JPS59113202A - Forming method of turbo charger - Google Patents

Forming method of turbo charger

Info

Publication number
JPS59113202A
JPS59113202A JP22178882A JP22178882A JPS59113202A JP S59113202 A JPS59113202 A JP S59113202A JP 22178882 A JP22178882 A JP 22178882A JP 22178882 A JP22178882 A JP 22178882A JP S59113202 A JPS59113202 A JP S59113202A
Authority
JP
Japan
Prior art keywords
shaft
blade
impeller
vane wheel
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22178882A
Other languages
Japanese (ja)
Inventor
Eihiko Tsukamoto
塚本 頴彦
Junichi Iifushi
順一 飯伏
Yoshinae Sannomiya
三宮 嘉苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22178882A priority Critical patent/JPS59113202A/en
Publication of JPS59113202A publication Critical patent/JPS59113202A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce cost and manufacturing steps by a method wherein an extruded molding having a shaft of vane wheel and vanes which are coaxial with and parallel to the shaft is made, and the vanes are bent to form the vane wheel. CONSTITUTION:A preform is made of a round member and a vane wheel 4 comprising a shaft 8 and vanes 6 and 7 which are coaxial with and parallel to the shaft 8 is formed. Then, the vane wheel 4 is connected at the end of the shaft, the upper and lower ends are fixed by a chuck 10 and a screw 12 is turned up to the desired value. Further, the upper part of the large vane 6 is pressed and bent with a pressing jig to complete the vane wheel 4. Since the wheel assembly is formed by such pressing and twisted processes as above, it is possible to reduce cost and manufactring steps.

Description

【発明の詳細な説明】 本発明はターボチャージャのブロワ用羽根車の成形加工
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming an impeller for a blower of a turbocharger.

ターボチャージャのブロワ用羽根車100は第1図に示
すような形状を有している。
A blower impeller 100 of a turbocharger has a shape as shown in FIG.

従来、第1図に示すような形状を作る方法としては、そ
の形状が複雑な上、回転数が高く、大きな遠心力を受け
るため、強度が必要な場合には、 (1)概略形状に鍛造加工し、その後機械加工で仕上げ
る方法、 (2)精密鋳造にて作る方法、 等があシ、またそれほど強度を必要としない場合には、 (3)  シェルモールドによる方法、(4)炭酸ガス
法による鋳物を機械加工して作る方法、 等がある。
Conventionally, the methods for making the shape shown in Figure 1 are as follows: (1) Forging into the approximate shape is necessary because the shape is complex, the rotational speed is high, and it is subject to large centrifugal force. (2) Precision casting method, (2) Precision casting method, etc., and if very strong strength is not required, (3) Shell mold method, (4) Carbon dioxide method. There are methods of manufacturing by machining cast iron, etc.

しかし、(1)の鍛造による方法では、羽根が複雑形状
であるため大まかな形状にしか鍛造できず、そのほとん
どが機械加工であシ時間がかかシすぎ量産向きでなく、
また(2)〜(4)の鋳造法では、複雑な形状でも作れ
る利点はあるが、完成までに手間がかかりすぎ、しかも
成品1個に対し、1個の鋳型が必要である等から非能率
的であり、コスト高となり、量産には不向きである等の
欠点がある。
However, with the forging method (1), since the blade has a complex shape, it can only be forged into a rough shape, and most of it is machined, which takes too much time and is not suitable for mass production.
In addition, casting methods (2) to (4) have the advantage of being able to make complex shapes, but they are inefficient because they take too much time and effort to complete, and one mold is required for each finished product. It has drawbacks such as high cost and unsuitability for mass production.

本発明は、第1図に示すようなターボチャージャl用羽
根車の成形において、コスト低減となシ、工程も少なく
量産向きで、しかもターボチャージャがとして性能のよ
い成形方法を提供しようとするものである。
The present invention aims to provide a method for molding an impeller for a turbocharger as shown in FIG. 1, which reduces costs, requires fewer steps, is suitable for mass production, and provides good performance for the turbocharger. It is.

すなわち本発明は、ターボチャージャ羽根車を加工する
に際し、プレフォーム材を押出し加工によシ軸と同軸に
対して平行な羽根とからなる押出し成形品をつくり、そ
の後同成形品の羽根部を軸心回シに捩ることによシ同羽
根を曲げ加工処理して螺旋状の羽根を形成し、さらに同
羽根の上部を押え治具で押えて同羽根の上部を所定角度
に曲げることを特徴とするターボチャージャの成形方法
に関するものである。
That is, when processing a turbocharger impeller, the present invention involves extruding a preform material to create an extruded product consisting of a shaft and blades parallel to the same axis, and then attaching the blades of the molded product to the shaft. It is characterized by bending the blade by twisting it around the center to form a spiral blade, and further pressing the upper part of the blade with a holding jig to bend the upper part of the blade to a predetermined angle. The present invention relates to a method for molding a turbocharger.

第2図に本発明方法の成形工程の一例を示す。FIG. 2 shows an example of the molding process of the method of the present invention.

第2図により順を追って工程を説明する。The steps will be explained step by step with reference to FIG.

先ず、第2図(A)において、長尺棒1から適正素材寸
法にシャカットし、第2図(B)に示す丸棒形状2とす
る。次に、丸棒素材2を鍛造により荒打ちし、第2図(
C)に示すプレフォーム3を作る。この荒打ちしたプレ
フォーム3を押出し鍛造による押出し成形により第2図
(D)に示す羽根4を押しだす。
First, in FIG. 2(A), a long bar 1 is cut into appropriate material dimensions to form a round bar shape 2 shown in FIG. 2(B). Next, the round bar material 2 is roughly forged, as shown in Figure 2 (
Preform 3 shown in C) is made. This roughly hammered preform 3 is extruded by extrusion forging to extrude the blades 4 shown in FIG. 2(D).

ここで羽根4はストレートであり軸心に対し平行な羽根
にしておく。なお、大別s6の頂部形状は、第2図(D
)の上面図である第3図(A)と該第3図(入)のA−
A断面図である第6図(B)に示すように、羽根6端部
が羽根6付は根よシ若干高くなるよう角度θlの勾配か
つ=’lである。
Here, the blades 4 are straight and parallel to the axis. The top shape of the main classification s6 is shown in Figure 2 (D
), which is a top view of Figure 3 (A), and A-
As shown in FIG. 6(B), which is a sectional view of A, the end portion of the blade 6 has a slope of an angle θl and ='l so that the end portion of the blade 6 is slightly higher than the root.

これは、この第2図(D)の後、羽根4をツイストさせ
るが、ツイスト後の羽根高さが羽根部は根と羽根端部と
で第4図(B)に示すように同じ高さHになるようにす
るためである。なお、7は小羽根を示す。
This causes the blade 4 to be twisted after this Figure 2 (D), but the height of the blade after twisting is the same at the blade root and blade end as shown in Figure 4 (B). This is to make it H. Note that 7 indicates a small feather.

また、ストレート押出し品4の軸部8〔第3図(B)参
照〕の頂部8′〔第3図(B)参照〕は、その後工程の
ツイスト時軸部をチャックする目的で第3図(A)に示
すように+(又は−)の満切り成形8“ を第2図(D
)のストレート押出し加工時に行っである。
In addition, the top part 8' (see Fig. 3 (B)) of the shaft part 8 (see Fig. 3 (B)) of the straight extruded product 4 is attached to the top part 8' (see Fig. 3 (B)) for the purpose of chucking the shaft part during twisting in the subsequent process. As shown in A), the + (or -) full cut 8"
) during straight extrusion processing.

第2図(D)の押し出し鍛造後の羽根4を第1図に示す
形状にするため第2図(E)に示すようにツイスト5す
る。
The blade 4 after extrusion forging in FIG. 2(D) is twisted 5 as shown in FIG. 2(E) in order to have the shape shown in FIG. 1.

ここで、羽根4と軸8とをツイストさせると、羽根4が
軸8との付は根からねじ切れる。そのため軸部ごとねじ
る必要がある。
Here, when the blade 4 and the shaft 8 are twisted, the connection between the blade 4 and the shaft 8 is screwed off from the root. Therefore, it is necessary to twist the entire shaft.

ツイストの方法を第5図、で説明する。The twisting method will be explained with reference to FIG.

まず、2ケの羽根車4を軸端8の十又は−を合せて合体
させる。
First, the two impellers 4 are combined by aligning the ten or minus ends of the shaft ends 8.

次に、ストレート大、小羽根6,7の上羽根車4と下羽
根車4の間に補強を兼ねた板9を入れる。、この板9に
よυ大、小羽根6,7と軸8とを同一量で、同時にツイ
ストでき、大、小羽根6゜7が軸8の付は根からねじ切
れるのを防止できる。なお、この板9はツイスト完了後
、上下羽根車4をはずす時容易にけずれる。
Next, a plate 9 serving as reinforcement is inserted between the upper impeller 4 and the lower impeller 4 of the straight large and small blades 6 and 7. By means of this plate 9, the large and small blades 6 and 7 and the shaft 8 can be twisted by the same amount at the same time, and the attachment of the large and small blades 6°7 to the shaft 8 can be prevented from being screwed off from the root. Incidentally, this plate 9 easily comes off when the upper and lower impellers 4 are removed after twisting is completed.

上下の羽根車4はチャック10で羽根車4底部の円形部
をチャックし、固定する。またこのチャック10は下側
は固定治具11でチャックが動かカいように固定し、上
側はねじ12で固定する。
The upper and lower impellers 4 are fixed by chucking the circular part at the bottom of the impeller 4 with a chuck 10. The chuck 10 is fixed on the lower side with a fixing jig 11 so that the chuck can move, and on the upper side with a screw 12.

セット完了後、上側のねじ12を所定量までツイストさ
せる。所定量のツイスト完了後、ネジ12.チャック1
0.固定治具11をはずし、羽根車4をとりだす。
After completing the setting, twist the upper screw 12 to a predetermined amount. After twisting the predetermined amount, screw 12. Chuck 1
0. Remove the fixing jig 11 and take out the impeller 4.

これで上下の羽根車4けツイスト完了となり、第2図(
E)およびその詳細の第4図(A)、  CB)に示す
形となる。
This completes the twisting of the four upper and lower impellers, as shown in Figure 2 (
E) and its details as shown in Figure 4 (A) and CB).

ツイスト完了後の羽根車5を第2図(F’)に示す完成
品Xの形にするには、さらに大羽根6の形を整える必要
がある。
In order to shape the impeller 5 after twisting into the finished product X shown in FIG. 2 (F'), it is necessary to further adjust the shape of the large blades 6.

これは、第6図(A)、  (B)に示すように、押え
治具13,13’によりチャック10.固定治具11に
固定されたツイスト羽根車5の大羽根6の上部を、所定
量θ2 の角度をもった押え治具13で押え、大羽根6
の上部を所定の角度θに曲げ成形する方法で行う。
As shown in FIGS. 6(A) and 6(B), the chuck 10. The upper part of the large blade 6 of the twist impeller 5 fixed to the fixing jig 11 is held down with a holding jig 13 having an angle of a predetermined amount θ2, and the large blade 6 is
This is done by bending the upper part of the body to a predetermined angle θ.

以上の工程により、羽根車Xが完成する。Through the above steps, the impeller X is completed.

このように、押出しとツイスト工法による羽根車の加工
法はプレス型とプレス装置のみで行え、連続ラインにて
成形が可能となる。
In this way, the impeller manufacturing method using extrusion and twisting methods can be performed using only a press die and press equipment, and can be formed on a continuous line.

これによシ量産加工が可能となり、コスト低減が行える
。従来のよう々鋳込法による方法では、鋳型の製作、成
品取り出しによる鋳型の処理等に出る錦紗のメンテナン
ス等、工程、メンテナンス上の労費が多り、シかも量産
が行えないが、本発明方法によれば、とわらの欠点、問
題点を解決することができる。
This enables mass production and reduces costs. With the conventional casting method, there is a lot of labor cost in the process and maintenance, such as manufacturing the mold, processing the mold by removing the finished product, etc., and it may not be possible to mass-produce it.However, the present invention According to the method, the shortcomings and problems of Towara can be solved.

また本発明方法による羽根車は、鍛造品となるため、鍛
造品よシ強度、材質的にも秀れたものになり、安全性向
上にもつながる。
Further, since the impeller produced by the method of the present invention is a forged product, it has superior strength and material quality compared to forged products, which also leads to improved safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は目的とする羽根車の形状を示す図、第2図(A
)〜(1”)は本発明方法の羽根車の工程を示す図、第
3図(A)、  (B)は第2図(D)の押出し工程後
の羽根車形状を示す図、第4図(A)。 (B)は第2図(F)に示す完成品Xの大羽根6の形状
を示す図、第5図は第2図(E)のツイスト加工法を示
す図、第6図(A)、  (B)は第2図(E)後の大
羽根に所定の角度をつけるための押え方法を示す図であ
る。 第1図 第2図 1l− (D)         (E) 菩 (F) 第5図 1 12−
Figure 1 shows the shape of the target impeller, Figure 2 (A
) to (1'') are diagrams showing the impeller process of the method of the present invention, Figures 3 (A) and (B) are diagrams showing the impeller shape after the extrusion process of Figure 2 (D), and Figure 4 Figure (A). (B) is a diagram showing the shape of the large feather 6 of the finished product X shown in Figure 2 (F), Figure 5 is a diagram showing the twist processing method of Figure 2 (E), Figures (A) and (B) are diagrams showing how to hold the large feather at a predetermined angle after Figure 2 (E). (F) Figure 5 1 12-

Claims (1)

【特許請求の範囲】[Claims] ターボチャージャ羽根車を加工するに際し、プレフォー
ム材を押出し加工によシ軸と同軸に対して平行な羽根と
からなる押出し成形品をつ<シ、その後同成形品の羽根
部を軸心回シに捩ることによシ同羽根を曲は加工処理し
て螺旋状の羽根を形成し、さらに同羽根の上部を押え治
具で押えて同羽根の上部を所定角度に曲けることを特徴
とするターボチャージャの成形方法。
When processing a turbocharger impeller, a preform material is extruded to form an extruded product consisting of an axis and blades parallel to the same axis, and then the blades of the molded product are rotated around the axis. It is characterized by processing the same blade by twisting it to form a spiral blade, and further pressing the upper part of the blade with a holding jig to bend the upper part of the blade to a predetermined angle. How to mold a turbocharger.
JP22178882A 1982-12-20 1982-12-20 Forming method of turbo charger Pending JPS59113202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22178882A JPS59113202A (en) 1982-12-20 1982-12-20 Forming method of turbo charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22178882A JPS59113202A (en) 1982-12-20 1982-12-20 Forming method of turbo charger

Publications (1)

Publication Number Publication Date
JPS59113202A true JPS59113202A (en) 1984-06-29

Family

ID=16772207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22178882A Pending JPS59113202A (en) 1982-12-20 1982-12-20 Forming method of turbo charger

Country Status (1)

Country Link
JP (1) JPS59113202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171803A (en) * 1984-11-10 1986-08-02 ダイムラ‐ベンツ アクチエンゲゼルシヤフト Runner for gas-turbine
US7607886B2 (en) * 2004-05-19 2009-10-27 Delta Electronics, Inc. Heat-dissipating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171803A (en) * 1984-11-10 1986-08-02 ダイムラ‐ベンツ アクチエンゲゼルシヤフト Runner for gas-turbine
JPH0341643B2 (en) * 1984-11-10 1991-06-24
US7607886B2 (en) * 2004-05-19 2009-10-27 Delta Electronics, Inc. Heat-dissipating device

Similar Documents

Publication Publication Date Title
EP1422400B1 (en) Variable blade manufacturing method for a vgs type turbo charger
KR101293631B1 (en) A manufacturing method of a cylinder-cover for a large-sized engine
US4139046A (en) Turbine wheel pattern and method of making same
CN109967677A (en) A kind of forging method of metal parts processing mold and metal parts
CN104014746B (en) A kind of production technology that different lift impellers are produced using existing impeller mold
KR101003252B1 (en) Die device of closed-die forging for crank throw pin part using insert die
JPH03136B2 (en)
JPS59113202A (en) Forming method of turbo charger
JP3833002B2 (en) Manufacturing method of exhaust vane blade for supercharger for automobile and vane blade
US3000081A (en) Wheel manufacture
SE416116B (en) MAKE SUBSTITUTE CHAIN LINKS
US3032864A (en) Wheel manufacture
CN212003869U (en) Special-shaped eccentric pin column
JPH0157977B2 (en)
JPS5997734A (en) Forming method of impeller for centrifugal compressor
JP2003117625A (en) Light alloy car wheel, and manufacturing method thereof
JP2002307110A (en) Method of manufacturing for large and middle size aluminum wheel
JPS6226852B2 (en)
CN204145209U (en) A kind of rotor centrifugal casting aluminum dipping form
CN108856330A (en) Steering wheel spoke extrusion molding tooling
JPH10328771A (en) Method for producing end plate
CN211163491U (en) Fixing device is used in production of precision mold
JPS5877737A (en) Manufacture of impeller for turbo charger
CN218310638U (en) Shaping die for long-shaft forgings
CN108971302A (en) A kind of processing method of thin-wall part in-flanges