JPS59113250A - Secondary-air controlling apparatus for engine - Google Patents

Secondary-air controlling apparatus for engine

Info

Publication number
JPS59113250A
JPS59113250A JP57222916A JP22291682A JPS59113250A JP S59113250 A JPS59113250 A JP S59113250A JP 57222916 A JP57222916 A JP 57222916A JP 22291682 A JP22291682 A JP 22291682A JP S59113250 A JPS59113250 A JP S59113250A
Authority
JP
Japan
Prior art keywords
negative pressure
air
intake pipe
control device
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57222916A
Other languages
Japanese (ja)
Other versions
JPS6327543B2 (en
Inventor
Akira Fujimura
章 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP57222916A priority Critical patent/JPS59113250A/en
Publication of JPS59113250A publication Critical patent/JPS59113250A/en
Publication of JPS6327543B2 publication Critical patent/JPS6327543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/04Apparatus for adding secondary air to fuel-air mixture with automatic control
    • F02M23/08Apparatus for adding secondary air to fuel-air mixture with automatic control dependent on pressure in main combustion-air induction system, e.g. pneumatic-type apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To feed intake air to an intake pipe at the rate most suited for the operational conditions of an engine, by providing two secondary-air control means and operating one of the two control means operated in response to one operational conditions of the engine independently of the other control means which is operated in response to other operational conditions of the engine. CONSTITUTION:An air supply passage 1 has an air control valve 5 for opening and closing the passage 1, and a vacuum chamber 6 is communicated with an intake pipe 3 via a first vacuum passage 8 and a secondary vacuum passage 9. The first vacuum passage 8 has a valve 11 which is operated in response to the temperature of engine cooling water while the second vacuum passage 9 has a vacuum control valve means 12. Further, a shot-air valve means 10 is provided at the connecting section of the first and the second vacuum passages 8, 9. Here, arrangement is such that the air control valve 5 is operated at the time of deceleration, gear change or slight deceleration of the engine for opening the passage 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、種々の運転状態に応じて絞り弁下流の吸気管
に空気供給通路を介して2次空気を供給するエンジンの
2次空気制御装置に関する。 従来、ギヤチェンジ時、減速時あるいは小減速時(例え
ば絞り弁全開状態から早開状態までしか戻さない様な減
速)に吸気管負圧が非常に高くなり、空燃比が過濃とな
る結果排気ガス中の有害成分(He、 00 )の排出
を低減すると共に77タパーンを防止するため5、また
1減速時に排気ガス中の有害成分が多量に排出されるこ
とによる触媒の過熱を防止するために、また、エンジン
の高温再始動時、すなわち、例えば連続運転後エンジン
を一旦運転停止し走行風あるいはラジェータファン等に
よる冷却作用がなく機関及びエンジンルーム内がまだ高
温状態にある時に再始動する場合に始動性を向上するた
めに、それぞれ吸気管に2次空気を供給して過濃混合気
を希釈しているが1そのために1それぞれについて吸気
管と大気を連通ずる専用の空気供給通路を設け、各空気
供給通路に空気制御弁を介入し1該空気制御弁を前記運
転時に開放していた。かくして空気制御弁及び配管が多
くなりそのため重くなると共にコスト高になシまた保守
も容易でない等の不都合を4!一つ。 本発明はかかる不都合がないと共に各運転時に確実に作
動するエンジンの2次空気制御装置を提供することをそ
の目的としたもので、絞シ弁下流の吸気管と大気を連通
ずる空気供給通路に吸気管負圧で開弁する空気制御弁を
介入し、該空気制御弁を介入し、該空気制御弁の負圧室
に、前記吸気管内に開口する少なくとも2つの負圧通路
を連結し1該負圧通路のそれぞれに運転状態に応じて該
負圧通路を開閉する制御装置を介入し、その一方の制御
装ffJl;t1該制御装置が作動している時他方の制
御装置の作動を無効にするようにしたことを特徴とする
〇 以下、本発明の実施例を図面につき説明する◎第1図は
、減速時あるいはギヤチェンジ時、あるいは小減速時に
2次空気を吸気管に供給する本発明の実施の1例の線図
を示す。 (])は、1端が絞シ弁(2)の下流の吸気管(3)内
に開口し、他端が大気に連なるエアクリーナ(4)内に
開口する空気供給通路で、該空気供給通路(1)には、
該通路(1)を閉鎖又は開通する空気制御弁(5)が介
装されている。該空気制御弁(5)は減速時又はギヤチ
ェンジ、あるいは小減速時に作動して前記通路(1)を
開放するものでおる。この作動機構を説明すると、その
負王室(6)は合流負圧通路(7)と該通路(7)から
分岐した第1の負圧通路(8)と第2負圧通路(9)を
介して吸気管(3)に連なり、合流負圧通路(7)、該
第1の負圧通路(8)及び第2負圧通路(9)の連結部
にはショットエア弁装置α9が介入され、第1負圧通路
(8)にはエンジン冷却水温度弁(11が介入され、第
2の負圧通路(9)には負圧制御弁装置a2が介入され
ている。 該ショットエア弁装置00)は減速時若くはギヤチェン
ジ、あるいは小減速時に作動して前記通路(8)を開通
する制御装置で、その負圧室吋は制御用負圧通路(2つ
を介して吸気管(3)に連なシ、該負王室(131内に
吸気管負圧が導入されるとダイヤフラムα最に設けられ
たオリフィス01によって前記負圧室旧と連通される負
圧室(15a)の容積で決定される所定時間のみダイヤ
フラム01に連結された第1の負圧通路(8)の開閉用
弁体Q119を開弁する。αDは該弁体Q6)と連動し
、該弁体QE9が開弁した時閉弁する第2の負圧通路(
9)の開閉用弁体である。 エンジン冷却水温度弁Ql)は、エンジン冷却水の温度
が例えば40℃以下の時バイメタル(11m)の反転(
破IIiりによシショットエア弁装置aα側の第1負圧
通路(8)を大気に開放するものである。 この温度弁aυは制御用負圧通路(社)に介入してもよ
い。前記負圧制御弁装置α2は、減速時に作動して前記
通路(9)を開通する制御装置で九その負圧室側は第2
の負圧通路(9)を介して吸気管(3)K連なシ、該負
圧室α段に導入された吸気管負圧によシ移動するダイヤ
フラム翰に連結された第2の負圧通路(9)の開閉用弁
体(イ)を有し、該負王室Qaに隣接する室ellはジ
ェットを介して大気に連通されているものである。 次にこの実施例の作用について説明する。゛減速時、ギ
ヤチェンジ時、クランキング時、あるいは加速からクル
ーズに移行する時のように絞シ弁(2)を若干戻すよう
な小減速状態の時、ショットエア弁装置GO+はその負
王室(131に導入される吸気管負圧の増加負圧に応動
して弁体αQが開弁され、第1の負圧通路(8)を介し
て空気制御弁(5)の負圧室(6)に吸気管負圧が導入
され、その結果1空気供給通路(1)が開通し吸気管(
3)内に2次空気が所定時間導入されるから過濃混合気
が希釈化され、かくしてアフターバーンが防止されると
共に排気ガス中の有害成分が少なくなる。 エンジンが40℃以下の低温時に、り2ンキング等によ
シ前記ショットエア弁装置00)が作動した場合には、
エンジン冷却水温度弁Qυが空気制御弁(5)の負圧室
(6)に連なる第1の負圧通路(8)を大気に開放する
ので、空気制御弁(5)は閉弁のま−で2次空気が吸気
管(3)に供給されず、かくしてエンジンの混合気の希
釈しすぎによる低温始動性の悪化を防止できる。減速時
には、前記負圧制御弁装置02は高い吸気管負圧(例え
ば−600mHg)を検出して作動し、第2の負圧通路
(9)を開通する。かくしてショットエア弁装置叫の開
弁された第2の負圧通路(9)開閉用弁体αDを介して
吸気管負圧は空気制御弁(5)の負圧室(6)に導かれ
、この結果、空気制御弁(5)は開き吸気管(3)に2
次空気が導入され、混合気の空燃比が薄くなると共に吸
気管負圧が下がる。次いで吸気管負圧が例えば−600
mHgよシ低下した場合はそれによシ前記負圧制御弁装
置α2は閉じ空気制御弁(6)も閉じ2次空気の吸気管
(3)への供給を停止する。この状態が続くと再び吸気
管負圧が上昇して来るため前記作動が繰返され、吸気管
用の負圧が略一定(−600raHg)に保持される。 かくして減速時の排気系に設けられた触媒の過熱を防止
でき1また、高い吸気管負圧の状態によって起るオイル
の上昇によるオイル消輩を低減できる。 前記ショットエア弁装置α0)において、第1負圧通路
(8)の開閉用弁体αeが開かれた時閉鎖される第2負
圧通路(9)の開閉用弁体(I7)が無い場合、前記弁
体(I6)の開弁罠よって導かれる負圧が負圧制御弁装
置(121の室Cυのジェットを介して大気にリークす
るため該負圧によって空気制御弁(5)を罹災に開弁で
きず、アフタバーンを防止することができないか、ある
いは、開弁圧の設定が困難又は不安定になる
The present invention relates to a secondary air control device for an engine that supplies secondary air to an intake pipe downstream of a throttle valve via an air supply passage in accordance with various operating conditions. Conventionally, during gear changes, decelerations, or small decelerations (for example, deceleration that only returns the throttle valve from fully open to early open), the negative pressure in the intake pipe becomes extremely high, resulting in an overrich air-fuel ratio, which causes the exhaust gas to In order to reduce the emission of harmful components (He, 00) in the gas and to prevent 77 taper5, and to prevent overheating of the catalyst due to the large amount of harmful components in the exhaust gas being discharged during one deceleration. Also, when restarting the engine at a high temperature, for example, when the engine is temporarily stopped after continuous operation and is restarted when there is no cooling effect from the running wind or radiator fan, etc., and the engine and engine room are still in a high temperature state. In order to improve starting performance, secondary air is supplied to each intake pipe to dilute the rich mixture.1 To this end, a dedicated air supply passage is provided for each intake pipe to communicate with the atmosphere. An air control valve was interposed in each air supply passage, and the air control valve was opened during the operation. In this way, the number of air control valves and piping increases, resulting in increased weight, high cost, and difficulty in maintenance. one. It is an object of the present invention to provide a secondary air control device for an engine that is free from such inconveniences and operates reliably during each operation, and is designed to provide an air supply passage that communicates the intake pipe downstream of the throttle valve with the atmosphere. intervening an air control valve that opens with intake pipe negative pressure, intervening the air control valve, and connecting at least two negative pressure passages opening into the intake pipe to the negative pressure chamber of the air control valve; A control device is provided in each of the negative pressure passages to open and close the negative pressure passage depending on the operating state, and when one of the control devices is operating, the operation of the other control device is disabled. 〇Hereinafter, embodiments of the present invention will be explained with reference to the drawings. ◎Figure 1 shows an embodiment of the present invention that supplies secondary air to the intake pipe during deceleration, gear change, or small deceleration. 1 shows a diagram of an example of the implementation of . ( ) is an air supply passage whose one end opens into the intake pipe (3) downstream of the throttle valve (2) and whose other end opens into the air cleaner (4) connected to the atmosphere. In (1),
An air control valve (5) is interposed to close or open the passage (1). The air control valve (5) operates to open the passage (1) during deceleration, gear change, or small deceleration. To explain this operating mechanism, the negative pressure passage (6) is connected to the negative pressure passage (6) through a confluence negative pressure passage (7), a first negative pressure passage (8) branched from the passage (7), and a second negative pressure passage (9). The shot air valve device α9 is connected to the intake pipe (3), and a shot air valve device α9 is interposed at the connecting portion of the confluence negative pressure passage (7), the first negative pressure passage (8), and the second negative pressure passage (9), An engine cooling water temperature valve (11) is interposed in the first negative pressure passage (8), and a negative pressure control valve device a2 is intervened in the second negative pressure passage (9). The shot air valve device 00 ) is a control device that operates during deceleration, gear change, or small deceleration to open the passage (8), and its negative pressure chamber (2) is connected to the intake pipe (3) via the control negative pressure passage (2). When the intake pipe negative pressure is introduced into the negative pressure chamber (131), the volume of the negative pressure chamber (15a) is determined by the volume of the negative pressure chamber (15a), which is communicated with the negative pressure chamber (15a) through the orifice 01 provided at the end of the diaphragm α. The opening/closing valve element Q119 of the first negative pressure passage (8) connected to the diaphragm 01 is opened only for a predetermined period of time.αD is interlocked with the valve element Q6), and the valve element QE9 is opened. The second negative pressure passage that closes when the valve closes (
9) is the opening/closing valve body. The engine coolant temperature valve Ql) is a bimetallic (11m) inverter (
By breaking IIi, the first negative pressure passage (8) on the side of the shot air valve device aα is opened to the atmosphere. This temperature valve aυ may intervene in the control negative pressure passage. The negative pressure control valve device α2 is a control device that operates during deceleration to open the passage (9).
A second negative pressure is connected to the diaphragm holder which is moved by the intake pipe negative pressure introduced into the negative pressure chamber α stage. The chamber ell, which has a valve body (a) for opening and closing the passage (9) and is adjacent to the negative chamber Qa, is communicated with the atmosphere via a jet. Next, the operation of this embodiment will be explained. ``When decelerating, changing gears, cranking, or transitioning from acceleration to cruise, when the throttle valve (2) is slightly returned to a small deceleration state, the shot air valve device GO+ 131, the valve body αQ is opened in response to the increased negative pressure of the intake pipe negative pressure introduced into the negative pressure chamber (6) of the air control valve (5) through the first negative pressure passage (8). Negative pressure is introduced into the intake pipe, and as a result, 1 air supply passage (1) is opened and the intake pipe (
3) Since secondary air is introduced into the exhaust gas for a predetermined period of time, the rich mixture is diluted, thus preventing afterburn and reducing harmful components in the exhaust gas. If the shot air valve device 00) is activated due to engine locking or the like when the engine is at a low temperature of 40°C or lower,
Since the engine coolant temperature valve Qυ opens the first negative pressure passage (8) connected to the negative pressure chamber (6) of the air control valve (5) to the atmosphere, the air control valve (5) remains closed. In this way, secondary air is not supplied to the intake pipe (3), and thus it is possible to prevent deterioration of low-temperature startability due to excessive dilution of the engine air-fuel mixture. During deceleration, the negative pressure control valve device 02 detects a high intake pipe negative pressure (for example, -600 mHg) and operates to open the second negative pressure passage (9). In this way, the intake pipe negative pressure is guided to the negative pressure chamber (6) of the air control valve (5) via the opened and closed second negative pressure passage (9) opening/closing valve body αD of the shot air valve device. As a result, the air control valve (5) opens to the intake pipe (3).
Next air is introduced, the air-fuel ratio of the air-fuel mixture becomes leaner, and the negative pressure in the intake pipe decreases. Then, the intake pipe negative pressure becomes -600, for example.
mHg, the negative pressure control valve device α2 closes and the air control valve (6) also closes to stop supplying secondary air to the intake pipe (3). If this state continues, the intake pipe negative pressure rises again, so the above operation is repeated, and the intake pipe negative pressure is maintained at a substantially constant level (-600 raHg). In this way, it is possible to prevent the catalyst provided in the exhaust system from overheating during deceleration (1) and to reduce oil consumption due to oil rise caused by high intake pipe negative pressure. In the shot air valve device α0), when there is no opening/closing valve body (I7) of the second negative pressure passage (9) that is closed when the opening/closing valve body αe of the first negative pressure passage (8) is opened. Since the negative pressure guided by the valve opening trap of the valve body (I6) leaks to the atmosphere through the jet of the chamber Cυ of the negative pressure control valve device (121), the air control valve (5) is damaged by the negative pressure. The valve cannot open and afterburn cannot be prevented, or setting the valve opening pressure becomes difficult or unstable.

【この時の
2次空気の供給は短時間であるため影響が大である。】
という不都合を生ずるが、本発明によれば前記弁体αη
を設けたので、以上の不都合が解消され、各制御装置G
OIQ21の制御が独自に互に影響されずに行いうる〇 尚、前記室Qυのジェットは高い吸気管負圧を該ジェッ
トで大気側へリークし、負王室(6)に高い吸気管負圧
が導入されない様にしている。 第2図は第1図示の実施例に、パーコレーション状態に
おる高温下のエンジンを再始動する時、2次空気を吸気
管(3)に供給する手段を付加した第2の実施例の線図
を示す。 この手段は前記空気制御弁(5)の負王室(6)に連な
る合流負圧通路(7)と第3の負圧通路(5)の連結部
に介装された第6の制御装置としてのソレノイド弁(ハ
)から成り、このソレノイド弁(ハ)のソレノイドコイ
ルC24)は、完燦時の吸気管(3)の負圧でオンから
オフになる負圧スイッチ(251とクランキング信号に
よジオンとなるスタータスイッチ(イ)を介して電源に
接続され、その消勢時には前記合流負圧通路(7)を開
通すると共に第3の負圧通路(ハ)を閉鎖し、又その付
勢時には空気制御弁(5)の負圧室(6)をチェックパ
ルプ(2〜及びエンジン冷却水温度弁(ハ)が介装され
次第3の負圧通路(5)を介して吸気管(3)に連通ず
ると共に、合流負圧通路(7)を閉鎖するものである。 前記エンジン冷却水温度弁翰は例えば70°C以上の高
温(この時)<−’l L/−ジョン状態にある。ンで
バイメタル(29りの反転によシ第5の負圧通路(27
>を開通し、それ以下の温度では空気制御弁(5)の負
圧室(6)内を大気に開放するものである。 尚、前記負圧スイッチ(ハ)の代シにエンジン回転数セ
ンサー油圧スイッチ等を用いてもよい。 これ以外の構成は第1図示のものと同じであシ、同一の
符号は同一のものを示す。 かくして、高温のエンジンを再始動すると、スタータス
イッチQfi+及び負圧スイッチt251は共にオンで
あるので、ソレノイド弁03)は付勢され1工ンジン冷
却水温度弁(ハ)は第3の負圧通路(5)を開通するた
め、空気制御弁(5)の負圧室(6)には吸気管負圧が
第3の負圧通路07)を介して導かれる。 この結果、該空気制御弁(5)は開かれて2次空気が吸
気管(3)に供給され過濃混合気が希釈されるので、始
動性が向上し、又、完爆後にはその時の吸気管負圧によ
シソレノイド弁031が消勢されて第3の負圧通路@を
閉じ、一方合流負圧通路(7)を開き空気制御弁(5+
の負圧室(6)を負圧制御弁装置(+21の室(211
のジェットを介して大気に連通ずるので、該空気制御弁
(5)は閉じ吸気管(3)への2次空気の供給を停止し
、完爆後混合気を希釈化しすぎてアイドリング状態が不
調となることを防止する◇ ギヤチェンジ時、クランキング時又は加速からクルーズ
に移行する様ないわゆる小減速状態時及び減速時におけ
る作動は第1の実施例と同様である。 尚1前記ソレノイド弁c!漕はソレノイドコイルc!滲
が付勢され第3の負圧通路(27)が空気制御弁(5)
に連通された時、合流負圧通路(7)が閉鎖されるよう
に構成されているが、若しもこのような第5の負圧通路
(5)と合流負圧通路(7)との切換制御が行なわれな
いとすると、クランキングの初期にショットエア弁装置
OQの作動によシこれからも吸気管負圧が空気制御弁(
5)の負圧室(6)に導入される。高温始動時に吸気管
(3)に供給する空気量は空燃比に直接影響し始動性を
大いに左右するので1第3の負圧通路(5)に加えて第
1負圧通路(8)からの負圧の前記導入によれば該空気
制御弁(5)の作動値の設定が困難となシ1又1作動中
も種々の条件によって安定した空気量に制御することが
困難でおる。 したがって以上の切換制御の構成は1他の装置すなわち
ショットエア弁装置の影響を受けずに高温始動時の運転
条件に最も適した空気量を吸気管(3)に供給すること
ができる。 第3図は第2図示のものの変形例を示す。 すなわち、第2図示のソレノイド弁(ハ)は空気制御弁
(5)とショットエア弁装置α旬間の合流負圧通路(力
に介入されているが、この例では該ショットエア弁装置
(Iolと負圧制御弁装置C121間の第2の負圧通路
(9)に介入されている。そしてこのソレノイド弁(2
31は、高温始動時以外におけるソレノイドコイル(2
4の消勢時には図示のように第2の負圧通路(9)を開
いており1付勢されると、その@2の負圧通路(9)を
閉鎖し、第3の負圧通路(5)をショットエア弁装置鵠
を介して空気制御弁(5)に連結し、その負圧室(6)
に吸気管負圧をクランキング期間導入し、空気制御弁(
5)全作動させ2次空気を吸気管(3)に供給する。 このように本発明によるときは、絞り弁下流の吸気管と
大気を連通ずる空気供給通路に吸気管の負圧で作動する
空気制御弁を介入し、該空気制御弁の負圧室に連なる複
数の負圧通路に、異なる運転状態に応じて該負圧通路を
開閉する制御装置をそれぞれ介入し、一方の制御装置が
作動している時他方の制御装置の作uJ ’i無効にす
るようにしたので、従来のものに比して軽量且つコスト
安になると共に保守も容易であシ、また1運転状態に応
じて作動する制御装置が他の運転状態に応じて作動する
制御装置の影響を受けずにその運転状態に最も適しfc
空気量を吸気管に供給することかでさる等の効果を有す
る。
[The supply of secondary air at this time has a large effect because it is for a short time. ]
However, according to the present invention, the valve body αη
Since the above-mentioned inconvenience is solved, each control device G
OIQ21 can be controlled independently without being influenced by each other.In addition, the jet in the chamber Qυ leaks high intake pipe negative pressure to the atmosphere, and high intake pipe negative pressure is generated in the negative chamber (6). I am trying to prevent it from being introduced. Fig. 2 is a diagram of a second embodiment in which a means for supplying secondary air to the intake pipe (3) is added to the embodiment shown in Fig. 1 when restarting a high-temperature engine in a percolation state. shows. This means is a sixth control device interposed at the connecting portion between the confluence negative pressure passage (7) and the third negative pressure passage (5) which are connected to the negative pressure passage (6) of the air control valve (5). It consists of a solenoid valve (C), and the solenoid coil C24) of this solenoid valve (C) is activated by a negative pressure switch (251) and a cranking signal, which is turned on and off by the negative pressure in the intake pipe (3) at the time of complete combustion. It is connected to a power source via a starter switch (a) which becomes a power source, and when it is de-energized, it opens the merging negative pressure passage (7) and closes the third negative pressure passage (c), and when it is energized, it opens the merging negative pressure passage (7) and closes the third negative pressure passage (c). Check the negative pressure chamber (6) of the air control valve (5) and connect it to the intake pipe (3) through the negative pressure passage (5) of 3 as soon as the check pulp (2~ and engine cooling water temperature valve (c) are installed). At the same time, the merging negative pressure passage (7) is closed.The engine cooling water temperature valve is in a high temperature state of, for example, 70°C or higher (at this time). By reversing the bimetal (29), the fifth negative pressure passage (27
> is opened, and at temperatures below that, the negative pressure chamber (6) of the air control valve (5) is opened to the atmosphere. Incidentally, an engine rotation speed sensor oil pressure switch or the like may be used in place of the negative pressure switch (c). The configuration other than this is the same as that shown in the first figure, and the same reference numerals indicate the same parts. Thus, when the high-temperature engine is restarted, both the starter switch Qfi+ and the negative pressure switch t251 are on, so the solenoid valve 03) is energized and the first engine cooling water temperature valve (c) is switched to the third negative pressure passage. (5), the intake pipe negative pressure is introduced to the negative pressure chamber (6) of the air control valve (5) via the third negative pressure passage 07). As a result, the air control valve (5) is opened and secondary air is supplied to the intake pipe (3) to dilute the rich mixture, improving starting performance and, after a complete explosion, The intake pipe negative pressure deenergizes the solenoid valve 031 and closes the third negative pressure passage @, while opening the merging negative pressure passage (7) and opening the air control valve (5+).
The negative pressure chamber (6) is connected to the negative pressure control valve device (+21 chamber (211)
The air control valve (5) closes and stops supplying secondary air to the intake pipe (3), which dilutes the air-fuel mixture too much after complete explosion and causes poor idling. ◇ The operation during gear change, cranking, or a so-called small deceleration state such as transition from acceleration to cruise, and during deceleration are the same as in the first embodiment. Note 1: The solenoid valve c! The row is solenoid coil c! The leak is energized and the third negative pressure passage (27) is connected to the air control valve (5).
The confluence negative pressure passage (7) is configured to be closed when the fifth negative pressure passage (5) and the confluence negative pressure passage (7) are connected to each other. If switching control is not performed, the shot air valve device OQ will operate in the early stage of cranking, and the intake pipe negative pressure will continue to flow through the air control valve (
5) into the negative pressure chamber (6). The amount of air supplied to the intake pipe (3) during high-temperature startup directly affects the air-fuel ratio and greatly influences the startability, so in addition to the third negative pressure passage (5), the amount of air supplied to the intake pipe (3) is With the introduction of negative pressure, it is difficult to set the operating value of the air control valve (5), and even during operation, it is difficult to control the amount of air to a stable amount depending on various conditions. Therefore, the above switching control configuration can supply the intake pipe (3) with the amount of air most suitable for the operating conditions at the time of high-temperature startup without being influenced by another device, that is, the shot air valve device. FIG. 3 shows a modification of the one shown in FIG. That is, the solenoid valve (c) shown in the second figure is connected to the negative pressure passage (intervening with force) between the air control valve (5) and the shot air valve device α (in this example, the shot air valve device (Iol) The solenoid valve (2) is interposed in the second negative pressure passage (9) between the negative pressure control valve device C121.
31 is the solenoid coil (2
When 4 is de-energized, the second negative pressure passage (9) is opened as shown in the figure, and when 1 is energized, the negative pressure passage (9) of @2 is closed and the third negative pressure passage (9) is opened. 5) is connected to the air control valve (5) via the shot air valve device, and its negative pressure chamber (6)
During the cranking period, negative pressure in the intake pipe is introduced, and the air control valve (
5) Fully operate to supply secondary air to the intake pipe (3). In this way, according to the present invention, an air control valve operated by the negative pressure of the intake pipe is inserted into the air supply passage that communicates the intake pipe downstream of the throttle valve with the atmosphere, and a plurality of air control valves connected to the negative pressure chamber of the air control valve are inserted. A control device is installed in each negative pressure passage to open and close the negative pressure passage according to different operating conditions, so that when one control device is operating, the other control device is disabled. As a result, it is lighter and less expensive than conventional systems, and is easy to maintain.Also, the control device that operates according to one operating state is less affected by the control device that operates according to other operating states. The most suitable fc for the operating condition without receiving
It has the effect of supplying the amount of air to the intake pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2PXJ及び第3図はそれぞれ本発明の実施
例の線図を示す。 (1)・・・・・・空気供給通路 (2)・・・・・・絞 リ 弁 (3)・・・・・・吸 気 管 (5)・・・・・・空気制御弁 (8)・・・・・・第1の負圧通路 (9)・・・・・・第2の負圧通路 (IQ・・・・・・ショットエア弁装置H・・・・・・
エンジン冷却水温度弁 0渇・・・・・・負圧制御弁装置 (17)・・・・・・第2負圧通路の開閉用弁体(2国
・・・・・・ソレノイド弁 (251・・・・・・負圧スイッチ (2B・・・・・・スタータスイッチ 0印・・・・・・チェック弁 (2ω・・・・・・エンジン冷却水温度弁外2名
1, 2PXJ and 3 each show a diagram of an embodiment of the invention. (1) Air supply passage (2) Throttle valve (3) Intake pipe (5) Air control valve (8 )...First negative pressure passage (9)...Second negative pressure passage (IQ...Shot air valve device H...
Engine coolant temperature valve 0 - Negative pressure control valve device (17) Valve body for opening and closing of second negative pressure passage (2 countries) Solenoid valve (251 ...Negative pressure switch (2B... Starter switch 0 mark... Check valve (2ω... Engine coolant temperature valve and 2 other people)

Claims (1)

【特許請求の範囲】 1、 絞シ弁下流の吸気管と大気を連通ずる空気供給通
路に吸気管負圧で開弁する空気制御弁を介入し、該空気
制御弁の負王室に、前記吸気管内に開口する少なくとも
2つの負圧通路を連結し、蔽負圧通路のそれぞれに運転
状態に応じて該負圧通路を開閉する制御装置を介入し、
その一方の制御装置は、該制御装置が作動している時他
方の制御装置の作動を無効にするようにしたことを特徴
とするエンジンの2次空気制御装置。 2 前記−万の制御装置は、吸気管負圧の所定値以上の
増加負圧を検出し1一方の負圧通路を所定時間開路して
前記吸気管内にショットエアを供給するショットエア弁
装置であり、前記他方の制御装置は、所定値以上の吸気
管負圧を検出して他方の負圧通路を開路し、該負圧状態
が継続する間中前記吸気管内に空気を供給する負圧制御
弁装置であり、前記シミツトエア弁装置による一方の負
圧通路の開路作動に連動して前記負圧制御弁装置よシ前
記空気制御弁側の他方の負圧通路を遮断し、逆に一方の
負圧通路が遮断されると他方の負圧通路が開路されるこ
とを特徴とする特許請求の範囲第1項記載のエンジンの
2次空気制御装置。 5、 前記空気制御弁の負王室に、前記吸気管内に開口
する3つの負圧通路を連結し1該負圧通路のそれぞれに
前記制御装置を介入し、また前記各負圧通路を切換作動
する2つの制御装置を設けたことを特徴とする特許請求
の範囲第1項記載のエンジンの2次空気制御装置。 4 第1の制御装置は1吸気管負圧の所定値以上の増加
負圧を検出し1所定時間第1の負圧通路を開路して前記
吸気管内にショットエアを供給するショットエア弁装置
であシ、第2の制御装置は所定値以上の吸気管負圧を検
出して他方の負圧通路を開路し、該負圧状態が継続する
間中前記吸気管内に空気を供給する負圧制御弁装置であ
り、第3の制御装置は高温状態におけるクランキング中
に第3の負圧通路を開路して前記吸気管内に空気を供給
す制御弁装置であって1削記第3制御装置はその作動時
第1及び第2の負圧通路を遮断し、第3の負圧通路を開
路することを特徴とする特許請求の範囲第3項記載のエ
ンジンの2次空気制御装置。 5、 第1の制御装置は、吸気管負圧の所定値以上の増
加負圧を検出し、所定時間筒1の負圧通路を開路して前
記吸気管内にショットエアを供給するショットエア弁装
置てあり、第2の制御装置は、所定値以上の吸気管負圧
を検出して他方の負圧通路を開路し1該負圧状態が継続
する間中前記吸気管内に空気を供給する負圧制御弁装置
であシ、第3の制御装置は、高温状態におけるクランキ
ング中に第3の負圧通路を開路して前記吸気管内に空気
を供給する制御装置であり、前記第3制御装置は第1の
制御装置と第2の制御装置間を連通する負圧通路中に設
けられ、その作動時第2の負圧通路を遮断して第3負圧
通路を開路することを特徴とする特許請求の範囲第3項
記載のエンジンの2次空気制御装置。
[Claims] 1. An air control valve that opens when the intake pipe has a negative pressure is inserted into the air supply passage that communicates the intake pipe downstream of the throttle valve with the atmosphere, and the intake pipe is connected to the negative end of the air control valve. Connecting at least two negative pressure passages opening into the pipe, interposing a control device in each of the shielded negative pressure passages to open and close the negative pressure passage according to the operating state,
A secondary air control device for an engine, wherein one of the control devices disables the operation of the other control device when the other control device is in operation. 2. The above control device is a shot air valve device which detects an increase in negative pressure of the intake pipe negative pressure to a predetermined value or more, opens one negative pressure passage for a predetermined period of time, and supplies shot air into the intake pipe. The other control device detects an intake pipe negative pressure equal to or higher than a predetermined value, opens the other negative pressure passage, and supplies air into the intake pipe while the negative pressure state continues. The valve device is a valve device, and in conjunction with the opening operation of one negative pressure passage by the scimit air valve device, the negative pressure control valve device shuts off the other negative pressure passage on the air control valve side, and conversely opens one negative pressure passage. The secondary air control device for an engine according to claim 1, wherein when the pressure passage is blocked, the other negative pressure passage is opened. 5. Connecting three negative pressure passages opening into the intake pipe to the negative end of the air control valve, 1 intervening the control device in each of the negative pressure passages, and switching operation of each of the negative pressure passages; The secondary air control device for an engine according to claim 1, characterized in that two control devices are provided. 4 The first control device is a shot air valve device that detects an increase in negative pressure of the intake pipe negative pressure by a predetermined value or more, opens the first negative pressure passage for a predetermined period of time, and supplies shot air into the intake pipe. The second control device detects an intake pipe negative pressure equal to or higher than a predetermined value, opens the other negative pressure passage, and performs negative pressure control to supply air into the intake pipe while the negative pressure state continues. the third control device is a control valve device that opens a third negative pressure passage to supply air into the intake pipe during cranking in a high temperature state; 4. The engine secondary air control device according to claim 3, wherein when activated, the first and second negative pressure passages are shut off and the third negative pressure passage is opened. 5. The first control device is a shot air valve device that detects an increase in negative pressure of the intake pipe negative pressure to a predetermined value or more, opens the negative pressure passage of the cylinder 1 for a predetermined period of time, and supplies shot air into the intake pipe. The second control device detects an intake pipe negative pressure equal to or higher than a predetermined value, opens the other negative pressure passage, and controls the negative pressure to supply air into the intake pipe while the negative pressure state continues. The third control device is a control device that opens a third negative pressure passage to supply air into the intake pipe during cranking in a high temperature state, and the third control device A patent characterized in that it is provided in a negative pressure passage communicating between a first control device and a second control device, and when activated, the second negative pressure passage is shut off and a third negative pressure passage is opened. A secondary air control device for an engine according to claim 3.
JP57222916A 1982-12-21 1982-12-21 Secondary-air controlling apparatus for engine Granted JPS59113250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57222916A JPS59113250A (en) 1982-12-21 1982-12-21 Secondary-air controlling apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222916A JPS59113250A (en) 1982-12-21 1982-12-21 Secondary-air controlling apparatus for engine

Publications (2)

Publication Number Publication Date
JPS59113250A true JPS59113250A (en) 1984-06-29
JPS6327543B2 JPS6327543B2 (en) 1988-06-03

Family

ID=16789867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222916A Granted JPS59113250A (en) 1982-12-21 1982-12-21 Secondary-air controlling apparatus for engine

Country Status (1)

Country Link
JP (1) JPS59113250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043899A (en) * 1987-09-29 1991-08-27 Honda Giken Kogyo Kabushiki Kaisha Secondary air supply system for internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043899A (en) * 1987-09-29 1991-08-27 Honda Giken Kogyo Kabushiki Kaisha Secondary air supply system for internal combustion engines

Also Published As

Publication number Publication date
JPS6327543B2 (en) 1988-06-03

Similar Documents

Publication Publication Date Title
US4426968A (en) Carburetor with means for compensation of idling revolution
US4195602A (en) Intake control means for internal combustion engines
US3938329A (en) Exhaust gas detoxication system for a motor vehicle combustion engine
US2939444A (en) Fuel control mechanism
US4450806A (en) Intake air throttle device of a diesel engine
JPS59113250A (en) Secondary-air controlling apparatus for engine
JPH0835459A (en) Fuel feed device for internal combustion engine
US4336784A (en) Exhaust gas recirculation control system for engines
KR840001349B1 (en) Air-fuel ration controller for carburetor
JPS6349065B2 (en)
JPH0248685Y2 (en)
JPS5846649B2 (en) Secondary air supply device
JPS6148627B2 (en)
JPS5840656B2 (en) Intake control device for internal combustion engines
JPS6133260Y2 (en)
JPH0523797Y2 (en)
JPS60190660A (en) Fuel pressure control device of fuel-injection engine
JPS58133466A (en) Control device for evaporated gas from fuel of internal-combustion engine
JPH0444827Y2 (en)
JPS6354893B2 (en)
JPS59103948A (en) High-temperature startability improving device of internal-combustion engine
JPS6287638A (en) Fuel pressure controller for internal combustion engine
JPS6160258B2 (en)
JPS58217750A (en) Idle-up device in air-fuel ratio control engine
JPS5982557A (en) Control device for internal-combustion engine