JPS59110889A - Oilless screw compressor - Google Patents

Oilless screw compressor

Info

Publication number
JPS59110889A
JPS59110889A JP21835482A JP21835482A JPS59110889A JP S59110889 A JPS59110889 A JP S59110889A JP 21835482 A JP21835482 A JP 21835482A JP 21835482 A JP21835482 A JP 21835482A JP S59110889 A JPS59110889 A JP S59110889A
Authority
JP
Japan
Prior art keywords
gas
pipe
balance
valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21835482A
Other languages
Japanese (ja)
Inventor
Masao Tamura
田村 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21835482A priority Critical patent/JPS59110889A/en
Publication of JPS59110889A publication Critical patent/JPS59110889A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce loss of gas and improve safety, by supplying branched gas as shaft seal gas from a gas discharging pipe to a shaft seal device only during no load running of a compressor, while supplying low temperature gas as balance gas to a balancing piston means only during full load running. CONSTITUTION:An oilless screw compressor 100 is designed to compress and discharge gas by the rotation of male and female rotors which are meshed with each other. During no load running of the compressor, a solenoid valve 23 is opened in concert with substantially full closing of a suction valve 18 and full opening of a blow-off valve 19, thereby supplying shaft seal gas through a gas branching pipe (i) disposed downstream of a gas cooling unit 21, shaft seal gas pipe (k), solenoid valve 23, and shaft seal gas blowing ports (a) and (b) to shaft seal parts 13 and 14. On the other hand, during full load running of the compressor, a solenoid valve 24 is opened in concert with full opening of the suction valve 18 and full closing of the blow-off valve 19, thereby supplying balance gas through the gas branching pipe (i), balance gas pipe (l), solenoid valve 24 and balance gas blowing port (c) to an operational part of a balancing piston 17.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ガス圧縮室への軸受用潤滑油の浸入を防止す
るための軸封装置と、圧縮ガスのガス圧力によりロータ
をその軸方向に移動させるスラスト力を軽減するための
バランスピストン機構とを有効適切に作動させるに好適
なオイルフリーねじ圧縮機に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a shaft sealing device for preventing lubricating oil for a bearing from entering a gas compression chamber, and a system for moving a rotor in its axial direction by the gas pressure of compressed gas. The present invention relates to an oil-free screw compressor suitable for effectively and appropriately operating a balance piston mechanism for reducing thrust force for movement.

〔従来技術〕[Prior art]

一般に、オイルフリーねじ圧縮機はガス圧縮室への軸受
用潤滑油の浸入を防止するための軸封装置を必要とし、
また吐出ガスのガス圧力によるスラスト力を減少させ、
軸受荷重を軽減し、軸受寿命を延ばすためのバランスピ
ストン機構を必要とする。
Generally, oil-free screw compressors require a shaft sealing device to prevent bearing lubricating oil from entering the gas compression chamber.
It also reduces the thrust force caused by the gas pressure of the discharged gas,
Requires a balance piston mechanism to reduce bearing load and extend bearing life.

第1図は、前記軸封装置およびバランスピストン機構を
有するオイルフリーねじ圧縮機を示す。
FIG. 1 shows an oil-free screw compressor having the shaft sealing device and balance piston mechanism.

この第1図に示すオイルフリーねじ圧縮機は、ピニオン
1、おすロータ2、おすロータシャフト2′とめすロー
タシャフト5′に取シ付けられた一対のタイミングギア
3,4、めすロータ5、ケーシング6、ラジアル軸受7
,8および10゜11とスラスト軸受9および12、軸
封装置を構成する軸封13〜16、バランスピストン機
構全構成するバランスピストン17とを備えている。
This oil-free screw compressor shown in FIG. 6. Radial bearing 7
, 8 and 10° 11, thrust bearings 9 and 12, shaft seals 13 to 16 forming a shaft sealing device, and a balance piston 17 forming the entire balance piston mechanism.

そして、この第1図に示すオイルフリー圧縮機では、駆
動機(図示せず)によりビニオン1が回転されると、そ
の回転はおすロータシャフト2′を介しておすロータ2
に伝えられ、一対のタイミングギア3.4を介してめす
ロータシャフト5′に伝達され、おす、めすロータ2.
5が回転される。おすロータ2およびめすロータ5が微
少すきまで高速回転されると、ロータとケーシング6と
の間でガスが圧縮され、送出される。おすロータシャフ
ト2′はラジアル軸受7,8およびスラスト軸受9で支
えられ、めすロータシャフト5′は−yシアル軸受10
.11およびスラスト軸受12で支えられており、これ
らラジアル軸受7.8および10.11とスラスト軸受
9および12はそれぞれ潤滑油によって潤滑されている
。おすロータシャフト2′にはラジアル軸受7.8の潤
滑油が圧縮ガス室に浸入しないように軸封13,14が
取シ付けられ、めすロータシャフト5′にはラジアル軸
受10.11の潤滑油が圧縮ガス室に浸入しないように
軸封15,16が取り付けられており、軸封13および
15には軸封ガス吹込口aを通じて軸封ガスが供給され
、軸封14および16には軸封ガス吹込口すを通じて軸
封ガスが吹き込まれるようになっている。前記おすロー
タ2とめすロータ5によシ圧縮された圧縮ガスによシ、
第1図に矢印Aで示す方向におす、めすロータ2゜5を
移動させるスラスト力が発生する。このスラスト力を軽
減させるために、おすロータシャフト2′にバランスピ
ストン17が取り付けられており、該バランスピストン
17にはバランスガス吹込口Cよシバランスガスが送り
込まれるようになっている。
In the oil-free compressor shown in FIG. 1, when the binion 1 is rotated by a drive machine (not shown), the rotation is transmitted to the male rotor 2 via the male rotor shaft 2'.
is transmitted to the female rotor shaft 5' via a pair of timing gears 3.4, and is transmitted to the male and female rotors 2.4.
5 is rotated. When the male rotor 2 and the female rotor 5 are rotated at high speed to a minute gap, gas is compressed between the rotor and the casing 6 and is sent out. The male rotor shaft 2' is supported by radial bearings 7, 8 and a thrust bearing 9, and the female rotor shaft 5' is supported by a -y sial bearing 10.
.. 11 and a thrust bearing 12, and these radial bearings 7.8 and 10.11 and thrust bearings 9 and 12 are each lubricated with lubricating oil. Shaft seals 13 and 14 are attached to the male rotor shaft 2' to prevent lubricating oil from the radial bearings 7.8 from entering the compressed gas chamber, and lubricating oil from the radial bearings 10.11 to the female rotor shaft 5'. Shaft seals 15 and 16 are attached to prevent the gas from entering the compressed gas chamber, and shaft seal gas is supplied to the shaft seals 13 and 15 through the shaft seal gas inlet a, and the shaft seals 14 and 16 are supplied with shaft seal gas through the shaft seal gas inlet a. Shaft sealing gas is blown into the shaft through the gas inlet. By the compressed gas compressed by the male rotor 2 and the female rotor 5,
A thrust force is generated which moves the female rotor 2.5 in the direction indicated by arrow A in FIG. In order to reduce this thrust force, a balance piston 17 is attached to the male rotor shaft 2', and balance gas is fed into the balance piston 17 through a balance gas inlet C.

次に、第2図は従来用いられている軸封コントロールお
よびスラスト力軽減技術を示す。
Next, FIG. 2 shows conventional shaft seal control and thrust force reduction technology.

この第2図に示す技術では、ガス吸込管dから吸入ガス
が吸い込まれ、その吸入ガスは吸入弁18を通シ、ガス
吸入口eから前記第1図に示す構造の圧縮機100内に
吸い込まれる。ついで、圧縮機100内で圧縮された圧
縮ガスは、ガス吐出口fから吐出され、吐出逆止弁20
および冷却器21を通り、圧縮ガスを必要とするプラン
トへ送9出される。
In the technique shown in FIG. 2, suction gas is sucked in from the gas suction pipe d, passes through the suction valve 18, and is sucked into the compressor 100 having the structure shown in FIG. 1 from the gas suction port e. It will be done. Then, the compressed gas compressed in the compressor 100 is discharged from the gas discharge port f, and the discharge check valve 20
The compressed gas is then passed through a cooler 21 and sent 9 to a plant that requires compressed gas.

そして、圧縮機の全負荷運転時には、吸入弁18は全開
、放風弁19は全閉となっており、吐出口fおよび吐出
管gでの圧力は圧縮状態圧力、例えば7Kf/cf/l
となっている。また、無負荷運転時には、吸入弁18は
ほぼ全閉、放風弁19は全開となっておシ、吐出管gで
の圧力は前記7に9/dに保たれているが、吐出逆止弁
20よシ上流である吐出口fでの圧力は大気圧力となる
っさらに、軸封ガスは吐出管gjDガス分岐管iを通じ
て導かれ、軸封ガス吹込口a、bから軸封13.15お
よび14.16に吹き込まれる。また、バランスピスト
ン17へ封入されるバランスガスは吐出逆止弁20の上
流から別のガス分岐管jを通じて導かれ、ガス分岐管j
に設けられた冷却器22で冷却され、バランスガス吹込
口Cからバランスピストン17の作動部へ吹き込まれる
When the compressor is operating at full load, the suction valve 18 is fully open and the blowoff valve 19 is fully closed, and the pressure at the discharge port f and discharge pipe g is the compressed state pressure, for example 7 Kf/cf/l.
It becomes. In addition, during no-load operation, the suction valve 18 is almost fully closed, the air discharge valve 19 is fully open, and the pressure in the discharge pipe g is maintained at 7 to 9/d, but the discharge non-return The pressure at the discharge port f, which is upstream from the valve 20, becomes atmospheric pressure. Furthermore, the shaft sealing gas is guided through the discharge pipe gjD gas branch pipe i, and is passed from the shaft sealing gas inlets a, b to the shaft sealing 13.15. and blown into 14.16. Further, the balance gas sealed in the balance piston 17 is led from upstream of the discharge check valve 20 through another gas branch pipe j.
The balance gas is cooled by a cooler 22 installed in the balance gas inlet C, and is blown into the operating portion of the balance piston 17 from the balance gas inlet C.

ところで、軸封ガスの吹き込みは、圧縮機100が無負
荷運転し、軸受部圧力よシ圧縮機室内圧力が低い状態が
起こる場合にのみ必要である。しかしながら、吐出管g
での圧力は全負荷、無負荷にかかわらず、例えば設定値
7Ky/−に保たれている。
By the way, the blowing of the shaft sealing gas is necessary only when the compressor 100 is operated under no load and the pressure inside the compressor is lower than the bearing pressure. However, the discharge pipe g
The pressure is maintained at a set value of 7 Ky/-, for example, regardless of whether the load is full or no load.

したがって、第2図に示す従来技術では軸封ガス吹き込
みを必要としない全負荷運転時にも軸封ガスを吹き込む
こととなり、軸封ガスの損失を招く欠点があり、また吹
き込んだガスが軸受部を通シ、潤滑油の排油とともに潤
滑油タンクへ入シ、潤滑油と混ったオイルミストとなっ
て付近へまき散らされる不具合があった。しかも、従来
技術でハハランスピストン17へ封入スるバランスガス
は吐出逆止弁20の上流から導くようになっており、ガ
ス分岐管jには150〜2500程度の高温ガスが導入
されるので、冷却器22が不可欠であシ、このためコス
トアップになる欠点があり、冷却器22の故障時、高温
ガスが軸受部に入り、潤滑油と接して火災事故を起こす
おそれがあった。
Therefore, in the conventional technology shown in Fig. 2, shaft sealing gas is blown even during full-load operation when no shaft sealing gas is required, which has the disadvantage of causing loss of shaft sealing gas, and the blown gas may damage the bearing. There was a problem that when the lubricating oil was drained, it entered the lubricating oil tank, and the oil mist mixed with the lubricating oil was scattered around the area. Moreover, in the conventional technology, the balance gas sealed in the halan piston 17 is led from upstream of the discharge check valve 20, and high temperature gas of about 150 to 2500 is introduced into the gas branch pipe j. The cooler 22 is indispensable, which has the drawback of increasing costs, and when the cooler 22 fails, there is a risk that high-temperature gas will enter the bearing and come into contact with the lubricating oil, causing a fire accident.

なお、第2図において第1図に示す圧縮機の構成部材と
同じ部材には同じ符号を付けて示している。
In FIG. 2, the same members as those of the compressor shown in FIG. 1 are designated with the same reference numerals.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の問題を解決し、ガス吐
出管に必ず設けられている冷却器の下流側より分岐した
ガスを、軸封装置へ圧縮機の無負荷運転時にのみ軸封ガ
スとして供給し、またバランスピストン機構には全負荷
運転時にのみ低温ガスをバランスガスとして供給し得る
オイルフリーねじ圧縮機を提供するにある。
An object of the present invention is to solve the problems of the prior art described above, and to supply the gas branched from the downstream side of the cooler, which is always provided in the gas discharge pipe, to the shaft sealing device only during no-load operation of the compressor. An object of the present invention is to provide an oil-free screw compressor that can supply low-temperature gas as a balance gas to a balance piston mechanism only during full load operation.

〔発明の概要〕[Summary of the invention]

本発明は、圧縮ガスのガス吐出管における冷却器の下流
側に、ガス分岐管を接続し、該ガス分岐管に軸封装置へ
ガスを供給する軸封ガス管と、バランスピストン機構へ
ガスを供給するバランスガス管とを接続するとともに、
前記軸封ガス管とバランスガス管に、圧縮機の無負荷運
転時にのみ軸封ガス管にガスを流し、また全負荷運転時
にのみバランスガス管へガスを流し得る弁を設けたとこ
ろに特徴を有するもので、この構成により前記目的を確
実に達成することができたものである。
The present invention connects a gas branch pipe to the downstream side of a cooler in a gas discharge pipe for compressed gas, and connects the gas branch pipe to the shaft sealing gas pipe that supplies gas to the shaft sealing device, and the shaft sealing gas pipe that supplies gas to the balance piston mechanism. In addition to connecting the supply balance gas pipe,
The shaft sealing gas pipe and the balance gas pipe are characterized by the provision of valves that allow gas to flow into the shaft sealing gas pipe only during no-load operation of the compressor, and to flow gas to the balance gas pipe only during full-load operation. With this configuration, the above object can be reliably achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第3図は、本発明の第1の実施例を示すもので、この実
施例ではガス吐出管gにおける冷却器21の下流側に、
ガス分岐管iが接続され、該ガス分岐管1には軸封ガス
吹込口a+bを通じて軸封13.15および14.16
にガスを供給する軸封ガス管にと、バランスガス吹込口
Cを通じてバランスピストン17の作動部にガスを供給
するバランスガス管tとが接続されている。
FIG. 3 shows a first embodiment of the present invention. In this embodiment, on the downstream side of the cooler 21 in the gas discharge pipe g,
A gas branch pipe i is connected to the gas branch pipe 1, and shaft seals 13.15 and 14.16 are connected to the gas branch pipe 1 through shaft sealing gas inlets a+b.
A balance gas pipe t that supplies gas to the operating portion of the balance piston 17 through a balance gas inlet C is connected to the shaft sealing gas pipe t that supplies gas to the balance piston 17 .

前記軸封ガス管kには電磁弁23が設けられ、バランス
ガス管tには電磁弁24が設けられている。前記電磁弁
23.24には、吸入弁18と放風弁19とを制御する
制御信号が挿入されており、圧縮機100の運転状態が
吸入弁18をほぼ全閉、放風弁19を全開に制御する無
負荷運転へ移行するときは電磁弁23が軸封ガス吹込ロ
a、bヘガスを流すべく動作し、吸入弁18を全開、放
風弁19を全閉に制御する全負荷運転へ移行するときは
電磁弁24がバランスガス吹込口CヘガスWEすべく動
作するように連係されている。
The shaft sealing gas pipe k is provided with a solenoid valve 23, and the balance gas pipe t is provided with a solenoid valve 24. A control signal for controlling the suction valve 18 and the blowoff valve 19 is inserted into the solenoid valves 23 and 24, and the operating state of the compressor 100 is such that the suction valve 18 is almost fully closed and the blowoff valve 19 is fully open. When transitioning to no-load operation, the solenoid valve 23 operates to flow gas to the shaft sealing gas blowing holes a and b, and the suction valve 18 is fully opened and the blow-off valve 19 is fully closed. When shifting, the solenoid valve 24 is linked to operate to transfer the gas to the balance gas inlet C.

その結果、この第1の実施例では圧縮機100の無負荷
運転時にのみガス分岐管i→軸封ガス管に→電磁弁23
→軸封ガス吹込ロa、bを通じて軸封13,15および
14.16へガスが供給される。したがって、圧縮機1
00の全負荷運転時には軸封13,15および14.1
6にはガスが吹き込まれないので、圧縮ガスの損失を防
止できるし、オイルミストの飛散等のトラブルを未然に
防止することができる。
As a result, in this first embodiment, only during no-load operation of the compressor 100, the gas branch pipe i → the shaft sealing gas pipe → the solenoid valve 23
→Gas is supplied to the shaft seals 13, 15 and 14.16 through the shaft sealing gas blowing rollers a and b. Therefore, compressor 1
Shaft seals 13, 15 and 14.1 during full load operation of 00
Since no gas is blown into 6, loss of compressed gas can be prevented, and troubles such as oil mist scattering can be prevented.

また、圧縮機100の全負荷運転時にのみガス分岐vi
→パラ/スガス管t→電磁弁24→バランスガス吹込口
Cを通じてバランスピストン17の作動部へバランスガ
スが供給される。しかも、バランスピストン17の作動
部へ冷却器21で冷却した低温ガスが供給されるので、
高温ガスのガス洩れに伴う火災事故等を防止することが
できる(9) し、バランスガスを冷却するために特別に冷却器を設置
する必要がないので、設備を簡略化することが可能であ
る。
In addition, the gas branch vi is applied only when the compressor 100 is operated at full load.
Balance gas is supplied to the operating portion of the balance piston 17 through →parallel gas pipe t → solenoid valve 24 →balance gas inlet C. Moreover, since the low temperature gas cooled by the cooler 21 is supplied to the operating part of the balance piston 17,
Fire accidents caused by high-temperature gas leaks can be prevented (9), and there is no need to install a special cooler to cool the balance gas, so the equipment can be simplified. .

次に、第4図は本発明の第2の実施例を示すもので、こ
の実施例ではガス分岐管iに対する軸封ガス管にとバラ
ンスガス管tの接続部に3方電磁弁25が設けられてい
る。
Next, FIG. 4 shows a second embodiment of the present invention. In this embodiment, a three-way solenoid valve 25 is provided at the connection part between the shaft sealing gas pipe for the gas branch pipe i and the balance gas pipe t. It is being

前記3方電磁弁25には、吸入弁18と放風弁19とを
制御する制御信号が挿入されておシ、この3方電磁弁2
5は圧縮機100の無負荷運転時にのみ軸封ガス吹込口
a、bへ軸封ガスを流すべく動作し、全負荷運転時にの
みバランスガス吹込口Cヘパランスガスを流すべく動作
するようになっている。
A control signal for controlling the suction valve 18 and the blowoff valve 19 is inserted into the three-way solenoid valve 25.
5 operates to flow shaft sealing gas to the shaft sealing gas inlets a and b only during no-load operation of the compressor 100, and operates to flow heparance gas to the balance gas inlet C only during full-load operation. .

したがって、この第2の実施例では1個の3方電磁弁2
5で軸封ガス吹込口a、bとバランスガス吹込口Cへの
ガスの供給切り換えを行い得るので、第1の実施例に比
較して、よシ一層設備を簡略化することができる。
Therefore, in this second embodiment, one three-way solenoid valve 2
Since the gas supply to the shaft sealing gas inlets a, b and the balance gas inlet C can be switched in step 5, the equipment can be further simplified compared to the first embodiment.

ついで、第5図は本発明の第3の実施例を示す。Next, FIG. 5 shows a third embodiment of the present invention.

(10) この実施例では、ガス分岐管iに対する軸封ガス管にと
バランスガス管tの接続部に3方制御弁26が設けられ
、ガス吐出管gにおけるガス分岐管iの接続部の下流側
に圧力スイッチ27が設けられ、吸入弁18と放風弁1
9には制@l用の油圧回路が設けられている。
(10) In this embodiment, a three-way control valve 26 is provided in the shaft-sealing gas pipe for the gas branch pipe i and at the connection part of the balance gas pipe t, and downstream of the connection part of the gas branch pipe i in the gas discharge pipe g. A pressure switch 27 is provided on the side, and the suction valve 18 and the air discharge valve 1
9 is provided with a hydraulic circuit for control @l.

前記圧力スイッチ27は、圧縮ガスの吐出ラインの圧力
を、例えば7に9/−付近にコントロールしようとする
場合にはその設定値の上限を7.2 Kg/d1下限を
6.8Ky/dにセットし得るようになっている。
The pressure switch 27 sets the upper limit of the set value to 7.2 Kg/d1 and the lower limit to 6.8 Ky/d when trying to control the pressure of the compressed gas discharge line to, for example, around 7 to 9/-. It can be set.

前記油圧回路は、オイルタンク28、オイルポンプ29
.4ボート・2位置・電磁型の切換弁30、アクチェー
タ31とを備えている。前記切換弁30は、圧力スイッ
チ27に接続されていて、圧力スイッチ27が設定値の
上限である1、2Ky/−に上昇したとき、すなわち無
負荷運転に移行するときは切換弁30が圧力スイッチ2
7からの信号により図示の■位置から1位置へ切シ換え
られ、オイルポンプ29から吐出された圧油が油圧管n
(11) を経てアクチェータ31へ流れ、吸入弁18がほぼ全閉
、放風弁19が全開に制御され、また圧力スイッチ27
が設定値の下限である6、8Ky/−に低下したとき、
すなわち全負荷運転に移行するときは切換弁30が圧力
スイッチ27からの信号により工位置から■位置へ切換
えられ、オイルポンプ29から吐出された圧油が油圧管
mを通ってアクチェータ31へ流れ、吸入弁18が全開
、放風弁19が全開に制御されるようになっている。
The hydraulic circuit includes an oil tank 28 and an oil pump 29.
.. It is equipped with a 4-boat, 2-position, electromagnetic type switching valve 30 and an actuator 31. The switching valve 30 is connected to the pressure switch 27, and when the pressure switch 27 rises to the upper limit of the set value of 1 or 2 Ky/-, that is, when transitioning to no-load operation, the switching valve 30 switches the pressure switch to the pressure switch 27. 2
7 is switched from the illustrated position to the 1 position, and the pressure oil discharged from the oil pump 29 is transferred to the hydraulic pipe n.
(11) The flow flows to the actuator 31 via
When the value decreases to the lower limit of the set value of 6,8Ky/-,
That is, when shifting to full load operation, the switching valve 30 is switched from the work position to the ■ position by a signal from the pressure switch 27, and the pressure oil discharged from the oil pump 29 flows to the actuator 31 through the hydraulic pipe m. The suction valve 18 is controlled to be fully open, and the air discharge valve 19 is controlled to be fully open.

前記3方制御弁26は、切換弁30とアクチェータ31
とを結ぶ油圧管mに油圧分岐管0を介して接続され、油
圧分岐管0を通じて導かれる制御信号により、圧縮機1
00の無負荷運転時にのみ軸封ガス管に側へガスを流し
、また全負荷運転時にのみバランスガス管を側へガスを
流すべく動作するようになっている。
The three-way control valve 26 includes a switching valve 30 and an actuator 31.
The compressor 1 is connected via a hydraulic branch pipe 0 to a hydraulic pipe m connecting the compressor 1 and
Gas is allowed to flow to the side through the shaft sealing gas pipe only during no-load operation of 00, and gas is allowed to flow to the side through the balance gas pipe only during full-load operation.

したがって、この第3の実施例では吐出ラインのガス使
用量が減少し、ガス吐出管gの圧力が上昇し、圧力スイ
ッチ27の設定値の上限としての7.2Kf/−まで上
昇すると、圧力スイッチ27が(12) 作動し、その出力信号が油圧回路の切換弁30に送られ
、この信号によシ切換弁30が1位置に切シ換えられ、
オイルポンプ29から油圧管nを経てアクチェータ31
に圧油が送られ、吸入弁18がほぼ全閉、放風弁19が
全開に切シ換えられ、圧縮機100が無負荷運転に移行
する。このとき、前記切換弁30とアクチェータ31と
を結ぶ油圧管mの戻シ側の油圧が油圧分岐管0を通じて
3方制御弁用の制御信号として取シ出され、この信号に
よシ3方制御弁26が軸封ガス管に側へガスを流すべく
動作する。ついで、吐出ラインのガス使用量が増加し、
ガス吐出管gの圧力が低下し、圧力スイッチ27の設定
値の下限としての6.9V4/−に達すると、圧力スイ
ッチ27が作動し、その出力信号によシ切換弁30が■
位置に切り換えられ、オイルポンプ29から油圧管mを
通ってアクチェータ31へ圧油が送られ、吸入弁18が
全開、放風弁19が全閉に切り換えられ、圧縮機100
は全負荷運転に移行する。この場合に、前記切換弁30
とアクチェータ31とを結ぶ油圧管mの往(13) き側の油圧が油圧分岐管0を通じて3方制御弁用の制御
信号として導入され、この信号によシ3方制御弁26が
バランスガス管を側へガスを流すべく動作する。
Therefore, in this third embodiment, when the amount of gas used in the discharge line decreases and the pressure in the gas discharge pipe g increases to 7.2 Kf/- as the upper limit of the set value of the pressure switch 27, the pressure switch 27 is activated (12), its output signal is sent to the switching valve 30 of the hydraulic circuit, and this signal switches the switching valve 30 to the 1 position,
From the oil pump 29 to the actuator 31 via the hydraulic pipe n
Pressure oil is sent to the compressor, the suction valve 18 is almost fully closed, the blowoff valve 19 is fully open, and the compressor 100 shifts to no-load operation. At this time, the hydraulic pressure on the return side of the hydraulic pipe m connecting the switching valve 30 and the actuator 31 is taken out as a control signal for the three-way control valve through the hydraulic branch pipe 0, and this signal is used to control the three-way control valve. A valve 26 is operated to allow gas to flow sideways into the shaft seal gas tube. Then, the amount of gas used in the discharge line increases,
When the pressure in the gas discharge pipe g decreases and reaches 6.9V4/-, which is the lower limit of the set value of the pressure switch 27, the pressure switch 27 is activated and the output signal causes the switching valve 30 to switch to
position, pressure oil is sent from the oil pump 29 to the actuator 31 through the hydraulic pipe m, the suction valve 18 is switched to fully open, the air discharge valve 19 is switched to fully closed, and the compressor 100
will shift to full load operation. In this case, the switching valve 30
The hydraulic pressure on the forward (13) side of the hydraulic pipe m connecting the actuator 31 is introduced as a control signal for the three-way control valve through the hydraulic branch pipe 0, and this signal causes the three-way control valve 26 to switch to the balance gas pipe. It operates to flow gas to the side.

その結果、この第3の実施例ではこの種の圧縮機として
は通常設置される圧力スイッチ27、吸入弁18と放風
弁19とを制御するための油圧回路を利用して3方制御
弁26を動作させ、圧縮機100の無負荷運転時にのみ
軸封ガス管kを通じて軸封ガス吹込ロa、bヘガスを供
給し、全負荷運転時にのみバランスガス管tを通じてバ
ランスガス吹込口Cヘガスを供給することができる。
As a result, in this third embodiment, the three-way control valve 26 is installed using a hydraulic circuit for controlling the pressure switch 27, the suction valve 18, and the blowoff valve 19, which are normally installed in this type of compressor. is operated, and gas is supplied to the shaft sealing gas blowing holes a and b through the shaft sealing gas pipe k only during no-load operation of the compressor 100, and gas is supplied to the balance gas blowing port C through the balance gas pipe t only during full-load operation. can do.

なお、前述の第1.第2および第3の実施例において、
他の部分の構成は前記第2図に示すものと同様であり、
同一部材には同一の符号を付けて示し、これ以上の説明
を省略する。
In addition, the above-mentioned 1. In the second and third embodiments,
The configuration of other parts is the same as that shown in FIG. 2 above,
Identical members are indicated with the same reference numerals, and further explanation will be omitted.

なお、本発明ではガス分岐管iから分岐されたガスを流
す方向を、軸封ガス管にとバランスガス管tとに切シ換
える弁の形式、および該弁を動作させる制御信号の取り
込みは、図示の実施例に限(14) らず、要は圧縮機100の無負荷運転時にのみ軸封ガス
管にヘガスを流し、全負荷運転時にのみバランスガス管
tヘガスを流し得るものであればよい。
In addition, in the present invention, the type of valve that switches the flow direction of the gas branched from the gas branch pipe i to the shaft-sealed gas pipe and the balance gas pipe t, and the intake of the control signal to operate the valve are as follows: The present invention is not limited to the illustrated embodiment (14), but the point is that it is sufficient as long as it allows gas to flow through the shaft sealing gas pipe only during no-load operation of the compressor 100, and allows gas to flow through the balance gas pipe t only during full-load operation. .

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、ガス吐出管から分岐した
ガスを、軸封装置へその必要とする圧縮機の無負荷運転
時にのみ供給するようにしているので、ガスの損失を著
しく減少させ得る効果を有する外、全負荷運転時にガス
を吹き込むことによって発生するオイルミストの飛散を
未然に防止し得る効果がある。
According to the present invention described above, the gas branched from the gas discharge pipe is supplied to the shaft sealing device only during no-load operation of the necessary compressor, so gas loss can be significantly reduced. In addition to being effective, it also has the effect of preventing the scattering of oil mist generated by blowing gas during full load operation.

さらに、本発明によればガス吐出管における冷却管の下
流側から分岐した低温ガスを、バランスピストン機構へ
その必要とする圧縮機の全負荷時にのみ供給するように
しているので、高温ガスの吹き込みによる火災事故等を
未然に防止し得る効果がある。
Furthermore, according to the present invention, the low-temperature gas branched from the downstream side of the cooling pipe in the gas discharge pipe is supplied to the balance piston mechanism only when the necessary compressor is at full load. This has the effect of preventing fire accidents, etc.

また、本発明によればガス吐出管に通常設置されている
冷却器の下流側から分岐したガスを、パ(15) ランスピストン機構へ供給するようにしているので、バ
ランスガスを冷却するための特別な冷却器を必要とせず
、したがって設備を簡略化できる効果もある。
Furthermore, according to the present invention, the gas branched from the downstream side of the cooler normally installed in the gas discharge pipe is supplied to the par (15) lance piston mechanism. It does not require a special cooler, and therefore has the effect of simplifying the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般に使用されているオイルフリーねじ圧縮機
の本体の横断面図、第2図は従来の軸封コントロールお
よびスラスト力軽減技術を示す系統図、第3図、第4図
および第5図は本発明の第1、第2および第3の実施例
を示す系統図である。 13〜16・・・軸封装置を構成する軸封、17・・・
バランスピストン機構を構成するバランスピストン、2
1・・・ガスの冷却器、a、b・・・軸封ガス吹込口、
C・・・バランスガス吹込口、g・・・ガス吐出管、i
・・・ガス分岐管、k・・・軸封ガス管、t・・・バラ
ンスガス管、23.24・・・軸封ガス管とバランスガ
ス管にガスを流す弁としての電磁弁、25・・・同3方
電磁(16) 聞2図 第3 図 74 図 第 5 図
Figure 1 is a cross-sectional view of the main body of a commonly used oil-free screw compressor, Figure 2 is a system diagram showing conventional shaft seal control and thrust force reduction technology, Figures 3, 4 and 5. The figure is a system diagram showing the first, second and third embodiments of the present invention. 13-16... Shaft seals forming the shaft sealing device, 17...
Balance piston 2 that constitutes the balance piston mechanism
1... Gas cooler, a, b... Shaft sealing gas inlet,
C...Balance gas inlet, g...Gas discharge pipe, i
...Gas branch pipe, k...Shaft sealing gas pipe, t...Balance gas pipe, 23.24...Solenoid valve as a valve for flowing gas into the shaft sealing gas pipe and balance gas pipe, 25. ...Three-way electromagnetic (16) Fig. 2 Fig. 3 Fig. 74 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] ガス圧縮室への軸受用潤滑油の浸入を防止するための軸
封装置と、圧縮ガスのガス圧力によシロータをその軸方
向に移動させるスラスト力を軽減するためのバランスピ
ストン機構とを備えたオイルフリーねじ圧縮機において
、圧縮ガスのガス吐出管における冷却器の下流側に、ガ
ス分岐管を接続し、該ガス分岐管に前記軸封装置へガス
を供給する軸封ガス管と、前記バランスピストン機構へ
ガスを供給するバランスガス管とを接続するとともに、
前記軸封ガス管とバランスガス管に、圧縮機の無負荷運
転時にのみ軸封ガス管にガスを流し、また全負荷運転時
にのみバランスガス管へガスを流し得る弁を設けたこと
を特徴とするオイルフリーねじ圧縮機。
Equipped with a shaft sealing device to prevent bearing lubricating oil from entering the gas compression chamber, and a balance piston mechanism to reduce the thrust force that moves the rotor in its axial direction due to the gas pressure of compressed gas. In the oil-free screw compressor, a gas branch pipe is connected to the downstream side of the cooler in a gas discharge pipe for compressed gas, and a shaft seal gas pipe that supplies gas to the shaft seal device to the gas branch pipe, and a shaft seal gas pipe that supplies gas to the shaft seal device; In addition to connecting the balance gas pipe that supplies gas to the piston mechanism,
The shaft sealing gas pipe and the balance gas pipe are provided with valves that allow gas to flow into the shaft sealing gas pipe only during no-load operation of the compressor and to flow gas to the balance gas pipe only during full-load operation. Oil-free screw compressor.
JP21835482A 1982-12-15 1982-12-15 Oilless screw compressor Pending JPS59110889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21835482A JPS59110889A (en) 1982-12-15 1982-12-15 Oilless screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21835482A JPS59110889A (en) 1982-12-15 1982-12-15 Oilless screw compressor

Publications (1)

Publication Number Publication Date
JPS59110889A true JPS59110889A (en) 1984-06-26

Family

ID=16718562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21835482A Pending JPS59110889A (en) 1982-12-15 1982-12-15 Oilless screw compressor

Country Status (1)

Country Link
JP (1) JPS59110889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390087U (en) * 1986-12-01 1988-06-11
JPH0250195U (en) * 1988-09-30 1990-04-09
JPH0261195U (en) * 1988-10-27 1990-05-07
EP1975410A1 (en) * 2007-03-30 2008-10-01 Anest Iwata Corporation Rotor shaft sealing method and structure of oil-free rotary compressor
CN112012926A (en) * 2019-05-28 2020-12-01 复盛实业(上海)有限公司 Oil-free double-helix gas compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390087U (en) * 1986-12-01 1988-06-11
JPH0250195U (en) * 1988-09-30 1990-04-09
JPH0261195U (en) * 1988-10-27 1990-05-07
EP1975410A1 (en) * 2007-03-30 2008-10-01 Anest Iwata Corporation Rotor shaft sealing method and structure of oil-free rotary compressor
JP2008255798A (en) * 2007-03-30 2008-10-23 Anest Iwata Corp Method and device for sealing rotor shaft seal of oil-free rotary compressor
US7713040B2 (en) 2007-03-30 2010-05-11 Anest Iwata Corporation Rotor shaft sealing method and structure of oil-free rotary compressor
CN112012926A (en) * 2019-05-28 2020-12-01 复盛实业(上海)有限公司 Oil-free double-helix gas compressor

Similar Documents

Publication Publication Date Title
KR100345843B1 (en) Screw compressor and method for controlling the operation of the same
US5611661A (en) Gas turbine engine with bearing chambers and barrier air chambers
US4903489A (en) Supercharged multi-cylinder reciprocating piston-internal combustion engine with several exhaust gas turbochargers operating in parallel
US11326622B2 (en) Oil cooled centrifugal compressor and turbocharger including the same
WO1994015100A1 (en) Rotary screw compressor with shaft seal
JPH11500511A (en) Slide valve driven by gas from screw compressor
WO2013175817A1 (en) Screw compressor
US6517325B2 (en) Air compressor and method of operating the same
JPS59173527A (en) Gas turbine exhaust frame cooling air system
JPS59110889A (en) Oilless screw compressor
JPS6027812B2 (en) Control device for turbo charger mechanism
US5201648A (en) Screw compressor mechanical oil shutoff arrangement
CN114599883A (en) Compressor body and compressor
RU2211346C1 (en) Oil system of gas turbine engine
JP4038646B2 (en) Variable speed oil-free screw compressor
JPH10252688A (en) Centrifugal compressor device and operation method therefor
JPS59141724A (en) Lubricating apparatus for engine with turbocharger
JP4294212B2 (en) High pressure screw compressor
JPS59106796A (en) Oil feed device
JPH10274049A (en) Lubricating device for exhaust gas turbosupercharger
JPS6350692A (en) Screw type expander compressor
GB2269424A (en) Preventing oil supply to screw compressor on shutdown
JPS61234291A (en) Oil feeding amount controller of oil-free screw hydraulic machine
KR0131031B1 (en) Air-compressor volume controller by five-way electric valve
JP2001342806A (en) Turbine gland steam attempered water supply equipment