JPS59111999A - Heat treatment of insulating film of single crystal - Google Patents

Heat treatment of insulating film of single crystal

Info

Publication number
JPS59111999A
JPS59111999A JP22058782A JP22058782A JPS59111999A JP S59111999 A JPS59111999 A JP S59111999A JP 22058782 A JP22058782 A JP 22058782A JP 22058782 A JP22058782 A JP 22058782A JP S59111999 A JPS59111999 A JP S59111999A
Authority
JP
Japan
Prior art keywords
film
single crystal
insulating film
heat treatment
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22058782A
Other languages
Japanese (ja)
Other versions
JPH049760B2 (en
Inventor
Yasuaki Hokari
穂苅 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22058782A priority Critical patent/JPS59111999A/en
Publication of JPS59111999A publication Critical patent/JPS59111999A/en
Publication of JPH049760B2 publication Critical patent/JPH049760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Abstract

PURPOSE:To prevent the release of an insulating film to be caused by steam oxidation afterwards, by heat-treating a silicon substrate of single crystal having an insulating film of the single crystal on the surface. CONSTITUTION:A magnesia spinel film is formed on the surface of a silicon substrate, and heat-treated in an oxygen atmosphere or in an inert gas atmosphere containing oxygen at high temperature >1,050 deg.C. Consequently, release of magnesia spinel film to be caused by steam oxidation afterwards can be prevented, and the constitution of silicon film of single crystal/insulating film of single crystal/silicon substrate of single crystal can be formed easily and securely.

Description

【発明の詳細な説明】 本発明は、単結晶シリコン基板表面に設けられた単結晶
絶縁膜の膜質を改善する手法に関しているO 近年、シリコン単結晶基板上にマグネシアスピネル(M
gO拳AA!zQI)又はサファイア(AAへ )の単
結晶絶縁膜がエピタキシャル成長できるように−なりた
。かかる単結晶絶縁膜はその表面にさらに単結晶シリコ
ン膜がエピタキシャル成長可能であることから、従来の
S OS (5ilicon on 5apphire
)基板に代用することができる。特にシリコン基板はS
O8の基体羽料であるサファイアに比べ安価大口径であ
ることから、・安価な半導体装置が実現可能である。
Detailed Description of the Invention The present invention relates to a method for improving the film quality of a single crystal insulating film provided on the surface of a single crystal silicon substrate.
gofist AA! It has become possible to epitaxially grow single crystal insulating films of zQI) or sapphire (AA). Since such a single-crystal insulating film can further epitaxially grow a single-crystal silicon film on its surface, it is not suitable for conventional SOS (5 silicon on 5 apphire
) can be substituted for the substrate. In particular, silicon substrates are S
Since it is cheaper and has a larger diameter than sapphire, which is the base material of O8, an inexpensive semiconductor device can be realized.

SO8基板は容性容量を少なく出来ることに最大の特徴
があシ、上記単結晶シリコン膜/単結晶絶縁膜/シリコ
ン基板の構成をSO8基板に代用するには単結晶絶縁膜
の容量を少なくすることが望まれる。マグネシアスピネ
ルおよびサファイアは、比誘電率がSt鳴の3.9に比
べ8〜9と高いことから、容量を低減するためにはこれ
ら単結晶絶縁膜厚を増加させることが必要である。しか
しながら、例えばマグネシアスピネル膜では膜厚が1ミ
ク目ンを越えるとその表面の凹凸が著しくなルしかもシ
リコン基板との熱膨張係数の相違により膜にスリップラ
インが発生し、著しい場合にはクラック法が生じる。従
って、マグネシアスピネル膜の膜厚を1ミクロン以下で
容量を低減する工夫をする必要がある。
The greatest feature of the SO8 substrate is that it can reduce the capacitance.In order to substitute the above structure of single crystal silicon film/single crystal insulating film/silicon substrate for the SO8 substrate, the capacitance of the single crystal insulating film must be reduced. It is hoped that Since magnesia spinel and sapphire have a higher dielectric constant of 8 to 9 than 3.9 for String, it is necessary to increase the thickness of these single crystal insulating films in order to reduce the capacitance. However, for example, when the thickness of a magnesia spinel film exceeds 1 micrometer, its surface becomes noticeably uneven.In addition, slip lines occur in the film due to the difference in thermal expansion coefficient with the silicon substrate. occurs. Therefore, it is necessary to take measures to reduce the capacitance by reducing the thickness of the magnesia spinel film to 1 micron or less.

これを解決する手段として、シリコン基板上に単結晶絶
縁膜を形成した後に、酸化雰囲気中で熱処理を行い、単
結晶絶縁膜を透して下のシリコン基板表面を酸化し、非
晶質5i02膜を厚く形成することである。かかる手段
を適用する場合には単結晶絶縁膜の厚さは0.5ミクロ
ン以下と薄くシ、一方弁晶質Sing膜厚は0.5ミク
ロン以上に厚く形成することが必要でアシ、かかる手法
によシ総容量を低減することが可能である。
As a means to solve this problem, after forming a single-crystal insulating film on a silicon substrate, heat treatment is performed in an oxidizing atmosphere to oxidize the surface of the underlying silicon substrate through the single-crystal insulating film. The goal is to form a thick layer. When such a method is applied, the thickness of the single crystal insulating film must be as thin as 0.5 microns or less, while the crystalline Sing film must be formed as thick as 0.5 microns or more. Therefore, it is possible to reduce the total capacity.

しかしながら、本発明者の実験によれば、シリコン基板
上に例えば厚さ0.5ミクロンのマグネシアスピネル膜
をエピタキシャル成長した後に、尚該マグネシアスピネ
ル膜を透してシリコン基板表面に非晶質の厚い5i02
膜を形成すべく水蒸気酸化を行うと、前記マグネシアス
ピネル膜がはがれてしまった。このはがれの原因は非晶
質5i02膜とマグネシアスピネル膜との熱膨張係数の
差の大きいことにあると本発明者は推定しているが、い
ずれにしてもマグネシアスピネル膜がはがれてしまえば
後の工程の単結晶シリコン膜のエピタキシャル成長は不
可能でち)、何らかの解決策が望まれて本発明は、かか
る問題点を解決する手段を提供するものであシ、具体的
には高温の乾燥酸素雰囲気中で熱処理しマグネシアスズ
ネル膜の膜質を改善することにある。
However, according to the inventor's experiments, after epitaxially growing a magnesia spinel film with a thickness of, for example, 0.5 μm on a silicon substrate, a thick amorphous 5i02 film was formed on the silicon substrate surface through the magnesia spinel film.
When steam oxidation was performed to form a film, the magnesia spinel film peeled off. The inventor estimates that the cause of this peeling is the large difference in thermal expansion coefficient between the amorphous 5i02 film and the magnesia spinel film, but in any case, once the magnesia spinel film peels off, The epitaxial growth of a single crystal silicon film using the process of The purpose is to improve the film quality of a magnesia-tinnel film by heat treatment in an atmosphere.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第1図はシリコン基板上に単結晶絶縁膜としてマグネシ
アスピネル膜を厚さ0.5ミクロン形成した後に、種々
の温度条件で乾燥酸素雰囲気中熱処理を行い、続いて水
蒸気酸化を行った場合にっbてマグネシアスピネル膜の
はがれの有無を調べたものである。1050’C以下の
乾燥酸素中熱処理ではその後の水蒸気酸化にょシマグネ
シアスビネル膜にはがれが生じる。しかし、一旦1io
o’c以上の乾燥酸素中で熱処理を行えばこのはがれは
生じない。
Figure 1 shows the results obtained when a magnesia spinel film is formed to a thickness of 0.5 microns as a single crystal insulating film on a silicon substrate, heat treated in a dry oxygen atmosphere at various temperature conditions, and then steam oxidized. b) The presence or absence of peeling of the magnesia spinel film was investigated. In the heat treatment in dry oxygen at 1050'C or less, the magnesia vinyl film peels off due to subsequent steam oxidation. However, once 1io
This peeling does not occur if the heat treatment is performed in dry oxygen at a temperature above 0.0C.

一方、マグネシアスピネル膜の結晶性についてX線回折
法により調べ、乾燥酸素中熱処理前後に処理によJ−グ
ネシアスビネルM(D結晶性が改善されるのは明らかで
あシ、同時に膜中の02濃度が増加し、膜質が強固にな
ったためはがれが生じなくなったものと本発明者は推定
している。従ってシリコン基板上にマグネシアスピネル
膜を形成した後に1osocを越える高温の乾燥酸素中
で熱処理を行えば、その後の水蒸気酸化によるマグネシ
アスピネル膜のはがれを防止する辷とができる。
On the other hand, the crystallinity of the magnesia spinel film was investigated by X-ray diffraction method. The inventor estimates that this is because the film quality has become stronger and peeling has no longer occurred.Therefore, after forming a magnesia spinel film on a silicon substrate, heat treatment is performed in dry oxygen at a high temperature exceeding 1 osoc. For example, a layer can be formed to prevent the magnesia spinel film from peeling off due to subsequent steam oxidation.

当該乾燥酸素中熱処理の時間は、マグネシアスピネル膜
の厚さに依存するようで、例えば厚さ0.5ミクロンの
膜ではll0o0c、 90分で充分であったがα1ミ
クロンの膜では110d’C、10分で充分であった。
The time for the heat treatment in dry oxygen seems to depend on the thickness of the magnesia spinel film; for example, for a film with a thickness of 0.5 microns, 90 minutes was sufficient at 110 d'C, but for a film with a thickness of α1 micron, it was 110 d'C, 10 minutes was sufficient.

膜が薄いと酸素が膜中金体に容易(拡散できることが関
係していると発明者は推定している。
The inventor assumes that this is related to the fact that when the film is thin, oxygen can easily diffuse into the gold body in the film.

このように、本技術を用いれば単結晶シリコン膜/単結
晶絶縁膜/単結晶シリコン基板の構成を容易にかつ確実
に形成できる。
In this way, by using the present technology, the structure of single crystal silicon film/single crystal insulating film/single crystal silicon substrate can be formed easily and reliably.

なお、上記説明では乾燥酸素雰囲気中で熱処理を行うと
説明したが、0.を含むAr、 N2 、 He等の不
活性もしくはこれに近いガス雰囲気中でも同様の効果を
得ている。
In addition, in the above explanation, it was explained that the heat treatment is performed in a dry oxygen atmosphere, but 0. A similar effect can be obtained even in an inert gas atmosphere such as Ar, N2, He, etc., or a gas atmosphere close to this.

また、単結晶絶縁膜としてサファイアについても同様に
良い結果を得ている。
Similar good results have also been obtained using sapphire as a single crystal insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱処理条件と膜のはがれの有無を示す図であシ
、第2図は熱処理前後のX線回折結果を示す図である。
FIG. 1 is a diagram showing the heat treatment conditions and the presence or absence of film peeling, and FIG. 2 is a diagram showing the X-ray diffraction results before and after the heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 表面に単結晶絶縁膜を設けた単結晶シリコン基板を、酸
素雰囲気中もしくは酸素を含む不活性ガス雰囲気中で1
050℃を越える温度で熱処理することを特徴とした単
結晶絶縁膜の熱処理方法。
A single-crystal silicon substrate with a single-crystal insulating film on its surface is heated in an oxygen atmosphere or an inert gas atmosphere containing oxygen.
A method for heat treatment of a single crystal insulating film characterized by heat treatment at a temperature exceeding 050°C.
JP22058782A 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal Granted JPS59111999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22058782A JPS59111999A (en) 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22058782A JPS59111999A (en) 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal

Publications (2)

Publication Number Publication Date
JPS59111999A true JPS59111999A (en) 1984-06-28
JPH049760B2 JPH049760B2 (en) 1992-02-21

Family

ID=16753306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22058782A Granted JPS59111999A (en) 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal

Country Status (1)

Country Link
JP (1) JPS59111999A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154552A (en) * 2014-09-12 2018-10-04 ホンコン バプテスト ユニバーシティ Sapphire thin film-coated flexible substrate
US10941480B2 (en) 2011-12-23 2021-03-09 Hkbu R&D Licensing Limited Sapphire thin film coated flexible substrate
US11028471B2 (en) 2011-12-23 2021-06-08 Hkbu R&D Licensing Limited Sapphire thin film coated substrate
US11535926B2 (en) 2011-12-23 2022-12-27 Hkbu R&D Licensing Limited Sapphire thin film coated substrate
US11713503B2 (en) 2011-12-23 2023-08-01 Hong Kong Baptist University Sapphire coated substrate with a flexible, anti-scratch and multi-layer coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336182A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Thin semiconductor single crystal film forming insulation substrate
JPS5538044A (en) * 1978-09-12 1980-03-17 Toshiba Corp Preparation of multiplex-winding coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336182A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Thin semiconductor single crystal film forming insulation substrate
JPS5538044A (en) * 1978-09-12 1980-03-17 Toshiba Corp Preparation of multiplex-winding coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941480B2 (en) 2011-12-23 2021-03-09 Hkbu R&D Licensing Limited Sapphire thin film coated flexible substrate
US11028471B2 (en) 2011-12-23 2021-06-08 Hkbu R&D Licensing Limited Sapphire thin film coated substrate
US11535926B2 (en) 2011-12-23 2022-12-27 Hkbu R&D Licensing Limited Sapphire thin film coated substrate
US11713503B2 (en) 2011-12-23 2023-08-01 Hong Kong Baptist University Sapphire coated substrate with a flexible, anti-scratch and multi-layer coating
JP2018154552A (en) * 2014-09-12 2018-10-04 ホンコン バプテスト ユニバーシティ Sapphire thin film-coated flexible substrate

Also Published As

Publication number Publication date
JPH049760B2 (en) 1992-02-21

Similar Documents

Publication Publication Date Title
US4906594A (en) Surface smoothing method and method of forming SOI substrate using the surface smoothing method
JPS58130517A (en) Manufacture of single crystal thin film
US4147584A (en) Method for providing low cost wafers for use as substrates for integrated circuits
JPH0582442A (en) Manufacture of polycrystalline semiconductor thin film
JPS59111999A (en) Heat treatment of insulating film of single crystal
JPH0236059B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPH0454966B2 (en)
JPH0412092A (en) Compound semiconductor and method for growing the same
JPS5840820A (en) Formation of silicon single crystal film
JPS6326541B2 (en)
JPS6315442A (en) Semiconductor substrate
JP3157280B2 (en) Method for manufacturing semiconductor device
JPS5853824A (en) Manufacture of semiconductor device
JPH0281423A (en) Manufacture of soi substrate
JPS60176241A (en) Manufacture of semiconductor substrate
JPH0666305B2 (en) Method for forming SOI substrate
JP2696928B2 (en) Heteroepitaxial growth method
JPH02105517A (en) Manufacture of semiconductor device
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS58200525A (en) Preparation of substrate for semiconductor device
JP2532252B2 (en) Method for manufacturing SOI substrate
JP2592984B2 (en) Manufacturing method of silicon thin film
JPH02103953A (en) Method for forming single crystal magnesia spinel film
JP2001093789A (en) Method for manufacturing bonded soi wafer
JPS6347255B2 (en)