JPS5910822A - Method for measuring temperature using kerr's spectroscopic method - Google Patents

Method for measuring temperature using kerr's spectroscopic method

Info

Publication number
JPS5910822A
JPS5910822A JP11963582A JP11963582A JPS5910822A JP S5910822 A JPS5910822 A JP S5910822A JP 11963582 A JP11963582 A JP 11963582A JP 11963582 A JP11963582 A JP 11963582A JP S5910822 A JPS5910822 A JP S5910822A
Authority
JP
Japan
Prior art keywords
temperature
laser beam
detected
kerr
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11963582A
Other languages
Japanese (ja)
Inventor
Koichi Kajiyama
康一 梶山
Norio Moro
茂呂 則夫
Kazuaki Sajiki
桟敷 一明
Tadayoshi Yamaguchi
忠義 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP11963582A priority Critical patent/JPS5910822A/en
Publication of JPS5910822A publication Critical patent/JPS5910822A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/601Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using spectral scanning

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure a temperature with a simple processing, by detecting the temperature of a measuring system from a value range of the base bottom part of a spectrum by a Kerr's spectroscopic method. CONSTITUTION:An YAG laser light YAG for excitation is reflected by a mirror 1 and is introduced into a dichroic mirror 2 and is synthesized with a wide band dye laser light Dye. This synthesized light is made incident to a spectroscope 10 through a lens 5 of a window 4 for visualization of an engine 3, a combustion room 6 of the engine, a lens 8 of a window 7 for visualization and a prism 9 and is detected by a multi-channel detector 11. An output of this Kerr's signal is processed by an operational part 12 and 1/5 value range of a spectrum is found and a temperature of the room 6 is detected by a calibration curve. Hereby, the temperature is measured with a simple processing.

Description

【発明の詳細な説明】 この発明はカース分光法を用いた温度測定方法および装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring method and apparatus using Kerse spectroscopy.

カース分光法は、高出力レーザおよびダイレーザの発達
にともなって進歩してきた非線形ラマン分光法の1種で
、通常のラマン分光法と比較して10−”倍程度の検出
感度を有していることからしてその応用面に多くの期待
がもたれている。
Kers spectroscopy is a type of nonlinear Raman spectroscopy that has evolved with the development of high-power lasers and dye lasers, and has a detection sensitivity that is approximately 10-" times higher than that of ordinary Raman spectroscopy. Therefore, there are many expectations for its application.

このカース分光法の原理を簡単に説明すると次のように
なる。第1図に示すように物質(ラマン活性仲買)RM
K4i動数ω1の励起レーザ光と、物質RMのストーク
ス光と同じ振動数(ストークス振動数)ω2(=ω、−
Ω、ただしΩは物質RMの分子の固有振動数)のレーザ
光とを合せて照射すると、物質量の反ストークス光(振
動数ω3−ω1+Ω)が共鳴的に極めて強力、かつビー
ム状に発生する。
The principle of this Kerse spectroscopy can be briefly explained as follows. As shown in Figure 1, the material (Raman active agent) RM
The excitation laser beam with K4i frequency ω1 and the same frequency (Stokes frequency) ω2 (=ω, −
When irradiated with a laser beam of Ω, where Ω is the natural frequency of the molecules of the substance RM, an extremely strong anti-Stokes beam (frequency ω3-ω1+Ω) of the substance is generated resonantly and in the form of a beam. .

この現象は第2図のエネルギーダイアダラムに示すよう
に4光子過程としてとらえることができる。
This phenomenon can be viewed as a four-photon process, as shown in the energy diagram in Figure 2.

ところで、第2図に示したエネルギダイアダラムには分
子振動による準位が一つだけ示しであるが分子はさらに
いくつかの振動準位をもつほか、さらに回転による励起
準位ももっていて、これらの準位間で多くの遷移が生じ
る。例えば窒素(N2)のCAR8信号(カース分光法
により発生される反ストークス光)で最も強いのは、同
じ回転量子数Jの間で生じる遷移が最も強く、これをI
I Q枝″と呼んでいる。このQ核内の信号は異なるJ
値(回転数)の信号の集まりからなっているが、これは
振動回転の相方作用のだめ各J値の間隔が少しずつ異な
っているためである。この各J値開のCAR8信号のピ
ーク比強度は各準位の縮重度、y]ζルツマン因子を考
慮して、絶対温度Tの関数 ×e−π(J(J+1 )−J ’(J+1 ))で与
えられる。ここで■、 mazはピーク強度Fはラマン
線幅I(J)は核スピンによる縮重因子、Bは回転定数
である。
By the way, although the energy diagram shown in Figure 2 shows only one level due to molecular vibration, molecules have several more vibrational levels as well as excitation levels due to rotation, and these Many transitions occur between the levels of . For example, the strongest CAR8 signal (anti-Stokes light generated by Kars spectroscopy) of nitrogen (N2) is the transition that occurs between the same rotational quantum numbers J, and this is the I
The signal within this Q nucleus is called the “IQ branch”.
It consists of a collection of value (rotation speed) signals, and this is because the intervals between each J value are slightly different due to the interaction of vibration and rotation. The peak ratio intensity of the CAR8 signal at each J value is determined by the function of absolute temperature T x e-π(J(J+1)-J'(J+1) ) is given by Here, ■, maz is the peak intensity F, Raman line width I (J) is the degeneracy factor due to nuclear spin, and B is the rotation constant.

この式によれば、Q核内の強度分布は温度の上昇にとも
ないJ値の高い方が強くなることが明らかである。とこ
ろで上記Q値内のCAR8信号スペクトルは装置の分解
能との関係から1つのピークとなって現われ、その線幅
は湯度上昇とともに拡がる傾向にあり、この波形は被測
定系の温度に苅応しでいる。そこで上記CAR8信号の
波形形状を検出すれば被測定系の温度を測定することが
できる。
According to this equation, it is clear that the intensity distribution within the Q nucleus becomes stronger as the J value increases as the temperature rises. By the way, the CAR8 signal spectrum within the above Q value appears as a single peak due to the relationship with the resolution of the device, and the line width tends to expand as the hot water temperature increases, and this waveform responds to the temperature of the system being measured. I'm here. Therefore, by detecting the waveform shape of the CAR8 signal, the temperature of the system to be measured can be measured.

従来、上記カース分光法を用いた温度測定方法は測定値
と理論値とのカーブフィッティングによυ行われていだ
が、この方法は非常に犬がかシな計嘗が必要でありリア
ルタイムでの測定ができない等実用上問題があった。
Conventionally, temperature measurement methods using Kerse spectroscopy described above have been performed by curve fitting between measured values and theoretical values, but this method requires extremely sophisticated measurement and requires real-time measurement. There were practical problems such as not being able to do so.

この発明は上述の点に鑑みてなされたもので、非常に簡
単な処理によりリアルタイムでの温度測定ができるよう
にしだカース分光法を用いた温度測定方法を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a temperature measuring method using Kaas spectroscopy, which enables real-time temperature measurement with very simple processing.

この発明はCAR8信号のスペクトル幅にもとづき温度
検出を行っている。ところでCAR8信号のスペクトル
幅は一般に圧力依存性が大きく、例えば腫値幅(CAR
8信号のピークの強度を1としたときの強度Aにおける
スペクトル幅)を考えると同一温度でも圧力が異なると
その幅は大きく変化するので、これを温度の検出に用い
ることはできない。
This invention performs temperature detection based on the spectral width of the CAR8 signal. By the way, the spectral width of the CAR8 signal generally has a strong pressure dependence, for example, the tumor value width (CAR
Considering the spectral width at the intensity A when the peak intensity of the 8 signals is 1), the width changes greatly if the pressure is different even at the same temperature, so this cannot be used for temperature detection.

しかし、CAR8信号の基底部の値幅、例えば115値
幅(CAR8信号のピークの強度を1としたときの強度
1/2におけるスペクトル幅)は圧力に対する依存性が
ほとんどなく、温度のみの関数となることが実験的に確
かめられている。これは基底部の値幅がほとんどのJ値
(回転数)の信号が圧力の大小にかかわらず関与するこ
とになるからと考えられる。
However, the value width at the base of the CAR8 signal, for example, the 115 value width (the spectral width at half the intensity when the peak intensity of the CAR8 signal is 1) has almost no dependence on pressure and is a function only of temperature. has been experimentally confirmed. This is thought to be because the signal with the J value (rotation speed), which has the most value width at the base, is involved regardless of the magnitude of the pressure.

この発明は上記点に着目し、 CAR8信号の基底部の
値幅にもとづき測定系の温度を検出するようにしている
The present invention focuses on the above point and detects the temperature of the measurement system based on the value width of the base portion of the CAR8 signal.

身重、この発明の方法を添付図面を参照して詳細に説明
する。
The method of the present invention will now be described in detail with reference to the accompanying drawings.

第3図は窒素(N2)のCAR8信号スペクトルを同一
の温度(16000K)に関し、互に異なる圧力(30
atmおよび1 atm )で示したものである。
Figure 3 shows the CAR8 signal spectrum of nitrogen (N2) at the same temperature (16000K) but at different pressures (300K).
atm and 1 atm).

図から明らかのように両者は同一の温度にもががわらず
1/2値幅は大幅に異なる。しかし、CAR8信号の基
底部の値幅、例えば115値幅はほとんど同じとなる。
As is clear from the figure, although the two are at the same temperature, the 1/2 value widths are significantly different. However, the value widths of the base portions of the CAR8 signals, for example, the 115 value widths, are almost the same.

また第4図は圧力5atmおよび100 atmにおけ
るN2のCAR8信号スペクトルの115値幅を温度と
の関係で示したものである。図において。印はサンプル
点を示し、グラフI、Illd5atmおよび100 
atmのサンノリング点にもとづく115値幅−湛度I
G線である。
Further, FIG. 4 shows the 115 value width of the CAR8 signal spectrum of N2 at pressures of 5 atm and 100 atm in relation to temperature. In fig. Marks indicate sample points, graph I, Illd5atm and 100
115 value range based on atm's sunnoring point - abundance I
It is the G line.

このようにCAR8信号ス被クトルり値幅として例えば
115値幅を用いると、この値は測定系の温度に対して
リニヤな関係となり、しかも測定系の圧力によってほと
んど影響を受けないことが明らかとなった。
In this way, if we use, for example, a value range of 115 as the value range of the CAR8 signal, it has become clear that this value has a linear relationship with the temperature of the measurement system, and is hardly affected by the pressure of the measurement system. .

第5図は、この発明をエンジン内の温度測定に適用した
実施例を示したものである。この実施例では励起用レー
ザ光としてYAGレーザ光(波長532 nm) YA
Gを用い、この励起用レーデ光YAGとともに測定系に
加える他のレーザ光として広帯域のダイレーザ光Dye
を用いている。YAGレーデ光YAGはミラー1で反射
されてグイクロイックミラー2に導かれ、またダイレー
ザ光Dyeはグイクロイックミラー2にYAGレーザ光
YAGと直角な方向から加えられる。ダイクロイックミ
ラー2はYAGレーザ光YAGを反射させるとともにダ
イレーザ光Dyeを透過させるもので、YAGレーザ光
YAGとダイレーザ光Dyeはこのダイクロイックミラ
ー2により合成される。この合成光はエンジン3の可視
化用窓4のレンズ5、エンノンの燃焼室6、可視化用窓
7のレンズ8、プリズム9を介して分光器10に加えら
れ、デテクタ11によって検出される。ここでデテクタ
11は分光器1oによって受光された光を各波長毎にそ
れぞれ異なるチャンネルで同時に検出するいわゆるマル
チチャンネルのデテクタが用いられる。なお、レンズ5
,8はレーザ光収束用または再収束用のレンズで、レー
ザ光の収束性が保たれるのであれば必ずしも必要ではな
い。
FIG. 5 shows an embodiment in which the present invention is applied to temperature measurement inside an engine. In this example, YAG laser light (wavelength 532 nm) was used as the excitation laser light.
A broadband dye laser beam Dye is used as another laser beam to be added to the measurement system together with this excitation laser beam YAG.
is used. The YAG laser beam YAG is reflected by the mirror 1 and guided to the guichroic mirror 2, and the dye laser beam Dye is applied to the guichroic mirror 2 from a direction perpendicular to the YAG laser beam YAG. The dichroic mirror 2 reflects the YAG laser beam YAG and transmits the dye laser beam Dye, and the YAG laser beam YAG and the dye laser beam Dye are combined by the dichroic mirror 2. This combined light is applied to the spectrometer 10 via the lens 5 of the visualization window 4 of the engine 3, the combustion chamber 6 of the ennon, the lens 8 of the visualization window 7, and the prism 9, and is detected by the detector 11. Here, the detector 11 is a so-called multi-channel detector that simultaneously detects the light received by the spectroscope 1o in different channels for each wavelength. In addition, lens 5
, 8 are lenses for converging or refocusing the laser beam, which are not necessarily necessary as long as the convergence of the laser beam is maintained.

デテクタ11によって検出されたCAR8信号は演算部
12に加えられる。演算部12は加えられたCA R8
信号にもとづきCAR8信号ス被クトルり115値幅を
求め、このIA値幅にもとづきエンジン3の燃焼室6の
温度を検出する。なお、IA値幅と温度との関係は演算
部12に予め設定しておくものとする。
The CAR8 signal detected by the detector 11 is applied to the arithmetic unit 12. The calculation unit 12 calculates the added CA R8
Based on the signal, the CAR8 signal torque range 115 value range is determined, and the temperature of the combustion chamber 6 of the engine 3 is detected based on this IA value range. It is assumed that the relationship between the IA value range and the temperature is set in the calculation unit 12 in advance.

なお、上記実施例では温度測定のために窒素(N2)を
用いたが、これに限定されない。測定系の中で安定に存
在するものであればこれ以外の物質を用いることができ
る。また演算部12の主な動作は115値幅の検出とそ
の温度への変換であるので大型の計算機は不要でマイク
ロコンビーータ等の小型の計算機を用いて構成すること
ができ、またリアルタイムでの処理が可能である。
In addition, although nitrogen (N2) was used for temperature measurement in the above embodiment, the present invention is not limited to this. Other substances can be used as long as they exist stably in the measurement system. In addition, since the main operation of the calculation unit 12 is to detect the 115 value range and convert it to temperature, a large-sized computer is not required and it can be configured using a small-sized computer such as a microconbeater. Processing is possible.

また上記実施例ではIA値幅を用いたがこれに限定すれ
ない。CAR8信号スペクトルの基底部の値幅であれば
一定の効果が期待できる。
Furthermore, although the IA value range is used in the above embodiment, the present invention is not limited to this. A certain effect can be expected if the value width is at the base of the CAR8 signal spectrum.

以上説明したように、この発明によれば、非常に簡単な
処理により被測定系の温度を検出することができ、特に
エンジンの燃焼室の温度測定等に優れた効果を奏する。
As described above, according to the present invention, the temperature of the system to be measured can be detected through very simple processing, and is particularly effective in measuring the temperature of the combustion chamber of an engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明で用いるカース分光法の原理
を説明する図、第3図、第4図はこの発明譚理を説明す
るグラフ、第5図はこの発明一実施例を示す図である。 1・・・ミラー、2・・・ダイクロイックミラー、3・
・・エンノ>、4.7・・・可視化用窓、5,8・・・
レンズ、9・・・プリズム、10・・・分光器、11・
・・デテクタ、12・・・演算部。 第1図 第3図 第4図 玉& 度 手続?+Ii 、−+−,tμ( 1,事件の表示 昭和57年特誇願第1106.15号 2、−発明の名称 カース分光法を用いた温If 迎1 ”il方ン去3、
補正をづる者 事件どの関係  4j工ii’f出願人(123)  
株式会ネ1小松製作所 1、代理人 (〒1(14>東京都中央区銀座2丁目1112月銀座
大作ビル6階 電話03−545−3508 (代表)
(1)本願の明細用、第2ページ第4行のr 10−’
倍1を[105倍1に訂正づる。 (2> Ii″il、負′13ページ第10行から第1
1行の式化に5FW−する。 (3)同、第3ページ第17行の[Q飴lを10枝](
こAl il己りる。 (7I)同、第!:5ページ第3(1の[を衰1 、/
2 Bを[1衰1.・′5jに8]正づる。 (5)本願の図面、第1図おJ、び第5図を別紙の通り
訂正する。
Figures 1 and 2 are diagrams explaining the principle of Kerse spectroscopy used in this invention, Figures 3 and 4 are graphs explaining the invention, and Figure 5 shows an embodiment of this invention. It is a diagram. 1...Mirror, 2...Dichroic mirror, 3.
... Enno>, 4.7... Visualization window, 5, 8...
Lens, 9... Prism, 10... Spectrometer, 11.
...Detector, 12...Arithmetic unit. Figure 1 Figure 3 Figure 4 Ball & degree procedure? +Ii, -+-,tμ(1, Indication of the incident 1988 Patent Application No. 1106.152, -Name of the invention Warm If using Curse spectroscopy 1 "il direction 3,
What is the relationship between the case of the person making the amendment? 4j engineering ii'f applicant (123)
Ne1 Co., Ltd. Komatsu Ltd. 1, Agent (6th floor, December Ginza Daisaku Building, 2-11 Ginza, Chuo-ku, Tokyo 1 (14) Tel: 03-545-3508 (Representative)
(1) For the specification of the present application, r 10-' on the 4th line of the 2nd page
Correct 1 times 1 to 1 times 105. (2> Ii″il, negative’13 page 10th line to 1st
Add 5FW- to one line of formula. (3) Same, page 3, line 17 [10 branches of Q candy] (
This is all I want. (7I) Same, No.! : 5th page 3rd (1's [decrease 1, /
2 B [1 decline 1.・'5j to 8] Correct the spelling. (5) The drawings of this application, Figures 1 and 5, are corrected as shown in the attached sheet.

Claims (2)

【特許請求の範囲】[Claims] (1)所定物質を含む系に励起用の第1のレーザ光と該
所定物質のストークス振動数を含む第2のレーザ光とを
合せて加え、前記系から放出されたレーザ光をマルチチ
ャンネルのデテクタで検出し、該マルチチャンネルのデ
テクタから出力されるスペクトル形状から前記系の温度
を検出するカース分光法を用いた温度測定方法において
、前記スペクトルの基底部の値幅から前記系の温度を検
出するようにしたことを%徴とするカース分光法を用い
た温度測定方法。
(1) A first laser beam for excitation and a second laser beam containing the Stokes frequency of the predetermined substance are added together to a system containing a predetermined substance, and the laser beam emitted from the system is used as a multi-channel In a temperature measurement method using Curse spectroscopy, in which the temperature of the system is detected by a detector and the temperature of the system is detected from the shape of the spectrum output from the multi-channel detector, the temperature of the system is detected from the value width of the base of the spectrum. A method of measuring temperature using Kerse spectroscopy, which measures the temperature as a percentage.
(2)前記基底部の値幅はIA値幅である特許請求の範
囲第(1)項記載のカース分光法を用いた温度測定方法
(2) The temperature measurement method using Kerse spectroscopy according to claim (1), wherein the value width of the base portion is an IA value width.
JP11963582A 1982-07-09 1982-07-09 Method for measuring temperature using kerr's spectroscopic method Pending JPS5910822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11963582A JPS5910822A (en) 1982-07-09 1982-07-09 Method for measuring temperature using kerr's spectroscopic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11963582A JPS5910822A (en) 1982-07-09 1982-07-09 Method for measuring temperature using kerr's spectroscopic method

Publications (1)

Publication Number Publication Date
JPS5910822A true JPS5910822A (en) 1984-01-20

Family

ID=14766323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11963582A Pending JPS5910822A (en) 1982-07-09 1982-07-09 Method for measuring temperature using kerr's spectroscopic method

Country Status (1)

Country Link
JP (1) JPS5910822A (en)

Similar Documents

Publication Publication Date Title
JP4579423B2 (en) System for nondestructive measurement of specimens
EP2942616B1 (en) Gas absorption spectroscopy system and gas absorption spectroscopy method
JPS6049847B2 (en) Method and spectrometer for measuring light intensity
Zhao et al. Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared
Fisher et al. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm
US7286231B2 (en) Method and apparatus for peak compensation in an optical filter
EP1120637A2 (en) Method and means for calibrating a grating monochromator
US6118523A (en) High-resolution zero-dispersion wavelength mapping in single mode fiber
JP2522865B2 (en) Carbon isotope analyzer
GB2120779A (en) Quantitative analysis in accordance with cars
Scholl et al. Broadband precision wavelength meter based on a stepping Fabry–Pérot interferometer
JPWO2014208349A1 (en) Optical measuring apparatus and optical measuring method
JPS5910822A (en) Method for measuring temperature using kerr's spectroscopic method
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
Grubbs et al. High resolution stimulated Brillouin gain spectrometer
JPH0416749A (en) Method and apparatus for measuring ozone concentration
US4167338A (en) Method and apparatus for determining the quantity ratio of two components of a multi-substance mixture
WO2021053804A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JP3102485B2 (en) Spectrophotometer
JPH0618411A (en) Carbon isotope analyzer
JPH0377030A (en) Reaction vapor phase monitor device
JPH0320705B2 (en)
Niay et al. An analysis of the D1Πu-X1Σg+ bands of Na2 through absorption and polarization labeling spectroscopy
JPH02278133A (en) Measurement of temperature of atmosphere by coherent anti-stokes raman spectroscopy
JPS5910835A (en) Quantitative determinationof hydrogen concentration using kerr's spectroscopic method