JPS59108821A - Double intake valve type 4-cycle engine - Google Patents

Double intake valve type 4-cycle engine

Info

Publication number
JPS59108821A
JPS59108821A JP57219701A JP21970182A JPS59108821A JP S59108821 A JPS59108821 A JP S59108821A JP 57219701 A JP57219701 A JP 57219701A JP 21970182 A JP21970182 A JP 21970182A JP S59108821 A JPS59108821 A JP S59108821A
Authority
JP
Japan
Prior art keywords
intake
valve
air
intake valve
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57219701A
Other languages
Japanese (ja)
Inventor
Yoshio Kizaki
木崎 喜雄
Kazuo Aso
阿曽 一雄
Tsuneo Ariumi
有海 常夫
Yuji Fukushima
雄二 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Daihatsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Daihatsu Kogyo KK filed Critical Daihatsu Motor Co Ltd
Priority to JP57219701A priority Critical patent/JPS59108821A/en
Publication of JPS59108821A publication Critical patent/JPS59108821A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10183Engines having intake ducts fed from a separate carburettor or injector, the idling system being considered as a separate carburettor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10275Means to avoid a change in direction of incoming fluid, e.g. all intake ducts diverging from plenum chamber at acute angles; Check valves; Flame arrestors for backfire prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To improve the efficiency of filling in low speed and load range while stabilizing combustion by providing a check valve or the like for regulating the opening period of two intake valves and passing only supply flow from the throttle valve side to the combustion chamber side on the way of one intake system path. CONSTITUTION:In low load running, since a second throttle valve 6 is closed, only mixture passing through a first throttle valve 5 is introduced into a combustion chamber 4. In this combustion chamber 4 is produced a swirl. Also, a valve overlapping period of a first intake valve 7 and an exhaust valve 19 is set short to prevent burnt gas from prefiring into a first intake system path 11, and further the overlapping period of a second intake valve 8 and the exhaust valve 19 is set long to prevent burnt gas from prefiring into a second intake system path 12 with a check valve 18.

Description

【発明の詳細な説明】 本発明は、各気筒Iこ複数の吸気弁を設けてなる複吸気
弁式の4サイクルエンジンfこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multiple intake valve type four-cycle engine in which each cylinder is provided with a plurality of intake valves.

近時、乗用車用のエンジン等に対しては、燃料経済性の
向上と定常出力の向上とをより高い次元で両立させるこ
とが要求されており、高速高負荷運転時の用カの低下を
招くことないこ、より低い回転領域での安定した燃焼を
確保できるようlこすることがエンジン開発の一つの大
きな課題となっている。
In recent years, engines for passenger cars, etc. are required to achieve a higher level of both improved fuel economy and improved steady output, which leads to a decrease in power during high-speed, high-load operation. One of the major challenges in engine development is to ensure stable combustion in the lower rotation range.

ところで、このような要求1こ応えるための一手段とし
て、いわゆる可変バルブタイミング方式が挙げらノ1.
る。すなわち、この方式は、低速低負荷運転時には、吸
気弁の開弁時期を短くし、圧縮行程における新気吹返し
の減少lこより高い充填効率を確保して、出力の向上を
はかるとともぎこ、弁重合期間の短縮化1こより残留ガ
ス割合を低減させて安定Iた燃焼を維持することができ
るようl(−する−万、高速高負荷運転時lこは、吸気
弁の開成期間を長くして硯い充填効率を確保し出力の向
上を図る等、負荷に応じた開弁時期の制御Iこよって幅
広い俊れtこ特性をエンジンに与え得るようにしたもの
である。ところが、このような方式を実施しようとする
と、現時点では動弁系の大幅な複雑化が避けられないj
こめ、コスト高並びに信頼性の低下を招くという問題が
あり、今まだ、実用化されていないのが現状である。
By the way, one way to meet these demands is the so-called variable valve timing system.
Ru. In other words, this method shortens the opening timing of the intake valve during low-speed, low-load operation, reduces fresh air blowback during the compression stroke, ensures higher charging efficiency, and improves output. Shortening the valve polymerization period1 In order to reduce the residual gas proportion and maintain stable combustion, the intake valve opening period is lengthened during high-speed, high-load operation. By controlling the valve opening timing according to the load, it is possible to provide the engine with a wide range of flexible characteristics, such as ensuring high charging efficiency and improving output. At present, if we try to implement this method, it is unavoidable that the valve train system will become significantly more complicated.
However, there are problems of high cost and low reliability, and the current situation is that it has not been put into practical use yet.

本発明は、吸気系の改良Iこより、かかる可変バルブタ
イミング方式Iこ準じtこ特性を得るととも1こ、低速
、低負荷運転時Iζおける吸気流速の増大等1こより前
述しtこ要望1こ応えようとするものであるが、その先
行技術として実開昭57−2215号Iこ示されるよう
なものがある。すなわち、このものは、各気筒5こ高負
萄向きの曲伸特性を有した主吸気弁と低負仙向きの開弁
特性を有した副吸気弁とを設けるとともに、機関負荷を
制御する第1スロツトル弁後流の吸気系路を前記主吸気
弁Iこ向う主吸気系路と前記副吸気弁1ζ向う副吸気系
路とlこ分割し、前記主吸気系路の途中lこ第2スロツ
トルを介設するととも1こ、該第2スロツトル弁をアク
チュエータとリンク機榴等を組合せてなる第2スロッ1
−ル弁制御装置11こよって吸入空気t【が大きなとき
にだけ開成させるようにしたものである。しかして、こ
のような構成lこよれは、低速・低負荷運転時Iこは、
第2スロツトル弁が閉じ低負荷向き■こ設定された副吸
気弁のみを通して混合気が燃焼室内着乙供イ;1される
一方、高速・面負荷運転時には、1〕1丁記第2スロッ
トル弁が開いて低負荷向きlこ設定さノコ1コ主吸気弁
からも混合気が燃焼室内Iこ供給さJ]ること普こなる
ため、可変バルブタイミング方式lこ準じた特性が得ら
れるものである。しかしながら、このような構成のもの
は、第1スロツトル弁の下流部分で主吸気系路と副吸気
糸路とが相互1こつなかっているため、前記第1スロツ
トル弁と前記副吸気弁との間lこ存在する空間の8柚が
非常lこ大きなものになる。そのため、燃料供給装置と
して第1スロットル部lこ気化器を用いた構造のもので
は低速・低負荷運転状態からIr1f記第1スロツトル
を急速に開いて加速しようとしても、適正な混合比を有
する混合気がmr記側副吸気弁経て、燃焼室1こ到達す
るのに比較的長い時間を要することIこなる。すなわち
、レスポンスが悪く、十分な加速応答性を得ることがで
きないという不都合がある。
The present invention aims to improve the intake system so as to obtain the same characteristics as the variable valve timing system, and also to increase the intake flow velocity during low-speed, low-load operation. In order to address this problem, there is a prior art as disclosed in Japanese Utility Model Application No. 57-2215 I. In other words, each cylinder is provided with a main intake valve having a bending/extending characteristic in the high negative direction and a sub intake valve having a valve opening characteristic in the low negative direction. The intake system path downstream of the first throttle valve is divided into a main intake system path facing the main intake valve I and an auxiliary intake system path facing the sub-intake valve 1ζ. In addition, the second throttle valve is connected to a second slot 1 formed by combining an actuator, a link mechanism, etc.
- The valve control device 11 is designed to open only when the intake air t is large. However, this type of configuration is difficult to achieve during low-speed and low-load operation.
The second throttle valve is closed and the air-fuel mixture enters the combustion chamber only through the set auxiliary intake valve. Since it is common for air-fuel mixture to be supplied to the combustion chamber from the main intake valve, which is open and set for low load, characteristics similar to those of the variable valve timing system can be obtained. . However, in such a configuration, since the main intake system path and the sub-intake line path are not connected to each other in the downstream portion of the first throttle valve, there is no connection between the first throttle valve and the sub-intake valve. The 8 yuzu in the existing space become very large. Therefore, in a fuel supply device that uses a carburetor in the first throttle section, even if you try to accelerate by rapidly opening the first throttle in low-speed/low-load operating conditions, the fuel supply system will not be able to produce a mixture with an appropriate mixture ratio. This means that it takes a relatively long time for the air to reach one combustion chamber via the auxiliary intake valve. That is, there is a problem that the response is poor and sufficient acceleration responsiveness cannot be obtained.

また、このようなものでは、多気筒エンジンにおいては
各気筒毎Iこ設けられた複数の第2スロツトル弁を制御
装置により一斉に開閉させなければならないため、構造
が複雑化するという問題がありさらに、スロットル弁の
支軸を吸気系路外へ導出させる部分のシールを略完全I
こ行なわないとエンジン性能Eこ悪影響を及ぼすという
難しさがある。
In addition, in such a multi-cylinder engine, a plurality of second throttle valves provided for each cylinder must be opened and closed all at once by a control device, resulting in a complicated structure. , the seal at the part where the throttle valve support shaft is guided out of the intake system path is almost completely sealed.
If this is not done, engine performance will be adversely affected.

才だ、このものは、低速・低負荷運転時1こ複数の第2
スロツトル弁がそれぞれ完全に閉止するようIC設定し
なけれはならないため、組付・調整に手間がかかるとい
う問題もある。
It's amazing, this thing has multiple 2nd one during low speed/low load operation.
Since the IC must be set so that each throttle valve is completely closed, there is also the problem that assembly and adjustment are time consuming.

本発明は、このような事情に着目してなされたもので、
各気筒lこ対をなす第1・第2の吸気弁を設けるととも
に、第1スロツトル弁から前記第1吸気弁に至る第1吸
気系路と、第2スロツトル弁から前記第2吸気弁に至る
第2吸気系路とを相互Iこ独立させて設けておき、前記
第1吸気弁の開成時期を前記第2吸気弁の開成時期より
も遅らせるととも身こ、前記第2吸気系路の途中に逆止
弁を設けるとともに、前記第1吸気弁の閉弁時期を前記
第2吸気弁の閉弁時期よりも早めることによって、前述
した不都合をことごとく解消することができるようにし
た複吸気弁式4サイクルエンジンを提供するものである
The present invention was made with attention to such circumstances, and
A pair of first and second intake valves are provided for each cylinder, and a first intake system path runs from the first throttle valve to the first intake valve, and a first intake system path runs from the second throttle valve to the second intake valve. If the opening timing of the first intake valve is delayed from the opening timing of the second intake valve, the opening timing of the first intake valve is delayed from the opening timing of the second intake valve. A double intake valve type that can eliminate all of the above-mentioned disadvantages by providing a check valve in the valve and making the closing timing of the first intake valve earlier than the closing timing of the second intake valve. It provides a 4-stroke engine.

以下、本発明の一実施例を第1図〜第8図を参照して説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

エアクリーナ1から取り入れた空気を気化器2Iこ導く
ことtこよって混合気を生成させ、この混合気を各気筒
8・・・の燃焼室4・・・内へ導入するようlこしてい
る。気化器2は、プフイマリー系2aとセカンダリ−系
2bとを備えてなる2連形のもので、プライマリ−系2
aには低速・低負荷運転状態から開き始める第1スロツ
トル弁5が設けであるとともに、セカンダリ−系2tz
ζは、中・高速高負荷運転領域で開成する第2スロツト
ル弁6が設けである。まtコ、前記各気筒8Iこ、第1
の吸気弁7と、この第1の吸気弁7よりも大径な第2の
吸気弁8とをそれぞれ設けている。第2の吸気弁8は、
例えば、第8図に実線aで示すように、通常の4サイク
ルエンジンの吸気弁(破線b 参照)と略同様な態様で
開閉するように設定されている。
The air taken in from the air cleaner 1 is guided through the carburetor 2I to generate an air-fuel mixture, and this air-air mixture is strained to be introduced into the combustion chamber 4 of each cylinder 8. The vaporizer 2 is of a double type, comprising a primary system 2a and a secondary system 2b.
A is provided with a first throttle valve 5 that starts to open from low speed and low load operating conditions, and a secondary system 2tz
ζ is provided with a second throttle valve 6 that opens in the medium/high speed/high load operating range. 8I for each cylinder, 1st
A second intake valve 8 having a larger diameter than the first intake valve 7 is provided. The second intake valve 8 is
For example, as shown by the solid line a in FIG. 8, it is set to open and close in substantially the same manner as the intake valve of a normal four-stroke engine (see broken line b).

また、第1の吸気弁7は、一点鎖線Cで示すようiこ、
前記第2の吸気弁8よりも遅れて開成するとともIこ、
O■記第2の吸気弁8と略同−あるいは、早目の時期i
こ閉成するようIn設定されている。そして、前記第1
スロツトル弁5を通過した混合気を前記第1の吸気弁7
・・・を介して各気筒8・・・の燃焼室4・・・Eこ供
給するための第1吸気系路11と、前記第2スロッl−
ル弁6を通過した混合気を前記第2の吸気弁8・・・を
介して各気筒8・・・の燃焼室4・・・1こ供給するt
コめの第2吸気系路12とを相互1こ独立させて設けて
いる。第1吸気系路11は、各気筒8・・・に対応させ
てシリンダヘッド18+こ穿設した第1吸気ボート14
・・・と、前記気化器2のプフィマリー系2aを前記各
第1吸気ボート14・・・gこ連通させる第1インテー
クマニボルド15とから構成されている。また、第2吸
気系路12は、各気筒3・・・1こ対応させてシリンダ
ヘッド18−穿設した複数の第2吸気ボート16・・・
と、前記気化器2のセカンダリ−系2bを前記各第2吸
気ボート16・・・に連通させるm2インテークマニホ
ルド17とから構成されている。そして、この第2吸気
系路12の各気筒8・・・に向う分岐通路部、例えば、
前記各第2吸気ボート16・・・と前記第2インテーク
マニポルド17との接合部Sこ逆止弁18・・・をそれ
ぞれ介設している。逆止弁18は、リード弁と称されろ
構成のもので、第2スロツトル弁6側から燃焼室4・・
・側へ向う給気の流れのみを通過させ得るように設定さ
れている。
Further, the first intake valve 7 is arranged as shown by a dashed line C.
If it opens later than the second intake valve 8,
Almost the same as the second intake valve 8 marked O■, or at an earlier time i
In is set so that this is closed. And the first
The air-fuel mixture that has passed through the throttle valve 5 is transferred to the first intake valve 7.
A first intake system path 11 for supplying combustion chambers 4...E of each cylinder 8 via...
The air-fuel mixture that has passed through the first intake valve 6 is supplied to the combustion chamber 4 of each cylinder 8 through the second intake valve 8.
The second air intake system passage 12 of the rice bran and the second air intake system passage 12 are provided independently of each other. The first intake system passage 11 includes a first intake boat 14 bored through the cylinder head 18 and corresponding to each cylinder 8.
. . . and a first intake manibold 15 that connects the pfimary system 2a of the carburetor 2 with each of the first intake boats 14...g. Further, the second intake system passage 12 includes a plurality of second intake boats 16 formed in the cylinder head 18 corresponding to each cylinder 3...
and an m2 intake manifold 17 that connects the secondary system 2b of the carburetor 2 to each of the second intake boats 16. Then, branch passage portions of the second intake system path 12 toward each cylinder 8, for example,
Check valves 18 are interposed at the joints S between the second intake boats 16 and the second intake manipold 17, respectively. The check valve 18 has a configuration called a reed valve, and is configured to open the combustion chamber 4 from the second throttle valve 6 side.
・It is set so that only the flow of supply air toward the side can pass through.

なお、19は排気弁であり、この排気弁19は第8図に
実線dで示すような閉弁特性を有している。また、20
は前記各吸気弁7・・・、8・・・および前記排気弁1
9・・・を駆動するためのカム、21は点火プラグ、2
2はピストンである。
Note that 19 is an exhaust valve, and this exhaust valve 19 has a valve-closing characteristic as shown by the solid line d in FIG. Also, 20
represents each of the intake valves 7..., 8... and the exhaust valve 1.
A cam for driving 9, 21 is a spark plug, 2
2 is a piston.

次いで、この実施例の作用および効果を下記の(イ)、
(ロ)の場合fこ分けて説明する。
Next, the functions and effects of this example are described in (a) below.
In case (b), f will be explained separately.

(イ) 低負荷運転時 この場合には、気化器2の第2スロツトル弁6が閉じて
いるので、第1スロツトル弁5を通過しtコ混合気のみ
が第1吸気通路11を通して第1吸気弁7・・・へ導び
かれ、該第1吸気弁7を介して各気筒8・・・の燃焼室
4・・・内に導入される。
(b) During low load operation In this case, the second throttle valve 6 of the carburetor 2 is closed, so only the air-fuel mixture passes through the first throttle valve 5 and enters the first intake air through the first intake passage 11. The air is introduced into the combustion chambers 4 of the cylinders 8 through the first intake valves 7.

しかして、この実施例では、前記第1吸気弁7と排気弁
19どの弁重合期間が短かく設定されているので、既燃
ガスが前記第1吸気系路11円Iこ吹返すのを有効lζ
防止することができる。−万第2吸気弁8と排気弁19
との弁重合萌間は比較的長いものになるが、この第20
&気弁8化接続した第2吸気系路12の分岐通路部分に
は逆止弁18が設けであるので、前記第2吸気系路への
既燃ガスの吹返しも効果的lこ抑制される。そのため、
いわゆる新気暑こ対する残留ガス旭の比率の比吸的高い
低負荷運転時においても残留ガス社を非常lこ少なくす
ることができる。
In this embodiment, since the polymerization period of the first intake valve 7 and the exhaust valve 19 is set short, it is effective to blow back the burned gas to the first intake system path 11. lζ
It can be prevented. - No. 2 intake valve 8 and exhaust valve 19
Although the period of valve polymerization with the 20th
Since the check valve 18 is provided in the branch passage portion of the second intake system passage 12 connected to the air valve 8, the blowback of burnt gas to the second intake system passage is also effectively suppressed. Ru. Therefore,
Even during low-load operation when the ratio of residual gas to so-called fresh air is relatively high, residual gas can be extremely reduced.

また、前記のよう着ζ第2スロットル弁6が閉じている
M6域においては、混合気は比較的断面積の小さなi1
記第1吸気系路だけを扼れるので混合気流速は当然増大
する。この混合気流速の増大は、低速運転時1こおいて
も、前記燃焼室8円で混合気の強力なスワールを発生さ
せると同時に、前記第1吸気系路111;’]で、燃料
の露化を促進する。
Furthermore, as mentioned above, in the M6 region where the second throttle valve 6 is closed, the air-fuel mixture is i1, which has a relatively small cross-sectional area.
Since only the first intake system passage is squeezed, the air-fuel mixture flow rate naturally increases. This increase in the air-fuel mixture flow velocity generates a strong swirl of the air-fuel mixture in the combustion chamber 8 even during low-speed operation, and at the same time, the air-fuel mixture is exposed to air in the first intake system passage 111; promote the development of

以りのような作用の結果としてnu記燻燃焼室8内こお
ける混合気の燃焼速反が増大するとともに、燃焼は安定
化し、撚効率の向上を図ることができる。
As a result of the above-mentioned actions, the combustion velocity of the air-fuel mixture in the combustion chamber 8 increases, the combustion is stabilized, and the twisting efficiency can be improved.

さら暑こ第1スロツトル弁5と第1吸気弁7との間に存
在する空間の容積が小さくなるので、低負荷運転時Iこ
おいて、前記第1吸気系路111こ存在する混合気組お
よび糸路W面への燃料付着量は減少する。したがっで、
前記気化器2から各気筒8への混合気の到達時間が短縮
され、低速域からの加速レスポンスが向上されること相
まってA/F(空燃比)またはEGR/I′’のリーン
化が可能となリ、燃料経済性を向とさせることができる
ものである。
Since the volume of the space existing between the first throttle valve 5 and the first intake valve 7 becomes smaller, during low-load operation, the air-fuel mixture group existing in the first intake system passage 111 becomes smaller. And the amount of fuel adhering to the yarn path W surface decreases. Therefore,
The arrival time of the air-fuel mixture from the carburetor 2 to each cylinder 8 is shortened, and the acceleration response from low speed range is improved, which makes it possible to make the A/F (air fuel ratio) or EGR/I'' leaner. Moreover, fuel economy can be improved.

(ロ)高負荷運転時 この場合、気化器90両スロットル弁5.6が同時に開
成しない場合と開成する場合がある。
(b) During high load operation In this case, both throttle valves 5 and 5 of the carburetor 90 may not open at the same time or may open at the same time.

マス、エンジンの低速・運転時においては、前記第1ス
ロツトル弁はほぼ全開して0るが、第2スロツトル弁は
開成していない。このような条件のもとでは、前(イ)
項でも記した様に、第1吸気弁7の開閉タイミングを選
定することで、従来型エンジンより、残留既燃ガスを減
少させ、新気の充填効率を高めることができる。たtご
し、この低速運転時においては、周知のように前記充填
効率を高めるだけでは、ねらいとする高効率、高出力化
にはつながらない。すなわち、ノッキングの防止を行う
ことが必要である。しかるに、本発明では、OtJ (
イ)項でも説明した杼に混合気流速の増大および前記第
1吸気弁7のシリンダー軸芯とσ)偏位置が大きくなる
ことにより、強力なスワールが発生するとともに混合気
の乱れが起り、燃焼速度は増大する。
When the engine is operating at low speed, the first throttle valve is almost fully open, but the second throttle valve is not open. Under these conditions, the previous (a)
As described in the section above, by selecting the opening/closing timing of the first intake valve 7, residual burnt gas can be reduced and fresh air filling efficiency can be increased compared to conventional engines. During this low-speed operation, as is well known, simply increasing the filling efficiency does not lead to the desired high efficiency and high output. That is, it is necessary to prevent knocking. However, in the present invention, OtJ (
Due to the increase in the flow rate of the air-fuel mixture in the shuttle as explained in section a) and the increase in the offset position of the first intake valve 7 from the cylinder axis, a strong swirl is generated and the air-fuel mixture is turbulent, resulting in combustion. Speed increases.

この結果、燃焼時間は短縮され、ノッキングは改善され
るので、比較的高圧縮比を採用することなどが可能で、
このことはもちろんエンジンの高効率化あるいは、高出
力化を実現するものである。
As a result, combustion time is shortened and knocking is improved, making it possible to use relatively high compression ratios.
This, of course, makes it possible to achieve higher efficiency or higher output of the engine.

一万、エンジンの中・高速運転時においては気化器2の
両スロットル弁5.6が開成するため第1スロツトル弁
5を通過した混合気が第1吸気弁7・・・を介して燃焼
室4・・・へ供給されるとともlζ第2スロットル弁6
を通過した混合気が逆止弁18・・・を通して第2吸気
弁8・・・へ導びかね該第2吸気弁8・・・を介して前
記燃焼室4へ供給される。
During medium/high speed engine operation, both throttle valves 5 and 6 of the carburetor 2 are opened, so the air-fuel mixture that has passed through the first throttle valve 5 is transferred to the combustion chamber via the first intake valve 7. 4... and lζ second throttle valve 6.
The air-fuel mixture that has passed through the check valves 18 is guided to the second intake valves 8, and is supplied to the combustion chamber 4 via the second intake valves 8.

しか゛して、このようIこ2つの吸気弁7.8を通して
混合気を燃焼室内1ζ供給し得るようlこすると、単一
の吸気弁を有したものに比べて弁開口時間面積を拡大す
ることができるので、全開スロットル時の吸気抵抗を減
少させることができる。また、第2吸気系路12の分岐
通路部1こ逆止弁18・・・を設けかつ81吸気弁7と
排気弁19との弁重合期間を短く設定しているので、全
開スロットル時1こも残留ガスおよび新気吹返しを減少
させることができる。したがって、これらの事情から、
本実施例では、逆止弁18・・・1こよる吸気抵抗があ
まり問題lこならない低、中速域lこおける充填効率を
特1こ向上させることが可能であり、また、このようf
こ吸気系を2系統にして逆止弁を取付けると、連間の異
る混合気流速が6Tf記両吸気弁7.8を経て燃焼室3
へ流入するので、燃焼室内における混合ワ(の乱れを増
大させることで燃焼が改善できる。
Therefore, by supplying the air-fuel mixture to the combustion chamber through these two intake valves 7.8, the valve opening time area is expanded compared to the case with a single intake valve. Therefore, intake resistance at full throttle can be reduced. In addition, since the check valve 18 is provided in the branch passage section 1 of the second intake system path 12, and the valve overlap period between the intake valve 7 and the exhaust valve 19 is set short, the check valve 81 is set short when the throttle is fully open. Residual gas and fresh air blowback can be reduced. Therefore, due to these circumstances,
In this embodiment, it is possible to particularly improve the filling efficiency in the low and medium speed ranges where the intake resistance caused by the check valves 18...1 is not much of a problem.
If the intake system is made into two systems and check valves are installed, the air-fuel mixture flow rate at different stations will be 6Tf.
Since the mixture flows into the combustion chamber, combustion can be improved by increasing the turbulence of the mixing vessel within the combustion chamber.

以、トの結果、高負荷運転時においても定常出力の向!
−と、燃料経済性の向上とを同時に図ることができるも
のである。
As a result of (g), steady output is maintained even during high load operation!
- and improve fuel economy at the same time.

なお、t3il記実施例では、第1吸気系路と第2吸気
系路の両方から混合気を燃焼室lこ供給する場合ニつい
て説明しtこが、第2吸気系路は空気のみを倶縞オる糸
路であってもよい。
In addition, in the embodiment described above, a case will be described in which the air-fuel mixture is supplied to the combustion chamber from both the first intake system passage and the second intake system passage, but the second intake system passage only receives air. It may be a striped yarn path.

まjコ、前記実施例では、本発明を気化器式のエンジン
1こ適用し1こ場合1ごついて説明したが、本発明はイ
ンジェクンヨン方式のエンジンにも同様に適用が可能で
ある。
In the above embodiment, the present invention was applied to one carburetor type engine and explained in one case, but the present invention can be similarly applied to an injection type engine.

さらlこ、第1、第2の吸気弁の開弁特性も前記実施例
のもの1こ限られないのは勿論であり、例えば、第4回
着こ示すように、前記両吸気弁(実線aIおよび一点鎖
線CI参照)の開成時期を一般のもの(破線す参照)よ
りも進めたり、第1吸気弁の閉成時期を第2吸気弁の閉
成時期よりも進めることによって中、低速域での充填効
率をさらIこ高める等、求められるエンジンの性格lこ
応じて種々変形が可能である。
Of course, the opening characteristics of the first and second intake valves are not limited to those of the embodiment described above. aI and the dot-dash line CI) are opened earlier than normal ones (refer to the dashed line CI), and the first intake valve's closing timing is advanced than the second intake valve's closing timing. Various modifications can be made depending on the required characteristics of the engine, such as further increasing the charging efficiency.

また、逆止弁は、第2吸気系路の合流部分に設けてもよ
いが、前記実施例のようlこ分岐通路部に設けておけば
、該逆止弁と′各組2吸気弁との間に存在する空間の容
積がきわめて小さなものになる1こめ、残留ガスおよび
新気吸返しを特憂こ効果的tこ減少させることができる
Further, the check valve may be provided at the confluence part of the second intake system passage, but if it is provided at the branch passage part as in the above embodiment, the check valve and the two intake valves in each group may be connected to each other. Since the volume of the space existing between the two is extremely small, residual gas and fresh air intake can be particularly effectively reduced.

本発明は、以上のような構成であるから、次のような効
果が得られる。
Since the present invention has the above configuration, the following effects can be obtained.

(i)  ます、各気筒fこ開弁タイミングの異なる第
1第2の吸気弁を設け、スロットル弁と逆止弁の働きに
よりこれら両吸気弁を低負荷運転時と高負荷運転時とで
使い分けることができるようIこしているので、動弁糸
の複雑化や信頼性の低下等を一切招くことなしに可変バ
ルブタイミング方式1こ準じtこ特性を得ることができ
る。すなわち、亮速毘負荷域での出力の低下を招くこと
なしlζ低速・低負荷域での大幅な充填効率の向上や燃
焼の安定化を図っtこり、低負荷域での性能と高速・高
負楠城での性能とを共1こバランスよく向上させるよう
にする等、要求に応じてエンジンに種々の優れた特性を
伺与することができる。
(i) First and second intake valves with different opening timings are provided for each cylinder, and these intake valves are used differently during low-load operation and high-load operation by the action of the throttle valve and check valve. Therefore, the same characteristics as those of the variable valve timing system can be obtained without complicating the valve train or reducing reliability. In other words, without causing a decrease in output in the low speed/low load range, it significantly improves charging efficiency and stabilizes combustion in the low speed/low load range, improving performance in the low load range and improving high speed/high speed performance. Depending on your requirements, you can give the engine various excellent characteristics, such as improving its performance in a well-balanced manner.

(iリ  さらに、第1吸気系路を第2吸気系路から独
立させているので、特に低速域での吸気流速の増大を図
ることができると同時に気化器より燃焼室までの混合気
の到達時間を短縮することが可能でレスポンスの向上、
並び1こノッキングの改善等により定常出力の向上と燃
料経済性の向上とを高い次元で両立させることが可能と
なる。
Furthermore, since the first intake system passage is made independent from the second intake system passage, it is possible to increase the intake flow velocity, especially in the low speed range, and at the same time, the air-fuel mixture reaches the combustion chamber from the carburetor. It is possible to shorten time and improve response,
By improving knocking, etc., it becomes possible to achieve both improved steady output and improved fuel economy at a high level.

(li6  また、先行技術のような制御装置が不用で
ある1こめ、溝造が簡単で製造Iこ際しても高精度の加
工工程などの必要がなく、また、微妙な調整も全く不用
である。したがって、信頼性が高く保守点検に手間を要
することのない優れた生産性のあるエンジンを提供でき
るものである。
(li6) In addition, it does not require a control device like the prior art, it is easy to create grooves, and there is no need for high-precision machining processes, and there is no need for delicate adjustments at all. Therefore, it is possible to provide an engine that is highly reliable, requires no maintenance and inspection, and has excellent productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の一実施例を示し、第1図は、
原理説明図、第2図はエンジンの概略平断面図、第8図
は吸気弁および排気弁の開弁時期を示す図である。第4
図は、本発明の他の実施例を示す第8図相当の図である
。 8・・・気筒  4・・・燃焼室 5・・・第1スロツトル弁 6・・・第2スロツトル弁 7・・・第1吸気弁  8・・・第2吸気弁11・・・
第1吸気系路  12・・・第2吸気系路18・・・逆
圧弁 代理人 弁理士 赤澤−博
FIGS. 1 to 3 show an embodiment of the present invention, and FIG.
FIG. 2 is a schematic plan cross-sectional view of the engine, and FIG. 8 is a diagram showing the opening timings of the intake valve and exhaust valve. Fourth
The figure is a diagram corresponding to FIG. 8 showing another embodiment of the present invention. 8... Cylinder 4... Combustion chamber 5... First throttle valve 6... Second throttle valve 7... First intake valve 8... Second intake valve 11...
First intake system path 12...Second intake system path 18...Return pressure valve agent Patent attorney Hiroshi Akazawa

Claims (1)

【特許請求の範囲】 (1)  各気筒に対をなす第1、第2の吸気弁を設け
るとともに、低負荷用の第1スロツトル弁を通過した給
気を前記第1吸気弁を介して各気筒の燃焼室lこ供給す
るための第1吸気系路と、高負荷用の第2スロツトル弁
を通過した給気を前記第2吸気弁を介して各気筒の燃焼
室に供給するための82吸気系路とを相互に独立させて
設けておき、前記第1吸気弁の開成時期を前記第2吸気
弁の開成時期よりも遅らせるとともJこ、前記第2吸気
系路の途中1こスロットル伸側から燃焼室側へ向う給気
の流れのみを通過させる逆止弁を設けたことを特徴とす
る複吸気弁式4サイクルエンジン。 (2)  前記逆止弁を、前記第2吸気系路の各気筒1
ζ向う分岐通路部lこそねぞれ設け1こことを特徴とす
る特許請求の範囲第1項記載の複吸気弁式4サイクルエ
ンジン。 (8)  a’ff記第1吸気弁の閉弁時期8−前記第
2吸気弁の閉弁時期よりも早めたことを特徴とする特許
請求の範囲第1項ないし第2項記載の複吸気弁式4%式
[Scope of Claims] (1) Each cylinder is provided with a pair of first and second intake valves, and supply air that has passed through a first throttle valve for low load is passed through the first intake valve to each cylinder. a first intake system passage for supplying the combustion chambers of the cylinders, and a second intake system 82 for supplying the intake air that has passed through the second throttle valve for high load to the combustion chambers of each cylinder via the second intake valves. The opening timing of the first intake valve is delayed from the opening timing of the second intake valve. A multiple intake valve type four-stroke engine characterized by being provided with a check valve that allows only the flow of intake air from the expansion side to the combustion chamber side to pass through. (2) The check valve is connected to each cylinder 1 of the second intake system path.
A dual intake valve type four-stroke engine according to claim 1, characterized in that the branch passage portion L on the other side is also provided with a groove. (8) The double intake according to claim 1 or 2, characterized in that the closing timing 8 of the first intake valve a'ff is earlier than the closing timing of the second intake valve. Valve type 4% type%
JP57219701A 1982-12-14 1982-12-14 Double intake valve type 4-cycle engine Pending JPS59108821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57219701A JPS59108821A (en) 1982-12-14 1982-12-14 Double intake valve type 4-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219701A JPS59108821A (en) 1982-12-14 1982-12-14 Double intake valve type 4-cycle engine

Publications (1)

Publication Number Publication Date
JPS59108821A true JPS59108821A (en) 1984-06-23

Family

ID=16739607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219701A Pending JPS59108821A (en) 1982-12-14 1982-12-14 Double intake valve type 4-cycle engine

Country Status (1)

Country Link
JP (1) JPS59108821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197719A (en) * 1985-02-25 1986-09-02 Nissan Motor Co Ltd Intake device for internal-combustion engine
US4957070A (en) * 1989-12-05 1990-09-18 Thunder Power, Inc. Engine air-fuel intake triple manifold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114637A (en) * 1978-02-27 1979-09-06 Daihatsu Motor Co Ltd Intake device of internal combustion engine
JPS636448U (en) * 1986-06-30 1988-01-16
JPS6454545A (en) * 1987-08-25 1989-03-02 Nec Corp Remote debug device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114637A (en) * 1978-02-27 1979-09-06 Daihatsu Motor Co Ltd Intake device of internal combustion engine
JPS636448U (en) * 1986-06-30 1988-01-16
JPS6454545A (en) * 1987-08-25 1989-03-02 Nec Corp Remote debug device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197719A (en) * 1985-02-25 1986-09-02 Nissan Motor Co Ltd Intake device for internal-combustion engine
JPH0574690B2 (en) * 1985-02-25 1993-10-19 Nissan Motor
US4957070A (en) * 1989-12-05 1990-09-18 Thunder Power, Inc. Engine air-fuel intake triple manifold

Similar Documents

Publication Publication Date Title
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
US4972814A (en) Combustion system of an internal combustion engine
JPS59122725A (en) Suction device of engine
JPS6052292B2 (en) Dual intake passage internal combustion engine
JPS58187519A (en) Intake device of engine
US5826560A (en) Engine combustion chamber and method of operation
JPS6134344A (en) Intake device for internal-combustion engine
JPS59108821A (en) Double intake valve type 4-cycle engine
US4744342A (en) Intake port structure for an internal combustion engine
JP3214720B2 (en) Exhaust gas recirculation system for internal combustion engine
JP2966129B2 (en) Engine combustion chamber structure
JPS59136515A (en) Three-valve type internal-combustion engine
JPH02176115A (en) Intake control device for internal combustion engine
JPS6027811B2 (en) Intake control method for internal combustion engine
JPS6244122Y2 (en)
JPS61268845A (en) Control method for air-fuel ratio in internal-combustion engine
JPS6125915A (en) Intake-air device in internal-combustion engine
JPH0242122A (en) Intake device for internal combustion engine with turbocharger
JPS6350427Y2 (en)
JPH03164518A (en) Suction device of multivalve engine
JPS597539Y2 (en) Double intake internal combustion engine
JPS6319549Y2 (en)
JPS6128714A (en) Intake device of internal-combustion engine
JPS60138224A (en) Structure of internal-combustion engine
JPS5936091B2 (en) engine intake system