JPS5910925B2 - Oxygen recycling ozone generator - Google Patents

Oxygen recycling ozone generator

Info

Publication number
JPS5910925B2
JPS5910925B2 JP2905777A JP2905777A JPS5910925B2 JP S5910925 B2 JPS5910925 B2 JP S5910925B2 JP 2905777 A JP2905777 A JP 2905777A JP 2905777 A JP2905777 A JP 2905777A JP S5910925 B2 JPS5910925 B2 JP S5910925B2
Authority
JP
Japan
Prior art keywords
ozone
oxygen
adsorption
ozone generator
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2905777A
Other languages
Japanese (ja)
Other versions
JPS53113295A (en
Inventor
重則 八木
周治 小川
敬典 難波
則一 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2905777A priority Critical patent/JPS5910925B2/en
Publication of JPS53113295A publication Critical patent/JPS53113295A/en
Publication of JPS5910925B2 publication Critical patent/JPS5910925B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 この発明は、酸素リサイクルオゾン発生装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an oxygen recycling ozone generator.

従来の酸素リサイクルオゾン発生装置の概略的な構成を
第1図に示す。
FIG. 1 shows a schematic configuration of a conventional oxygen recycling ozone generator.

第1図において、1はオゾン発生機、2は冷却器、3は
冷凍機、41,4。
In FIG. 1, 1 is an ozone generator, 2 is a cooler, 3 is a refrigerator, and 41, 4.

,43,44は吸着系統動作切換用の電磁弁、51,5
はオゾン吸着塔、61,6t 63j 64は脱着系統
動作切換用の電磁弁、7は原料酸素供給口、8は乾燥気
体入口、9はオゾン含有気体出口である。
, 43, 44 are electromagnetic valves for switching the operation of the adsorption system, 51, 5
61, 6t 63j 64 is a solenoid valve for switching the operation of the desorption system, 7 is a raw material oxygen supply port, 8 is a drying gas inlet, and 9 is an ozone-containing gas outlet.

そして、酸素リサイクル系統路は実線で、乾燥気体系統
路は破線で示してある。
The oxygen recycling system is shown as a solid line, and the dry gas system is shown as a broken line.

第1図の従来の酸素リサイクルオゾン発生装置において
、オゾン吸着塔51がオゾン吸着動作、オゾン吸着塔5
2がオゾン脱着動作している状態について以下に説明す
る。
In the conventional oxygen recycling ozone generator shown in FIG.
The state in which No. 2 is performing ozone desorption operation will be described below.

、オゾン発生機1に供給された原料酸素02はオゾン発
生機1を通過する間に放電により原料酸素の一部がオゾ
ンとなりオゾン含有酸素(以下オゾン化酸素という)と
して冷却器2に送られ、冷凍機3からの冷媒によって冷
却される。
While the raw material oxygen 02 supplied to the ozone generator 1 passes through the ozone generator 1, a part of the raw material oxygen becomes ozone due to electric discharge and is sent to the cooler 2 as ozone-containing oxygen (hereinafter referred to as ozonized oxygen). It is cooled by the refrigerant from the refrigerator 3.

冷却されたオゾン化酸素は電磁弁4を経てオゾン吸着塔
51に入り塔内の吸着剤を冷却するとともに冷却された
吸着剤にオゾンを吸着させ、残りの酸素は電磁弁42を
介してオゾン発生機1にリサイクルされる。
The cooled ozonized oxygen enters the ozone adsorption tower 51 via the solenoid valve 4, cools the adsorbent in the tower, and causes the cooled adsorbent to adsorb ozone, and the remaining oxygen passes through the solenoid valve 42 to generate ozone. Recycled to Machine 1.

ここでオゾンとして消費された酸素は、原料酸素供給口
7より補われる。
The oxygen consumed as ozone here is replenished from the raw material oxygen supply port 7.

一方、乾燥気体系統(脱着系統)では、−ヒ記オゾン吸
着塔5の吸着動作中は、電磁弁61,6?開放、電磁弁
63,6.4が閉鎖されており、乾燥気体が乾燥気体人
口8から電磁弁6を経てオゾン吸着塔52に入り、現段
階の前の段階でオゾン吸着塔52に吸着されているオゾ
ンを脱着しながら電磁弁62を介してオゾン含有気体と
してオゾン含有気体出口9から使用個所に送られる。
On the other hand, in the dry gas system (desorption system), during the adsorption operation of the ozone adsorption tower 5, the solenoid valves 61, 6? Open, the solenoid valves 63, 6.4 are closed, and the dry gas enters the ozone adsorption tower 52 from the dry gas population 8 through the solenoid valve 6, and is adsorbed by the ozone adsorption tower 52 in the stage before the current stage. The ozone-containing gas is sent through the electromagnetic valve 62 as an ozone-containing gas from the ozone-containing gas outlet 9 to the point of use while desorbing and desorbing the ozone present therein.

オゾン吸着塔5内の吸着剤がオゾン飽和近くまで吸着す
ると、電磁弁操作によりオゾン吸着塔5はオゾン吸着動
作からオゾン脱着動作へ、オゾン吸着塔5はオゾン脱着
動作からオゾン吸着動作に切り換えられる。
When the adsorbent in the ozone adsorption tower 5 adsorbs ozone to near saturation, the ozone adsorption tower 5 is switched from ozone adsorption operation to ozone desorption operation, and from ozone desorption operation to ozone adsorption operation by operating a solenoid valve.

前記オゾン吸着動作、脱着動作を交互に繰り返すことに
より連続的にオゾンを製造供給する。
By alternately repeating the ozone adsorption operation and desorption operation, ozone is continuously produced and supplied.

ところで、上記従来の酸素リサイクルオゾン発生装置は
、オゾン脱着操作に乾燥空気を用いているため、オゾン
脱着過程において空気中の酸素がリサイクル系に混入し
、オゾン発生機1通過時において窒素酸化物(NOx)
を生成する。
By the way, since the above-mentioned conventional oxygen recycling ozone generator uses dry air for ozone desorption operation, oxygen in the air mixes into the recycling system during the ozone desorption process, and nitrogen oxides ( NOx)
generate.

この窒素酸化物はオゾンに比べて極性が大きく、オゾン
より強く吸着剤に吸着される。
This nitrogen oxide has greater polarity than ozone, and is more strongly adsorbed by the adsorbent than ozone.

それゆえ、第2図に示すように窒素酸化物の吸着剤への
吸着のため吸着剤のオゾンに対する吸着能力が低下する
Therefore, as shown in FIG. 2, due to the adsorption of nitrogen oxides onto the adsorbent, the adsorbent's ability to adsorb ozone is reduced.

このオゾン吸着能力の低下は、吸着剤がオゾンで飽和吸
着される時間を早めるため初期に設定していた前記オゾ
ン吸着動作、オゾン脱着動作の切換え時間において、切
換え前に相当量のオゾンが吸着しきれずに酸素リサイク
ル系に漏洩する。
This decrease in ozone adsorption capacity is due to the fact that during the switching time between ozone adsorption and ozone desorption operations, which was initially set to hasten the time for the adsorbent to become saturated with ozone, a considerable amount of ozone was adsorbed before switching. leaks into the oxygen recycling system.

酸素リサイクル系へのオゾンの漏洩は、結果的にオゾン
発生機1のオゾン発生効率を下げることになる。
Leakage of ozone to the oxygen recycling system results in a decrease in the ozone generation efficiency of the ozone generator 1.

さらに、オゾン脱着動作では、オゾン吸着塔5,52の
オゾン吸着量が低下するので脱着期間の取出し気体中の
オゾン濃度の変動が大きくなる。
Furthermore, in the ozone desorption operation, since the amount of ozone adsorbed by the ozone adsorption towers 5 and 52 decreases, the ozone concentration in the extracted gas during the desorption period increases.

従って、上記のオゾン発生効率の低下、および取出し気
体中のオゾン濃度の変動を防止するためには、定期的に
オゾン吸着塔51,5内に蓄積された窒素酸化物を、オ
ゾン吸着塔に、例えば加熱の手段を加えることにより脱
着する必要がある。
Therefore, in order to prevent the above-mentioned decrease in ozone generation efficiency and fluctuations in the ozone concentration in the extracted gas, nitrogen oxides accumulated in the ozone adsorption towers 51, 5 are periodically transferred to the ozone adsorption towers. For example, it is necessary to desorb by adding heating means.

しかし、オゾン吸着塔5,52は運転時には−90〜−
50℃に保持されているため再起動して平常運転に入る
までには相当長い時間を要する欠点があった。
However, the ozone adsorption towers 5 and 52 have −90 to −− during operation.
Since the temperature is maintained at 50° C., it takes a considerable amount of time to restart and resume normal operation.

この発明は、上記欠点を除去する7こめになされたもの
で、オゾン吸着塔とオゾン発生機の間に窒素酸化物除去
装置を設けることにより、オゾン吸?塔内の吸着剤への
窒素酸化物の吸着を防止し、一定のオゾン吸着量を保ち
脱着オゾン濃度変動を抑えて長時間連続して取り出すこ
とのできる酸素リサイクルオゾン発生装置を提供するも
のである。
This invention was made to eliminate the above-mentioned drawbacks, and by providing a nitrogen oxide removal device between the ozone adsorption tower and the ozone generator, ozone absorption is achieved. The present invention provides an oxygen recycling ozone generator that prevents the adsorption of nitrogen oxides onto the adsorbent in the tower, maintains a constant amount of ozone adsorption, suppresses fluctuations in desorbed ozone concentration, and can extract ozone continuously for a long period of time. .

以下この発明について説明する。This invention will be explained below.

第3図はこの発明の一実施例を示すものである。FIG. 3 shows an embodiment of the present invention.

この図において、1〜9は従来例と同じものを示し、1
0は窒素酸化物除去装置である。
In this figure, 1 to 9 indicate the same as the conventional example, and 1
0 is a nitrogen oxide removal device.

この窒素酸化物除去装置としては、一定温度に保った吸
着剤の充てん塔を使うことができる。
As this nitrogen oxide removal device, a column packed with an adsorbent kept at a constant temperature can be used.

第3図の実施例において、酸素リサイクルオゾン発生動
作におけるオゾンの吸脱着によるオゾンと酸素の分離、
および分離された酸素のオゾン発生機1へのリサイクル
については従来と同じである。
In the embodiment shown in FIG. 3, separation of ozone and oxygen by adsorption and desorption of ozone in the oxygen recycling ozone generation operation,
The recycling of the separated oxygen to the ozone generator 1 is the same as before.

そして、従来例の説明で述べたようにオゾン発生機1通
過時において窒素酸化物を含んだオゾン化酸素が生成さ
れ、窒素酸化物除去装置10に送られる。
Then, as described in the description of the conventional example, ozonized oxygen containing nitrogen oxides is generated when passing through the ozone generator 1, and is sent to the nitrogen oxide removal device 10.

窒素酸化物除去装置10では、窒素酸化物が除去されオ
ゾン化酸素だけ電磁弁4または43を経てオゾン吸着塔
51または52に入リオゾツの吸着が行われる。
In the nitrogen oxide removal device 10, nitrogen oxides are removed and only ozonized oxygen enters the ozone adsorption tower 51 or 52 via the electromagnetic valve 4 or 43, where lyozoates are adsorbed.

従って、従来の酸素リサイクルオゾン発生装置にみられ
た吸着剤の窒素酸化物の吸着によるオゾン吸着能力の低
下が防止でき、オゾン吸着塔の吸着剤のオゾン吸着量を
常に一定に保つことができる。
Therefore, it is possible to prevent a decrease in the ozone adsorption capacity due to the adsorption of nitrogen oxides on the adsorbent, which is observed in conventional oxygen recycling ozone generators, and it is possible to always keep the amount of ozone adsorbed by the adsorbent in the ozone adsorption tower constant.

第4図は窒素酸化物の吸着剤を用いた窒素酸化物除去装
置10の一例を示す一部破断縦断面図で、11は例えば
シリカゲルのような吸着剤、12は断熱容器である。
FIG. 4 is a partially cutaway vertical sectional view showing an example of the nitrogen oxide removal apparatus 10 using a nitrogen oxide adsorbent, in which 11 is an adsorbent such as silica gel, and 12 is a heat insulating container.

吸着剤としてはオゾンの分解がないことが必須条件であ
り、シリカゲルが安価で適しているが、4λ以下の細孔
径をもつモレキュラーシーブス等も使用できる。
It is essential that the adsorbent does not decompose ozone, and silica gel is suitable because it is inexpensive, but molecular sieves and the like having a pore diameter of 4λ or less can also be used.

例えば吸着剤11を20℃で使用する場合は、シリカゲ
ルにおける窒素酸化物吸着能力はシリカゲル重量の約2
〜3楚吸着であるので、長時間にわたり上記の効果を発
揮することができる。
For example, when using adsorbent 11 at 20°C, the nitrogen oxide adsorption capacity of silica gel is approximately 2 of the weight of silica gel.
Since the adsorption is ~3 So, the above effect can be exhibited for a long time.

さらに長期間の連続運転で安定な酸素リサイクルオゾン
発生装置を必要とする場合は窒素酸化物の吸着塔の再生
を考える必要がある。
Furthermore, if an oxygen recycling ozone generator that is stable over a long period of continuous operation is required, it is necessary to consider regeneration of the nitrogen oxide adsorption tower.

このために第5図のように、第4図のシリカゲルを使用
した吸着塔を二塔設けることにより交互に窒素酸化物の
吸着、脱着を繰返し連続的に窒素酸化物を除去できる窒
素酸化物除去装置を用いる?がよい。
For this purpose, as shown in Fig. 5, by installing two adsorption towers using the silica gel shown in Fig. 4, nitrogen oxides can be removed continuously by repeating the adsorption and desorption of nitrogen oxides alternately. Use equipment? Good.

第5図において、10,,10は窒素酸化物の吸着塔、
11,12は第4図と同じである。
In FIG. 5, 10, 10 are nitrogen oxide adsorption towers,
11 and 12 are the same as in FIG.

13,〜138は動作切換用の電磁弁、14は吸着通路
入口、15は吸着通路出口、16は乾燥気体入口、17
は脱着再生通路出口である。
13, to 138 are electromagnetic valves for operation switching, 14 is an adsorption passage inlet, 15 is an adsorption passage outlet, 16 is a dry gas inlet, and 17
is the exit of the desorption/regeneration passage.

なお、図中窒素酸化物吸着通路は実線で、窒素酸化物脱
着再生通路は破線で示してある。
In the figure, the nitrogen oxide adsorption passage is shown by a solid line, and the nitrogen oxide desorption and regeneration passage is shown by a broken line.

次に第5図の窒素酸化物除去装置の動作を説明すると、
吸着塔10が窒素酸化物吸着動作を、吸着塔102が窒
素酸化物脱着再生動作を行っている状態にあるときは、
吸着通路人口14から入った窒素酸化物を含んだオゾン
化酸素は、電磁弁131を経て吸着塔101に入り塔内
の吸着剤11を通過、通過時において窒素酸化物を含ん
だオゾン化酸素中の窒素酸化物が吸着剤11に吸着され
、オゾン化酸素だけとなり電磁弁13を通って吸着通路
出口15から出る。
Next, the operation of the nitrogen oxide removal device shown in Fig. 5 will be explained.
When the adsorption tower 10 is performing a nitrogen oxide adsorption operation and the adsorption tower 102 is performing a nitrogen oxide desorption and regeneration operation,
The ozonized oxygen containing nitrogen oxides entering from the adsorption passage 14 enters the adsorption tower 101 through the electromagnetic valve 131 and passes through the adsorbent 11 in the tower. Nitrogen oxides are adsorbed by the adsorbent 11, and only ozonized oxygen is formed, which passes through the electromagnetic valve 13 and exits from the adsorption passage outlet 15.

一方、窒素酸化物の脱着再生通路では、上記吸着塔10
1が吸着物作中は、電磁弁135,136が開放、電磁
弁13,138が閉鎖されており、乾燥気体が乾燥気体
入口16から電磁弁135を経て吸着塔102に入り現
段階の前の段1昔で吸着塔内の吸着剤11に吸着されて
いる窒素酸化物を脱着しながら電磁弁136を介して窒
素酸化物含有気体として脱着再生通路出口17から排出
される。
On the other hand, in the nitrogen oxide desorption and regeneration passage, the adsorption tower 10
1 is in the process of producing an adsorbent, the solenoid valves 135 and 136 are open and the solenoid valves 13 and 138 are closed, and dry gas enters the adsorption tower 102 from the dry gas inlet 16 through the solenoid valve 135 and flows into the adsorption tower 102 before the current stage. The nitrogen oxides adsorbed on the adsorbent 11 in the adsorption tower before stage 1 are desorbed and discharged from the desorption regeneration passage outlet 17 as a nitrogen oxide-containing gas via the electromagnetic valve 136.

吸着塔10内の吸着剤11が窒素酸化物を飽和近くまで
吸着すると電磁弁操作により吸着塔101は窒素酸化物
吸着動作から脱着動作へ、吸着塔10は窒素酸化物脱着
動作から吸着動作に切り換えられる。
When the adsorbent 11 in the adsorption tower 10 adsorbs nitrogen oxides to near saturation, the adsorption tower 101 switches from nitrogen oxide adsorption operation to desorption operation by operating a solenoid valve, and the adsorption tower 10 switches from nitrogen oxide desorption operation to adsorption operation. It will be done.

ただし、窒素酸化物脱着動作は窒素酸化物が脱着されれ
ば停止してよい。
However, the nitrogen oxide desorption operation may be stopped once the nitrogen oxides are desorbed.

また窒素酸化物脱着用気体を加熱すればより有効に行え
る。
Further, heating the gas for desorption of nitrogen oxides makes it more effective.

前記窒素酸化物吸着動?、脱着動作を交互に繰り返すこ
とにより連続的に窒素酸化物を含まないオゾン化酸素を
オゾン吸着塔51あるいは52に供給することができる
Nitrogen oxide adsorption behavior? By alternately repeating the desorption operations, ozonized oxygen containing no nitrogen oxides can be continuously supplied to the ozone adsorption tower 51 or 52.

以上詳細に説明したようにこの発明は、オゾン発生機と
オゾン吸着塔の間に窒素酸化物除去装置を設けたので、
オゾン吸着塔内に窒素酸化物の吸着による蓄積が防止で
き、酸素リサイクル系へのオゾンの漏洩の防止がはから
れ、さらにオゾン発生効率の低下と取出しオゾン含有気
体中のオゾン濃度の変動を防ぐことができる。
As explained in detail above, this invention provides a nitrogen oxide removal device between the ozone generator and the ozone adsorption tower.
This prevents the accumulation of nitrogen oxides in the ozone adsorption tower due to adsorption, prevents ozone from leaking into the oxygen recycling system, and also prevents a decrease in ozone generation efficiency and fluctuations in ozone concentration in the extracted ozone-containing gas. be able to.

さらに、二塔の吸着剤充填塔で交互に窒素酸化物の吸着
、脱着を行うように構成したものはオゾン発生装置を停
止させることなく上記の効果を長期間連続してあげるこ
とが可能である等の利点を有する。
Furthermore, a system configured to alternately adsorb and desorb nitrogen oxides with two adsorbent-packed towers can provide the above effects continuously for a long period of time without stopping the ozone generator. It has the following advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素リサイクルオゾン発生装置の構成図
、第2図は吸着剤の窒素酸化物吸着量とオゾン吸着量の
関係を示す図、第3図はこの発明による酸素リサイクル
オゾン発生装置の一実施例を示す構成図、第4図、第5
図はこの発明に用いる窒素酸化物除去装置の一例を示す
一部破断縦断面図である。 図中、1はオゾン発生機、2は冷却器、3は冷凍機、4
、〜44は吸着系統動作切換用の電磁弁、5,5はオゾ
ン吸着塔、61〜64は脱着系統動作切換用の頂磁弁、
7は原料酸素供給口、8は乾燥気体入口、9はオゾン含
有気体出口、10は窒素酸化物除去装置、10,,10
は吸着塔、11は吸着剤、12は断熱容器、13〜13
8は電磁弁、14は吸着通路入口、15は吸着通路出口
、16は乾燥気体入口、1γは脱着再生通路出口である
。 なお、図中の同一符号は同一または相当部分を示す。
Figure 1 is a block diagram of a conventional oxygen recycling ozone generator, Figure 2 is a diagram showing the relationship between the amount of nitrogen oxides adsorbed by an adsorbent and the amount of ozone adsorbed, and Figure 3 is a diagram of the oxygen recycling ozone generator according to the present invention. Configuration diagrams showing one embodiment, FIGS. 4 and 5
The figure is a partially cutaway vertical cross-sectional view showing an example of the nitrogen oxide removal device used in the present invention. In the diagram, 1 is an ozone generator, 2 is a cooler, 3 is a refrigerator, and 4
, to 44 are solenoid valves for switching the operation of the adsorption system, 5 and 5 are ozone adsorption towers, 61 to 64 are top magnetic valves for switching the operation of the desorption system,
7 is a raw material oxygen supply port, 8 is a dry gas inlet, 9 is an ozone-containing gas outlet, 10 is a nitrogen oxide removal device, 10,,10
is an adsorption tower, 11 is an adsorbent, 12 is an insulated container, 13-13
8 is a solenoid valve, 14 is an adsorption passage inlet, 15 is an adsorption passage outlet, 16 is a dry gas inlet, and 1γ is a desorption/regeneration passage outlet. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 酸素を原料としたオゾン発生数と、前記オゾン発生
機から出たオゾン含有酸素のオゾンと酸素を分離するオ
ゾン吸着塔と、前記オゾンを分離した酸素を前記オゾン
発生機にもどす酸素リサイクル系路と、乾燥気体により
オゾン吸着塔からオゾン含有気体を取り出す乾燥気体系
路とにより構成されるオゾン発生装置において、前記オ
ゾン発生機と前記オゾン吸着塔の間に窒素酸化物除去装
置を設けたことを特徴とする酸素リサイクルオゾン発生
装置。 2 窒素酸化物除去装置に吸着剤充てん塔を用いたこと
を特徴とする特許請求の範囲第1項記載の酸素リサイク
ルオゾン発生装置。 ? 窒素酸化物除去装置に吸着充てん塔を並列に二塔設
け弁操作により−塔が窒素酸化物の吸着を行っている間
に他の一塔が窒素酸化物の脱着再生を行うものを用いた
ことわ特徴とする特許請求の範囲第1項記載の酸素リサ
イクルオゾン発生装置。 4 吸着剤としてシリカゲルを用いたことを特徴とする
特許請求の範囲第2項または第3項記載の酸素リサイク
ルオゾン発生装置。
[Claims] 1. Ozone generation using oxygen as a raw material, an ozone adsorption tower that separates ozone and oxygen from the ozone-containing oxygen emitted from the ozone generator, and an ozone adsorption tower that separates the ozone and oxygen from the ozone generator. In an ozone generator comprising an oxygen recycling system for returning the gas to oxygen, and a dry gas system for removing ozone-containing gas from the ozone adsorption tower using dry gas, nitrogen oxides are removed between the ozone generator and the ozone adsorption tower. An oxygen recycling ozone generator characterized by being equipped with a device. 2. The oxygen recycling ozone generator according to claim 1, wherein an adsorbent-filled tower is used as the nitrogen oxide removal device. ? Nitrogen oxide removal equipment is equipped with two adsorption packed columns in parallel and by valve operation - while one column is adsorbing nitrogen oxides, the other column desorbs and regenerates nitrogen oxides. An oxygen recycling ozone generator according to claim 1, characterized in that: 4. The oxygen recycling ozone generator according to claim 2 or 3, characterized in that silica gel is used as the adsorbent.
JP2905777A 1977-03-15 1977-03-15 Oxygen recycling ozone generator Expired JPS5910925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2905777A JPS5910925B2 (en) 1977-03-15 1977-03-15 Oxygen recycling ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2905777A JPS5910925B2 (en) 1977-03-15 1977-03-15 Oxygen recycling ozone generator

Publications (2)

Publication Number Publication Date
JPS53113295A JPS53113295A (en) 1978-10-03
JPS5910925B2 true JPS5910925B2 (en) 1984-03-12

Family

ID=12265728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2905777A Expired JPS5910925B2 (en) 1977-03-15 1977-03-15 Oxygen recycling ozone generator

Country Status (1)

Country Link
JP (1) JPS5910925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058753A1 (en) * 2003-12-17 2005-06-30 Tokyo Electron Limited Ozone processing method and ozone processing system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795808A (en) * 1980-12-02 1982-06-14 Mitsubishi Electric Corp Generating apparatus for ozone
JP5183099B2 (en) * 2007-05-29 2013-04-17 岩谷産業株式会社 Ozone gas concentration method
JP2011121805A (en) * 2009-12-09 2011-06-23 Iwatani Internatl Corp Method for removing nitrogen oxide and moisture contained in ozone gas
JP2013180931A (en) * 2012-03-02 2013-09-12 Iwatani Internatl Corp Method for pretreating adsorbent for removing nitrogen oxide contained in ozone gas, adsorbent for removing nitrogen oxide and pretreatment apparatus
JP5892904B2 (en) * 2012-09-25 2016-03-23 三菱電機株式会社 Ozone supply system and wastewater treatment system
JP6267879B2 (en) * 2013-06-28 2018-01-24 岩谷産業株式会社 Method for removing nitrogen oxides contained in ozone gas
JP6404116B2 (en) * 2014-12-26 2018-10-10 岩谷産業株式会社 Nitrogen oxide removal method, ozone gas supply method, and ozone gas supply device
JP6545589B2 (en) 2015-09-18 2019-07-17 岩谷産業株式会社 Ozone gas supply method and ozone gas supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058753A1 (en) * 2003-12-17 2005-06-30 Tokyo Electron Limited Ozone processing method and ozone processing system

Also Published As

Publication number Publication date
JPS53113295A (en) 1978-10-03

Similar Documents

Publication Publication Date Title
US3738084A (en) Adsorption process and an installation therefor
US5689974A (en) Method and apparatus for pre-purification for air cryogenic separation plant
ES8100098A1 (en) Adsorbent gas fractionator and gas fractionation process.
ES8204608A2 (en) Heat-reactivatable adsorbent gas fractionator and process.
JPS6240285B2 (en)
CA2246212A1 (en) Purification of gases using solid adsorbents
EP0603178A4 (en)
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
US4203958A (en) Process for producing oxygen-free nitrogen atmosphere
JP2000317244A (en) Method and device for purifying gas
US3663418A (en) Periodically reversed gas flow ozone production method and apparatus
JPH03262514A (en) Concentration of chlorine gas
JPH10113502A (en) Method and apparatus for producing low temperature fluid in high purity liquid
JPS5910925B2 (en) Oxygen recycling ozone generator
CA2186976A1 (en) Ozone enriching method
KR860001167B1 (en) Air separation process
KR20100077745A (en) Device for drying a compressed pure air
US3719573A (en) Periodically reversed gas flow ozone production method and apparatus
EP0018183A1 (en) Process for the purification of natural gas
JPH035845B2 (en)
US4303228A (en) Apparatus for heat treating containing air-purged molecular sieves in O.sub. -free N2 atmospheres
JPS61254219A (en) Apparatus for removing co2
JPH09168715A (en) Pretreating device for air separation
JPH11197435A (en) Oxygen condensing method and apparatus
JPH05123525A (en) Gas purifying method and apparatus therefor