,
Next, Fe is removed using an acidic extractant that has an affinity for Fe3→-
"+" is transferred to the acidic extractant side to extract and separate the Fe component,
A method for recovering Zn from Zn-containing dust, which comprises recovering a high-purity Zn compound from an extraction residue.
JP57225428A 1982-12-21 1982-12-21 Recovering method of zn from zn-containing dust Pending JPS59116339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225428A JPS59116339A (en) 1982-12-21 1982-12-21 Recovering method of zn from zn-containing dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225428A JPS59116339A (en) 1982-12-21 1982-12-21 Recovering method of zn from zn-containing dust

Publications (1)

Publication Number Publication Date
JPS59116339A true JPS59116339A (en) 1984-07-05

Family

ID=16829210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225428A Pending JPS59116339A (en) 1982-12-21 1982-12-21 Recovering method of zn from zn-containing dust

Country Status (1)

Country Link
JP (1) JPS59116339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524070A (en) * 2000-02-23 2003-08-12 レキュパック Steelworks dust treatment method
FR2912759A1 (en) * 2007-02-16 2008-08-22 Suez Environnement Sa Utilizing blast furnace dust and sludge, by granulometrically sorting light component to give recyclable heavy fraction and zinc and/or lead enriched light fraction
JP2009167095A (en) * 2003-09-30 2009-07-30 Nippon Mining & Metals Co Ltd High purity zinc oxide powder, high purity zinc oxide target and high purity zinc oxide thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524070A (en) * 2000-02-23 2003-08-12 レキュパック Steelworks dust treatment method
JP2009167095A (en) * 2003-09-30 2009-07-30 Nippon Mining & Metals Co Ltd High purity zinc oxide powder, high purity zinc oxide target and high purity zinc oxide thin film
FR2912759A1 (en) * 2007-02-16 2008-08-22 Suez Environnement Sa Utilizing blast furnace dust and sludge, by granulometrically sorting light component to give recyclable heavy fraction and zinc and/or lead enriched light fraction

Similar Documents

Publication Publication Date Title
US11923518B2 (en) Systems and methods for closed-loop recycling of a liquid component of a leaching mixture when recycling lead from spent lead-acid batteries
US20160068929A1 (en) EXTRACTION OF RARE EARTH METALS FROM NdFeB USING SELECTIVE SULFATION ROASTING
KR101021180B1 (en) Method for producing high purity cobalt surfate
TW202343870A (en) Method for producing secondary battery material from black mass
JPH02236236A (en) Method for recovering metal
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
JPH0344131B2 (en)
JPS59116339A (en) Recovering method of zn from zn-containing dust
JPS61261446A (en) Method for recovering zn from zn containing material
JP3831805B2 (en) Treatment method for petroleum combustion ash
JPS59126729A (en) Recovering method of zn from zn-containing dust
US3007770A (en) Extraction of lithium
US2017612A (en) Improvements in hydrometallurgical recovery of lead from ores and other lead bearing materials
US2031299A (en) Treating copper anode mud
JP7243749B2 (en) Valuable metal recovery method and recovery device
JP2002166244A (en) Method for treating petroleum combustion ash
US3259456A (en) Process for producing basic beryllium material of high purity
US1912590A (en) Indium recovery process
JPS6035415B2 (en) Separation method for copper and arsenic
JP3613443B2 (en) Method for dissolving and extracting tantalum and / or niobium-containing alloys
US20240014457A1 (en) Method for producing secondary battery material from black mass
US2413762A (en) Tin ore treatment
JP3887710B2 (en) Ammonia recovery method
JPH11293361A (en) Production of high purity selenium from slime of copper electrolysis
JPS6058173B2 (en) Arsenic separation and recovery method