JPS59114446A - Apparatus for measuring moisture content of particulate material - Google Patents

Apparatus for measuring moisture content of particulate material

Info

Publication number
JPS59114446A
JPS59114446A JP57223936A JP22393682A JPS59114446A JP S59114446 A JPS59114446 A JP S59114446A JP 57223936 A JP57223936 A JP 57223936A JP 22393682 A JP22393682 A JP 22393682A JP S59114446 A JPS59114446 A JP S59114446A
Authority
JP
Japan
Prior art keywords
gamma
ray
conveyor
neutron
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57223936A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishikawa
広 西川
Shoichi Horiuchi
堀内 昭一
Yoshihiro Sase
佐瀬 義広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Steel Corp filed Critical Hitachi Ltd
Priority to JP57223936A priority Critical patent/JPS59114446A/en
Publication of JPS59114446A publication Critical patent/JPS59114446A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To prevent the influence due to the change in the thickness of a conveyor by making the pervious places of neutron and gamma-ray same, by using a radiation source for emitting two kinds of radioactive rays, that is, neutron and gamma-ray to permit both of them to permeate only the conveyor or both of the conveyor and a particulate material. CONSTITUTION:High speed neutron and gamma-ray which are upwardly emitted from a radiation source 10 permeate a belt conveyor 14 and a particulate stock material 16 and counted by a neutron counter 24 and a gamma-ray counter 26 through a detector 18 and a pulse wave form discrimination circuit 22 while the counted values are inputted to an operation apparatus 28. On the other hand, high speed neutron and gamma-ray which are downwardly outputted from the radiation source 10 similarily permeate the conveyor 14 and, thereafter, similarily counted by a neutron counter 36 and a gamma-ray counter 38 while the counted values are inputted to the apparatus 28. In this apparatus, when the conversion mass thicknesses of moisture amounts contained in the stock material 16 and the conveyor 14 and the mass thickness of a solid component are respectively set to Maw, Ma and these values are calculated, the wt% of moisture M contained in the stock material 16 is calculated by a formula M=MawX100/(Maw+Ma).

Description

【発明の詳細な説明】 本発明は、中性子とr線の2つの放射線を用いた粉粒体
の水分測定装置に係シ、特にベルトコンベア等の搬送体
上の粉粒体の水分測定に好適な水分測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the moisture content of powder or granular material using two radiations, neutrons and r-rays, and is particularly suitable for measuring the moisture content of powder or granular material on a conveyor such as a belt conveyor. This invention relates to a moisture measuring device.

石炭あるいけ鉱石等の各種の粉粒体を処理する工程にお
いて、その水分制御は製品の品質を左右する重要な要素
であシ、より正確な水分測定が要求されている。
In the process of processing various powders and granules such as coal and ore, moisture control is an important factor that affects product quality, and more accurate moisture measurement is required.

水分の測定は、水分の量と中性子の検出値が粉粒体のか
さ密度一定の条件下で比例関係にあることを利用したも
のである。したがって、粉粒体のかさ密度が常に一定で
あれば、線源としては中性子を発するもので、検出器と
しても中性子のみを検出するもので十分である。しかし
、実際問題として、粉粒体のかさ密度が常にほぼ一定と
いうのは稀であシ、かさ密度には影響全受けないγ線を
用いて中性子の検出値を補正している。
Moisture measurement utilizes the fact that the amount of moisture and the detected value of neutrons are in a proportional relationship under the condition that the bulk density of the powder is constant. Therefore, if the bulk density of the granular material is always constant, a radiation source that emits neutrons and a detector that detects only neutrons is sufficient. However, as a practical matter, it is rare that the bulk density of powder or granules is always approximately constant, and the detected value of neutrons is corrected using gamma rays, which are not affected by the bulk density.

通常、粉粒体はベルトコンベアで搬送されるため、ベル
トコンベアを挾み込むように線源と検出器を配置し、粉
粒体がベルトコンベア上にある状態で水分測定が行われ
ている。この場合、線源としては中性子全発する線源と
r線を発する線源、検出器も中性子とr線それぞれの検
出器が用いられ、ベルトコンベアを含めた検出を行って
いる。
Usually, powder and granules are transported on a belt conveyor, so a radiation source and a detector are arranged to sandwich the belt conveyor, and the moisture content is measured while the powder and granules are on the belt conveyor. In this case, a source that emits all neutrons and a source that emits r-rays are used as radiation sources, and detectors for neutrons and r-rays are used as the detectors, and the belt conveyor is also detected.

しかしながら、かかる構成では、中性子とr線による測
定位置が異なるとともに、ベルトコンベアの厚さが変化
した場合そのまま検出値に影響を及ぼすため、正確な水
分測定を行うことはできなかった。
However, with this configuration, the measurement positions for neutrons and r-rays are different, and if the thickness of the belt conveyor changes, it directly affects the detected value, so it is not possible to perform accurate moisture measurement.

本発明の目的は、上記した従来技術の欠点紫なくし、よ
シ正確な水分測定が行える粉粒体の水分測定装置?提供
するにある。
The purpose of the present invention is to provide a moisture measuring device for powder and granular materials that can eliminate the drawbacks of the prior art described above and can more accurately measure moisture. It is on offer.

このため本発明は、搬送体によシ搬送さルる粉粒体、中
性子とγ線の2種類の放射線を2方向に放射する線源、
前記搬送体および粉粒体を透過した中性子とγ線を検出
する第1の検出器、前記搬送体のみを透過した中性子と
γ線を検出する第2の検出器、前記第1、第2の検出器
からの出力によって前記粉粒体の水分を求める演算装置
とよ多水分測定装置を構成したものである。
For this reason, the present invention provides a powder or granular material conveyed by a carrier, a radiation source that emits two types of radiation, neutrons and gamma rays, in two directions,
a first detector that detects neutrons and gamma rays that have passed through the carrier and the powder; a second detector that detects neutrons and gamma rays that have passed only through the carrier; The apparatus includes a calculation device that determines the moisture content of the granular material based on the output from the detector, and a moisture content measuring device.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、高速中性子とγ線を同時に放射する線
源(例えばCt−25・2)10全、線源容器12に装
填し、上下方向に放射線を発する様に設定される。線源
10から上方に発した高速中性子とγ線は、ベルトコン
ベア14と粉粒体原料16を透過し、検出器18に入射
する。この検出器18は、1個の有機シンチレータから
なるシンチレーション検出器で、高速中性子とγ線を同
時に検出する。この検出信号全前置増巾器20で増巾し
、パルス波形弁別回路22で高速中性子とγ線のシンチ
レーションデケイタイムの時間差を利用して波形弁別を
行い、高速中性子成分とγ線成分に分離する。この結果
全中性子カウンター24とγ線カウンター26で計数し
、計数値を演算装置28に入れる。
In FIG. 1, all 10 radiation sources (for example, Ct-25.2) that simultaneously emit fast neutrons and gamma rays are loaded into a radiation source container 12 and set to emit radiation in the vertical direction. High-speed neutrons and gamma rays emitted upward from the radiation source 10 pass through the belt conveyor 14 and the granular raw material 16 and enter the detector 18 . This detector 18 is a scintillation detector consisting of one organic scintillator, and detects fast neutrons and gamma rays simultaneously. This detection signal is all amplified by the preamplifier 20, and the pulse waveform discrimination circuit 22 performs waveform discrimination using the time difference between the scintillation decay times of fast neutrons and gamma rays, and separates them into fast neutron components and gamma ray components. To separate. The results are counted by the total neutron counter 24 and the γ-ray counter 26, and the counted values are entered into the arithmetic unit 28.

また、線源10から下方向に発した高速中性子とγ線は
、ベルトコンベア14を透過し、検出器30に入射する
。この検出器30およびこれ以降に接続される前置増巾
器32、パルス波形弁別回路34、中性子カウンター3
6、γ線カウンター38は、上方向に透過した高速中性
子とγ線を測定する様器と同じ機能をもったもので構成
されている。この計数値も演算装置28に入れる。
Furthermore, high-speed neutrons and gamma rays emitted downward from the radiation source 10 pass through the belt conveyor 14 and enter the detector 30 . This detector 30 and the preamplifier 32, pulse waveform discrimination circuit 34, and neutron counter 3 connected after this detector 30
6. The gamma ray counter 38 is configured with the same function as a measuring device that measures fast neutrons and gamma rays transmitted upward. This count value is also input to the arithmetic unit 28.

このような透過方式の場合、透過放射線強度と被測定量
との関係は、一般に次式で表わされる。
In the case of such a transmission method, the relationship between the transmitted radiation intensity and the measured quantity is generally expressed by the following equation.

■=工。e−pm−Pot こ゛こに、■ =透過放射線強度 工。二被測定物がないときの放射線強 度 μm=質量吸収係数(C4/g) ρ 二被測定物の密度(g/l、v”)t :被測定物
の厚さく cm ) 今、粉粒体原料16に含まれる水素量の水換算質量厚さ
’t−M、、、固体成分の質量厚さtM、とじ、ベルト
コンベア14に含まれる水素量の水換算質量厚さQMb
v、固体成分の質量厚さkMbとすると、粉粒体原料1
6とベルトコンベア14のトータル質量厚さは、それぞ
れ水換算質量厚さがMy ” Mar + Mb−3固
体成分の質量厚さがi、y、=M−+Mbとなる。この
2つの被測定量を変化させ、中性子とγ線の透過率を実
験で求めると、第2図および第3図に示す結果が得られ
る。図から明らかなように、中性子とrfHは、水質量
厚さの変化と、固体成分の質量厚さの両方でその透過率
は変化するが、水に対する中性子の透過率変化がγ線よ
りも大きく、固体成分については、はぼ同等の透過率変
化を示す。
■ = Engineering. e-pm-Pot Here, ■ = transmitted radiation intensity work. 2. Radiation intensity when there is no object to be measured μm = mass absorption coefficient (C4/g) ρ 2. Density of the object to be measured (g/l, v") t: Thickness of the object to be measured (cm) Now, granular material Water equivalent mass thickness 't-M of the amount of hydrogen contained in the raw material 16, mass thickness tM of the solid component, binding, water equivalent mass thickness QMb of the amount of hydrogen contained in the belt conveyor 14
v, mass thickness of solid component kMb, powder raw material 1
6 and the belt conveyor 14, the water equivalent mass thickness is My" Mar + Mb-3, and the mass thickness of the solid component is i, y, = M-+Mb. These two measured quantities When the transmittance of neutrons and gamma rays is determined experimentally by changing the Although the transmittance changes with both the mass and thickness of the solid component, the change in the transmittance of neutrons to water is larger than that of gamma rays, and the change in transmittance of solid components is almost the same as that of gamma rays.

したがって、粉粒体原料16とベルトコンベア14の両
方を透過する中性子とγ線の透過式は、次のように表わ
すことが出来る。
Therefore, the transmission formula for neutrons and gamma rays that pass through both the powder raw material 16 and the belt conveyor 14 can be expressed as follows.

■、:I、。e +(/’ me Mw十μIIa M
@)、90.、、、(2)I  =I  e−(μγW
MW+μγcMC)、11.9106.(3)r   
 γ0 ここに、lm5Ir:中性子、γ線の透過強度I、。、
1.:被測定物がない時の中性子、γ線の強度 μm1.1 μゎ、:中性子の水と固体成分に対す質量
吸収係数(CJ/ g ) μ、−9μ7.:γ線の水と固体成分7C対する質量吸
収係数(cnl/g ) (2)、(3)式からM、、M、は次のように求まる。
■, :I,. e +(/' me Mw 10μIIa M
@), 90. , , (2) I = I e-(μγW
MW+μγcMC), 11.9106. (3) r
γ0 Here, lm5Ir: Transmission intensity I of neutrons and γ rays. ,
1. : Intensity of neutrons and gamma rays when there is no object to be measured μm 1.1 μゎ, : Mass absorption coefficient of neutrons for water and solid components (CJ/g) μ, −9 μ7. : Mass absorption coefficient of γ-rays for water and solid component 7C (cnl/g) From equations (2) and (3), M, , M are determined as follows.

・・・・・・・・・(4) ・・・・・・・・・(5) 一方、線源10から下方向に発し、ベルトコンベア14
のみ?透過する中性子とγ線の透過式は、次のように表
わすことができる。
・・・・・・・・・(4) ・・・・・・・・・(5) On the other hand, radiation is emitted downward from the radiation source 10, and the radiation is transmitted to the belt conveyor 14.
only? The transmission formula for transmitted neutrons and γ-rays can be expressed as follows.

エ i :I/、 、、 (1”mv Mbv十μmb
 Mb )   、000.、、、、(e)エ t =
= i r  e−(μmwMbv+μIb Mb )
  、、、 、、161.(カr      rに こに、I!、I:  :中性子、r線の透過強度■。−
II;@:被測定物がないときの中性子、γ線の強度 μ、b、μ、b:中性子とγ線の固体成分に対する質量
吸収係数(oJ/g) (6)、(7)式からMbw HM bは次のように求
まる。
D i :I/, ,, (1”mv Mbv 10μmb
Mb), 000. ,,,,(e) t=
= ire−(μmwMbv+μIbMb)
, , , , 161. (Karr r smile, I!, I: :Transmission intensity of neutrons and r-rays■.-
II; @: Intensity of neutrons and γ-rays when there is no object to be measured μ, b, μ, b: Mass absorption coefficient for solid components of neutrons and γ-rays (oJ/g) From formulas (6) and (7) Mbw HM b is determined as follows.

・・・・・・・・・(8) ・・・・・・・・・(9) 以上の結果から、粉粒体原料16のみの水換算質量さと
固体成分の質量厚さは、 M、v=MWMbW+++、+、41)M−=M、  
Mb            ・・・・・・・・・(l
υとなるから、粉粒体原料16に含まれる水分曽の重量
%は、次式で求められる。
・・・・・・・・・(8) ・・・・・・・・・(9) From the above results, the water equivalent mass of only the powder raw material 16 and the mass thickness of the solid component are M, v=MWMbW+++, +, 41) M-=M,
Mb ・・・・・・・・・(l
Since υ, the weight percent of water contained in the powder raw material 16 can be determined by the following formula.

またベルトコンベア14の測定位置の同期をとるため、
ベルトコンベアの駆動ローラー40から回転数全検出し
、変換器42で電気信号に変換し、演算装置28に入力
する。演算装置28で、ベルト位置の同期をとりα〔、
α9式の演算?行う。
In addition, in order to synchronize the measurement position of the belt conveyor 14,
The total number of revolutions from the drive roller 40 of the belt conveyor is detected, converted into an electrical signal by a converter 42, and inputted to the arithmetic unit 28. The arithmetic unit 28 synchronizes the belt position α[,
Calculation of α9 formula? conduct.

第4図は第1図に示す構成を単純化したものである。す
なわち、それぞれの検出器20.32の信号を信号切換
回路44に入r1.、演算装置28の一定時間ごとの切
換指令によシ、検出信号を切換えてパルス波形弁別回路
22に入れる様圧するとパルス波形弁別回路22、カウ
ンター24.26は1組で構成できる。
FIG. 4 is a simplified version of the configuration shown in FIG. That is, the signals of the respective detectors 20.32 are input to the signal switching circuit 44 r1. If the detection signal is switched and input to the pulse waveform discrimination circuit 22 according to a switching command from the arithmetic unit 28 at regular intervals, the pulse waveform discrimination circuit 22 and the counters 24 and 26 can be configured as one set.

この構成は、ベルトコンベア14の質量変化全常時補正
する必要のないときに有効である。
This configuration is effective when there is no need to constantly correct mass changes in the belt conveyor 14.

以上本発明は、中性子とr線の2種類の放射線を発する
線源上用い、搬送体のみおよび搬送体全粉粒体の両者を
透過させるように構成したため、中性子とγ線の透過場
所が同一となシ、シかも搬送体の厚さの変化の影響?受
けることがなく、よシ正確な水分測定ケ行うことができ
る。
As described above, the present invention is used on a radiation source that emits two types of radiation, neutrons and r-rays, and is configured to transmit both only the carrier and the entire carrier powder, so that the neutrons and gamma rays pass through the same place. Is it affected by changes in the thickness of the carrier? It is possible to perform very accurate moisture measurements without having to be exposed to water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる水分測定装置を示す概略図、第2
図は水質量厚さと中性子、r線の透過率との関係?示す
図、第3図は固体分の質量厚さと中性子、γ線の透過率
との関係を示す図、第4図は信号処理部の他の実施例?
示す図である。 10・・・線源、12・・・線源容器、14・・・ベル
トコンベア、16・・・粉粒体、18.30・・・検出
器、20゜32・・・前置増巾器、22.34・・・)
(ルス波形弁別回路、24.36・・・中性子カウンタ
ー、26゜38・・・r線カウンター、28・・・演算
装置、40・・・30 I
Fig. 1 is a schematic diagram showing a moisture measuring device according to the present invention;
Is the diagram the relationship between water mass thickness and neutron and r-ray transmittance? Figure 3 is a diagram showing the relationship between the mass thickness of the solid component and the transmittance of neutrons and γ-rays, and Figure 4 is another example of the signal processing section.
FIG. 10... Radiation source, 12... Radiation source container, 14... Belt conveyor, 16... Powder, 18.30... Detector, 20° 32... Preamplifier , 22.34...)
(Russ waveform discrimination circuit, 24.36...neutron counter, 26°38...r-ray counter, 28...arithmetic unit, 40...30 I

Claims (1)

【特許請求の範囲】[Claims] 1、搬送体によシ搬送される粉粒体、中性子とr線の2
種類の放射線t−2方向に放射する線源、前記搬送体お
よび粉粒体を透過した中性子とr線會或出する第1の検
出器、前記搬送体のみを透過した中性子とγ線を検出す
る第2の検出器、前記第1、第2の検出器からの出力に
よって前記粉粒体の水分を求める演算装置とよシ構成し
たことを特徴とする粉粒体の水分測定装置。
1. Powder and granular material transported by a transporter, 2 of neutrons and r-rays
A radiation source that emits the type of radiation in the t-2 direction, a first detector that emits neutrons and r-rays that have passed through the carrier and the powder, and detects the neutrons and gamma rays that have passed only through the carrier. A moisture measuring device for a powder or granular material, characterized in that the device comprises a second detector for detecting the moisture content of the powder or granular material, and an arithmetic device for determining the moisture content of the powder or granular material based on the outputs from the first and second detectors.
JP57223936A 1982-12-22 1982-12-22 Apparatus for measuring moisture content of particulate material Pending JPS59114446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57223936A JPS59114446A (en) 1982-12-22 1982-12-22 Apparatus for measuring moisture content of particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57223936A JPS59114446A (en) 1982-12-22 1982-12-22 Apparatus for measuring moisture content of particulate material

Publications (1)

Publication Number Publication Date
JPS59114446A true JPS59114446A (en) 1984-07-02

Family

ID=16806022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57223936A Pending JPS59114446A (en) 1982-12-22 1982-12-22 Apparatus for measuring moisture content of particulate material

Country Status (1)

Country Link
JP (1) JPS59114446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446288A (en) * 1993-10-25 1995-08-29 Tumer; Tumay O. Integrated substance detection instrument
US5557108A (en) * 1993-10-25 1996-09-17 T+E,Uml U+Ee Mer; T+E,Uml U+Ee May O. Integrated substance detection and identification system
US11280748B2 (en) * 2012-10-22 2022-03-22 Troxler Electronic Laboratories, Inc Conveyor system and measuring device for determining water content of a construction material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317784A (en) * 1976-07-31 1978-02-18 Aloka Co Ltd Continuous measuring apparatus for suspended dusts
JPS5522700B2 (en) * 1974-07-10 1980-06-18
JPS5763439A (en) * 1980-10-03 1982-04-16 Nippon Steel Corp Moisture measuring device of charged material for iron manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522700B2 (en) * 1974-07-10 1980-06-18
JPS5317784A (en) * 1976-07-31 1978-02-18 Aloka Co Ltd Continuous measuring apparatus for suspended dusts
JPS5763439A (en) * 1980-10-03 1982-04-16 Nippon Steel Corp Moisture measuring device of charged material for iron manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446288A (en) * 1993-10-25 1995-08-29 Tumer; Tumay O. Integrated substance detection instrument
US5557108A (en) * 1993-10-25 1996-09-17 T+E,Uml U+Ee Mer; T+E,Uml U+Ee May O. Integrated substance detection and identification system
US11280748B2 (en) * 2012-10-22 2022-03-22 Troxler Electronic Laboratories, Inc Conveyor system and measuring device for determining water content of a construction material

Similar Documents

Publication Publication Date Title
CN104198503B (en) Online coal ash content measurement system and method based on natural gamma rays
CN101349661B (en) Method for on-line detecting coal ashes on belt
EP1994430B1 (en) Correction of a radioactivity measurement using particles from atmospheric source
US20050241862A1 (en) Equipment for on-line measuring the weight of material
US4362939A (en) Method and apparatus for measurement of moisture
JP2017508994A (en) Method for measuring the safety level of bulk materials
CA1160364A (en) Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines
JPS59114446A (en) Apparatus for measuring moisture content of particulate material
EP0486709B1 (en) Density-moisture measuring system
US8249214B2 (en) Device for the online determination of the contents of a substance, and method for using such a device
US3008045A (en) Neutron detection
JPH068859B2 (en) Device for measuring β-radionuclide content in food
JPS59114447A (en) Apparatus for measuring moisture content of particulate material
CN101004392A (en) Dynamic online device for measuring moisture of materiel, and measuring method
JPS6171341A (en) Component analyzing method
JPS5977346A (en) Analyzing apparatus for element composition of substance
SU1041447A1 (en) Device for analyzing quality of bulk material on conveyor belt
SU542406A1 (en) Radioactive isotope device for checking moisture content
JPS63171395A (en) Nondestructive inspection device for nuclear fuel rod
JPH05223938A (en) Measuring method of filling boundary of radioactive-substance filling container
SU939086A1 (en) Lumpy materials separation method
AU2015293890B2 (en) Device and method for measuring the radioactivity of a material
Lv et al. Mechanism of measuring ash with low-energy gamma rays for equal coal seam thickness
SU1187040A1 (en) Method of x-ray radiometric ore sampling
RU2359256C1 (en) Radioisotropic device for process parametres control