JPS5911525B2 - Carbon monoxide manufacturing method - Google Patents

Carbon monoxide manufacturing method

Info

Publication number
JPS5911525B2
JPS5911525B2 JP56008347A JP834781A JPS5911525B2 JP S5911525 B2 JPS5911525 B2 JP S5911525B2 JP 56008347 A JP56008347 A JP 56008347A JP 834781 A JP834781 A JP 834781A JP S5911525 B2 JPS5911525 B2 JP S5911525B2
Authority
JP
Japan
Prior art keywords
methyl formate
carbon monoxide
methanol
reaction
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008347A
Other languages
Japanese (ja)
Other versions
JPS57123811A (en
Inventor
浩三 佐野
康夫 山本
成 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP56008347A priority Critical patent/JPS5911525B2/en
Priority to CA000394181A priority patent/CA1176821A/en
Priority to EP82300314A priority patent/EP0057090B1/en
Priority to DE8282300314T priority patent/DE3260473D1/en
Publication of JPS57123811A publication Critical patent/JPS57123811A/en
Publication of JPS5911525B2 publication Critical patent/JPS5911525B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide

Description

【発明の詳細な説明】 本発明は、ぎ酸メチルを熱分解して高純度な一酸化炭素
を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing highly pure carbon monoxide by thermally decomposing methyl formate.

高純度一酸化炭素は、Cl化学の主原料として、あるい
はカルボニレーシヨン原料として重要な物質で、通常は
、水素、メタンおよび二酸化炭素などの混合物より分離
した後、必要な圧力まで圧縮して用いられている。
High-purity carbon monoxide is an important substance as the main raw material for Cl chemistry or as a raw material for carbonylation.It is usually separated from a mixture of hydrogen, methane, and carbon dioxide, and then compressed to the required pressure. It is used.

アルカリ金属化合物を触媒としてぎ酸メチルを熱分解す
る方法を用いれば、これらのガス分離あるいは圧縮とい
う工程を経ることなく高純度な一酸化炭素が高圧の状態
で得られ、その工業的価値は極めて大きい。
By using a method of thermally decomposing methyl formate using an alkali metal compound as a catalyst, highly pure carbon monoxide can be obtained under high pressure without going through the steps of gas separation or compression, and its industrial value is extremely high. big.

ぎ酸メチルの製造法としては、メタノールと一酸化炭素
を反応させる方法(CH8OH+Co→HCO0CH3
)、ぎ酸をメタノールでエステル化する方法(HCO0
H+CH30H→HCOOCH3+H2O)、およびメ
タノールを分子間で脱水素する方法(2CH3OH→H
CO0CH3+2H2)などが知られている。
A method for producing methyl formate is a method in which methanol and carbon monoxide are reacted (CH8OH+Co→HCO0CH3
), method of esterifying formic acid with methanol (HCO0
H+CH30H→HCOOCH3+H2O), and a method for intermolecular dehydrogenation of methanol (2CH3OH→H
CO0CH3+2H2), etc. are known.

これらの方法で得られる反応物は、通常は微量の副生物
の他に、未反応のメタノールを多量に含んでいるが、本
発明者らは先にこれらのメタノールを含んだぎ酸メチル
溶液中のぎ酸メチルのみを選択的にメタノールと一酸化
炭素に分解する触媒を見出した(特願昭54−1046
21号(特公昭57−21482))。この方法によれ
ば、ぎ酸メチル生成反応物からぎ酸メチルを除去するこ
となく、あるいはメタノールを分離することなく分解反
応の原料とすることが出来るので、プロセスが簡略化さ
れ、かつ所望により高圧の一酸化炭素が得られ工業的に
有意義であるとの利点があつた。しかしながら、さらに
研究を進めた結果、ぎ酸メチル生成反応液中にメタノー
ルが多量に存在する場合には触媒の活性低下が大きくな
り、かつ一酸化炭素の損失が大きくなり、また、メタノ
ールを除去してぎ酸メチルの濃度を高めても水素ガスの
副生量は実用上支障となる程多くはないことが判明し、
この知見に基づいて本発明に到達した。
The reactants obtained by these methods usually contain a large amount of unreacted methanol in addition to trace amounts of by-products, but the present inventors first prepared a solution containing methanol in methyl formate. We have discovered a catalyst that selectively decomposes only methyl formate into methanol and carbon monoxide.
No. 21 (Special Publication No. 57-21482)). According to this method, methyl formate can be used as a raw material for the decomposition reaction without removing methyl formate or separating methanol from the methyl formate producing reaction product, so the process is simplified, and if desired, high pressure The advantage was that carbon monoxide was obtained and it was industrially significant. However, as a result of further research, we found that when a large amount of methanol was present in the methyl formate production reaction solution, the activity of the catalyst was significantly reduced, and the loss of carbon monoxide was large. It was found that even if the concentration of methyl formate was increased, the amount of hydrogen gas by-product was not so large as to pose a practical problem.
The present invention was achieved based on this knowledge.

すなわち、本発明は少なくともぎ酸メチルとメタノール
とを含有するぎ酸メチル生成反応液をアルカリ金属アル
コラード以外のアルカリ金属触媒の存在下で加熱して該
ぎ酸メチル生成反応液中のぎ酸メチルを熱分解して一酸
化炭素を製造するに際し、ぎ酸メチルの濃度が70wt
%よりも高いぎ酸メチル生成反応液を使用することを特
徴とする一酸化炭素の製造方法である。本発明で使用さ
れるぎ酸メチルはその製法などに特に制限はない。
That is, the present invention heats a methyl formate production reaction solution containing at least methyl formate and methanol in the presence of an alkali metal catalyst other than an alkali metal alcoholade to remove methyl formate in the methyl formate production reaction solution. When producing carbon monoxide through thermal decomposition, the concentration of methyl formate is 70wt.
This is a method for producing carbon monoxide, which is characterized in that a reaction solution for producing methyl formate having a higher concentration than that of the above method is used. There are no particular restrictions on the manufacturing method of the methyl formate used in the present invention.

通常はたとえば、i)メタノールと一酸化炭素を反応さ
せる方法Dぎ酸をメタノールでエステル化する方法およ
びI(1)メタノールを分子間で脱水素する方法などの
ぎ酸メチル生成反応によつて製造される。これらのうち
前記111)を採用するとぎ酸メチルとメタノールを分
離する際に必要な熱量をぎ酸メチル生成反応物が有する
熱から得ることが可能となり、またぎ酸メチル合成反応
と組合わせた一貫プロセスではメタノールのみを原料と
して、高純度の水素と高純度の一酸化炭素とが、両者の
混合物としてではなく別々に、かつ所望により高い圧力
で得られるとの利点があるので好ましい。少なくともぎ
酸メチルとメタノールとを含有する前記のぎ酸メチル生
成反応液に多量のメタノールが含有されているときには
、たとえば蒸留などによつてメタノールを除去して、ぎ
酸メチルの濃度を70wt%よりも高くしたぎ酸メチル
生成反応液とする。
Usually, for example, it is produced by a methyl formate producing reaction such as i) a method of reacting methanol and carbon monoxide, D a method of esterifying formic acid with methanol, and I(1) a method of intermolecular dehydrogenation of methanol. be done. Among these, by adopting 111) above, it becomes possible to obtain the amount of heat necessary to separate methyl formate and methanol from the heat possessed by the methyl formate producing reaction product, and it is also an integrated process in combination with the methyl formate synthesis reaction. This method is preferable because it has the advantage that high-purity hydrogen and high-purity carbon monoxide can be obtained separately, rather than as a mixture, and at a higher pressure if desired, using only methanol as a raw material. When the methyl formate production reaction solution containing at least methyl formate and methanol contains a large amount of methanol, methanol is removed, for example, by distillation, so that the concentration of methyl formate is lower than 70 wt%. The reaction solution for producing methyl formate is made to have a high temperature.

また、ぎ酸メチル生成反応液のぎ酸メチル濃度が70w
t%よりも高いときはそのまま使用しうることは当然で
ある。ぎ酸メチル濃度が70wt%以下のような多量の
メタノールを含有するぎ酸メチル生成反応液を使用した
ときには、触媒寿命が短かくなりかつ一酸化炭素の損失
も大きくなる。本発明で用いられるアルカリ金属触媒は
アルカリ金属アルコラート以外であつて、かつメタノー
ルまたはぎ酸メチルとは反応しないかまたは反応しにく
いアルカリ金属化合物であればよく、たとえばカリウム
、ナトリウムおよびリチウムなどのアルカリ金属の水酸
化物、硫化物、ハロゲン化物、硫酸塩および炭酸塩など
の無機酸塩ならびにぎ酸塩および酢酸塩などの有機酸塩
である。
In addition, the concentration of methyl formate in the methyl formate production reaction solution was 70w.
Of course, when it is higher than t%, it can be used as is. When a methyl formate production reaction solution containing a large amount of methanol, such as a methyl formate concentration of 70 wt % or less, is used, the catalyst life becomes short and the loss of carbon monoxide becomes large. The alkali metal catalyst used in the present invention may be any alkali metal compound other than an alkali metal alcoholate and does not or does not react easily with methanol or methyl formate, such as alkali metal compounds such as potassium, sodium, and lithium. Inorganic acid salts such as hydroxides, sulfides, halides, sulfates and carbonates, and organic acid salts such as formates and acetates.

これらのうち炭酸塩が最も好ましい。代表的な化合物と
してたとえば水酸化カリウム、塩化カリウム、ぎ酸カリ
ウム、硫化ナトリウム、硫酸ナトリウム、炭酸カリウム
、炭酸ナトリウムおよび塩化リチウムなどをあげること
ができる。これらは単独でまたはこれらの混合物として
使用することができる。アルカリ金属アルコラートは反
応温度の35〜20『Cではぎ酸メチルと反応して他の
化合物へ容易に転化して、ぎ酸メチルから一酸化炭素へ
の選択率を低下させ、かつこのとき生成したジメチルエ
ーテルが一酸化炭素を汚染することになるので使用でき
ない。反応は回分式および連続式のいずれの型式でも実
施できる。
Among these, carbonates are most preferred. Representative compounds include, for example, potassium hydroxide, potassium chloride, potassium formate, sodium sulfide, sodium sulfate, potassium carbonate, sodium carbonate, and lithium chloride. These can be used alone or in mixtures thereof. Alkali metal alcoholates react with methyl formate at a reaction temperature of 35 to 20 °C and are easily converted to other compounds, reducing the selectivity from methyl formate to carbon monoxide, and reducing the amount of carbon monoxide produced at this time. Dimethyl ether cannot be used because it will contaminate carbon monoxide. The reaction can be carried out either batchwise or continuously.

その際の触媒の利用形態は、アルカリ金属化合物自体を
原料混合物に溶かして均一状態とし、あるいは難溶の場
合にはスラリー状態として反応器へ仕込んで回分式で反
応を行なうか原料混合物を連続的に供給して反応生成物
などを連続的に抜出す連続式反応で行なう。またアルカ
リ金属化合物自体を、またはシリカゲル、ケイソウ土、
軽石、レンガおよび活性炭などの中性ないし塩基性の担
体にアルカリ金属化合物を担持させた触媒を予め充填し
た反応器に連続的に原料混合物のみを供給するとともに
反応生成物を連続的に抜き出す固定床式連続法も採用で
きる。就中、固定床式連続法が実用上最も好ましい。本
発明で用いられる触媒量はその利用形態によつて異なる
In this case, the catalyst can be used either by dissolving the alkali metal compound itself in the raw material mixture to make it homogeneous, or if it is poorly soluble, charging it into a reactor as a slurry and conducting the reaction batchwise, or by continuously dissolving the raw material mixture. The reaction is carried out in a continuous manner, in which the reaction products are continuously extracted. Also, the alkali metal compound itself, or silica gel, diatomaceous earth,
A fixed bed in which only the raw material mixture is continuously supplied to a reactor pre-filled with a catalyst in which an alkali metal compound is supported on a neutral or basic carrier such as pumice, brick, or activated carbon, and the reaction products are continuously extracted. Equation continuity method can also be adopted. Among these, the fixed bed continuous method is most preferred in practice. The amount of catalyst used in the present invention varies depending on its usage.

すなわち、たとえば固定床式連続法を採用するときには
触媒量は特に制限はない。また触媒を原料混合物に混合
し、または原料混合液とは別ではあるが同時に反応器に
供給して回分式または連続式で反応を行なう場合は、実
用上原料混合物に含まれるぎ酸メチル1モルにつきアル
カリ金属原子として0.1〜400ミリグラム原子、好
ましくは0.4〜100ミリグラム原子とされる。触媒
の使用量が、ぎ酸メチル1モルにつきアルカリ金属原子
として0.1ミリグラム原子未満であつたときは反応速
度が遅くなり、また400ミリグラム原子を越えた場合
にはメタノールまたはぎ酸メチルの副分解反応が起きる
危険性がある。アルカリ金属化合物を担体に担持させて
固定触媒として使用する場合には、両者の比には特に制
限はないが、実用上担体1グラムに対してアルカリ金属
原子として0.05〜3.0ミリグラム原子、好ましく
は0.1〜1.5ミリグラム原子で十分である。反応温
度は実用上、200〜500℃の範囲、好ましくは25
0〜450℃の範囲とする。200℃未満では、ぎ酸メ
チルの分解速度が実用上十分でなく、また、500℃よ
り高い温度ではぎ酸メチルの副分解がおき、さらには、
メタノールの分解が起こり、一酸化炭素の収率を低下さ
せ、かつ、発生一酸化炭素が汚染されることになる。
That is, when employing a fixed bed continuous method, for example, there is no particular restriction on the amount of catalyst. In addition, when the catalyst is mixed with the raw material mixture or supplied to the reactor at the same time but separately from the raw material mixture to conduct the reaction in a batch or continuous manner, in practice, 1 mole of methyl formate contained in the raw material mixture is used. 0.1 to 400 milligram atoms per alkali metal atom, preferably 0.4 to 100 milligram atoms. If the amount of catalyst used is less than 0.1 milligram atom of alkali metal per mole of methyl formate, the reaction rate will be slow, and if it exceeds 400 milligram atoms, methanol or methyl formate may be There is a risk of decomposition reactions occurring. When an alkali metal compound is supported on a carrier and used as a fixed catalyst, there is no particular restriction on the ratio of the two, but in practice it is 0.05 to 3.0 milligrams of alkali metal atoms per 1 gram of carrier. , preferably 0.1 to 1.5 milligram atoms are sufficient. The reaction temperature is practically in the range of 200 to 500°C, preferably 25°C.
The temperature should be in the range of 0 to 450°C. If the temperature is less than 200°C, the decomposition rate of methyl formate is not practically sufficient, and if the temperature is higher than 500°C, side decomposition of methyl formate occurs, and furthermore,
Decomposition of methanol occurs, reducing the yield of carbon monoxide and contaminating the generated carbon monoxide.

反応時間は特に制限はないが、実用上、ガス空間速度(
GSVH)として500〜50000(標準状態)Hr
−1、または液空間速度(LSVH)として1.3〜1
30hr−1とすることが好ましい。
There is no particular restriction on the reaction time, but in practice, the gas hourly space velocity (
GSVH) 500 to 50,000 (standard condition) Hr
-1, or 1.3 to 1 as liquid hourly space velocity (LSVH)
It is preferable to set it as 30hr-1.

反応圧力は特に制限はなく、常圧〜350kg/IGで
行なうことができるO本発明において、高純度の一酸化
炭素が容易にかつ効率よく、また必要に応じて高圧で得
られ、触媒の活性も長期にわたつて持続される。
There is no particular restriction on the reaction pressure, and the reaction can be carried out at normal pressure to 350 kg/IG. In the present invention, high purity carbon monoxide can be easily and efficiently obtained, and if necessary, at high pressure, the activity of the catalyst can be increased. is also sustained over a long period of time.

以下実施例および比較例によつてさらに具体的に説明す
る。
This will be explained in more detail below using Examples and Comparative Examples.

実施例1 ぎ酸メチル濃度を85wt%としたぎ酸メチル−メタノ
ール含有ぎ酸メチル生成反応液を原料として反応圧力9
.0kg/〜G、ぎ酸メチル基準のGSVH2OOOh
rl、および反応温度2900Cで100日間の連続実
験を行なつた。
Example 1 Using a methyl formate-methanol-containing methyl formate production reaction solution with a methyl formate concentration of 85 wt% as a raw material, the reaction pressure was 9.
.. 0kg/~G, GSVH2OOOh based on methyl formate
A continuous experiment was conducted for 100 days at a temperature of 2900C and a reaction temperature of 2900C.

触媒として水酸化カリウムを10wt%担持した活性炭
を用いた。反応開始直後、および反応開始100日目に
おけるぎ酸メチル分解率は98〜99%であり経時的変
化は認められなかつた。なお、発生した一酸化炭素の純
度は97〜98%であつた。比較例1 ぎ酸メチル濃度が30wt%のぎ酸メチル−メタノール
含有ぎ酸メチル生成反応液を、ぎ酸メチル基準の、GS
VH2OOOhr−1の速度で供給し実施例1と同様に
熱分解を行なつたところ、反応開始時においては99%
であつたぎ酸メチル分解率が、15日目において90%
に、さらに30日後においては80%に低下し、分解率
を上げるには反応温度をさらに上げることが必要となつ
た。
Activated carbon carrying 10 wt % of potassium hydroxide was used as a catalyst. Immediately after the start of the reaction and 100 days after the start of the reaction, the decomposition rate of methyl formate was 98 to 99%, and no change over time was observed. Note that the purity of the generated carbon monoxide was 97 to 98%. Comparative Example 1 A methyl formate-methanol-containing methyl formate production reaction solution with a methyl formate concentration of 30 wt% was converted to GS based on methyl formate.
When thermal decomposition was carried out in the same manner as in Example 1 by supplying at a rate of VH2OOOOhr-1, the reaction rate was 99% at the start of the reaction.
The decomposition rate of methyl formate was 90% on the 15th day.
Furthermore, after 30 days, the reaction temperature decreased to 80%, and it became necessary to further raise the reaction temperature to increase the decomposition rate.

なお、発生した一酸化炭素の純度は約99%であつた。Note that the purity of the generated carbon monoxide was about 99%.

実施例2 ぎ酸メチル濃度を90wt%としたぎ酸メチル−メタノ
ール含有ぎ酸メチル生成反応液を、反応圧力100kg
/CdG、ぎ酸メチル基準のGSVHl8OOhr−1
および反応温度295℃の条件で処理してぎ酸メチルを
熱分解した。
Example 2 A methyl formate-methanol-containing methyl formate production reaction solution with a methyl formate concentration of 90 wt% was heated at a reaction pressure of 100 kg.
/CdG, GSVHl8OOhr-1 based on methyl formate
The mixture was treated at a reaction temperature of 295° C. to thermally decompose methyl formate.

なお、触媒には炭酸カリウムを10wt%担持した練瓦
を用いた。反応後、気液分離して1時間あたり171(
標準状態)の一酸化炭素(純度98%)が1001<9
/cmRilGで得られた。これは全一酸化炭素生成量
の96%に相当する。比較例2 ぎ酸メチル濃度が30wt%のぎ酸メチル−メタノール
含有ぎ酸メチル生成反応液を原料としたほかは、実施例
2と同様にして熱分解を行なつた。
Note that, as a catalyst, a kneaded brick carrying 10 wt% of potassium carbonate was used. After the reaction, gas and liquid are separated to produce 171 (
Standard state) carbon monoxide (purity 98%) is 1001<9
/cmRilG. This corresponds to 96% of the total carbon monoxide production. Comparative Example 2 Thermal decomposition was carried out in the same manner as in Example 2, except that a methyl formate-methanol-containing methyl formate production reaction solution having a methyl formate concentration of 30 wt % was used as the raw material.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともぎ酸メチルとメタノールとを含有するぎ
酸メチル生成反応液をアルカリ金属アルコラード以外の
アルカリ金属触媒の存在下で加熱して該ぎ酸メチル生成
反応液中のぎ酸メチルを熱分解して一酸化炭素を製造す
るに際し、ぎ酸メチルの濃度が70wt%よりも高いぎ
酸メチル生成反応液を使用することを特徴とする一酸化
炭素の製造方法。
1. Heating a methyl formate production reaction solution containing at least methyl formate and methanol in the presence of an alkali metal catalyst other than an alkali metal alcoholade to thermally decompose the methyl formate in the methyl formate production reaction solution. A method for producing carbon monoxide, which comprises using a methyl formate production reaction solution in which the concentration of methyl formate is higher than 70 wt%.
JP56008347A 1981-01-22 1981-01-22 Carbon monoxide manufacturing method Expired JPS5911525B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56008347A JPS5911525B2 (en) 1981-01-22 1981-01-22 Carbon monoxide manufacturing method
CA000394181A CA1176821A (en) 1981-01-22 1982-01-14 Process for the production of carbon monoxide
EP82300314A EP0057090B1 (en) 1981-01-22 1982-01-21 Process for the production of carbon monoxide
DE8282300314T DE3260473D1 (en) 1981-01-22 1982-01-21 Process for the production of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008347A JPS5911525B2 (en) 1981-01-22 1981-01-22 Carbon monoxide manufacturing method

Publications (2)

Publication Number Publication Date
JPS57123811A JPS57123811A (en) 1982-08-02
JPS5911525B2 true JPS5911525B2 (en) 1984-03-16

Family

ID=11690680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008347A Expired JPS5911525B2 (en) 1981-01-22 1981-01-22 Carbon monoxide manufacturing method

Country Status (4)

Country Link
EP (1) EP0057090B1 (en)
JP (1) JPS5911525B2 (en)
CA (1) CA1176821A (en)
DE (1) DE3260473D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69706514T2 (en) * 1997-01-08 2002-04-18 Mitsubishi Gas Chemical Co Method for the recovery and use of heat by using chemical energy in the synthesis and cleavage of methyl formate
JP2009079051A (en) * 2008-10-02 2009-04-16 Mitsubishi Gas Chem Co Inc Production method of alkyl phenol
CN114315511A (en) * 2020-09-27 2022-04-12 上海浦景化工技术股份有限公司 Method for preparing high-purity methanol and CO by decarbonylation of methyl formate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716619A (en) * 1971-03-19 1973-02-13 Bethlehem Steel Corp Process for recovering carbon monoxide from fuel gas
US3812210A (en) * 1971-08-13 1974-05-21 Celanese Corp Vapor phase decomposition of methyl formate to yield methanol
JPS5632315A (en) * 1979-08-17 1981-04-01 Mitsubishi Gas Chem Co Inc Manufacture of carbon monoxide
US4303630A (en) * 1979-08-17 1981-12-01 Mitsubishi Gas Chemical Company, Inc. Process for the production of carbon monoxide

Also Published As

Publication number Publication date
CA1176821A (en) 1984-10-30
JPS57123811A (en) 1982-08-02
EP0057090A1 (en) 1982-08-04
EP0057090B1 (en) 1984-08-01
DE3260473D1 (en) 1984-09-06

Similar Documents

Publication Publication Date Title
KR960006550B1 (en) Procedure for the production of alkyl carbonates
EP0018681A2 (en) Process for the preparation of alkoxyalkanoic acids, and alkoxyalkanoic acids so prepared
JPS5911525B2 (en) Carbon monoxide manufacturing method
JPS6228081B2 (en)
EP0069339A2 (en) Process for producing 7-octen-1-al and derivatives thereof
US20120259145A1 (en) Manufacture of methanol
US4303630A (en) Process for the production of carbon monoxide
US4035428A (en) Process for production of orthophenylphenol
JPH0250088B2 (en)
JPS59118745A (en) Manufacture of amine
JPH0125729B2 (en)
NZ226986A (en) Production of methanol from carbon monoxide and hydrogen: catalyst comprising nickel formate, water and an alcoholate
EP0309047A1 (en) Process for the production of methanol and catalyst composition for said process
KR960003797B1 (en) Process for preparing aceticacid by methanol carbonylation
JP4641640B2 (en) Method for producing carbodihydrazide
JPS6326094B2 (en)
JP2001288137A (en) Method for producing formic acid
JP3372196B2 (en) Method for producing dimethyl carbonate
JPS6045628B2 (en) Production method of malonic acid dialkyl ester
KR100336976B1 (en) Improved process for preparing 2,7-octadien-1-ol
JPH0219347A (en) Production of dimethyl carbonate
JP3058512B2 (en) Acetic acid production method
JPH02121946A (en) Continuous production of succinic acid
JPS6139294B2 (en)
EP0317669A1 (en) Process for the production of methanol and catalyst composition for said process