JPS59107904A - Manufacture of fine particle of metallic oxide - Google Patents

Manufacture of fine particle of metallic oxide

Info

Publication number
JPS59107904A
JPS59107904A JP57215697A JP21569782A JPS59107904A JP S59107904 A JPS59107904 A JP S59107904A JP 57215697 A JP57215697 A JP 57215697A JP 21569782 A JP21569782 A JP 21569782A JP S59107904 A JPS59107904 A JP S59107904A
Authority
JP
Japan
Prior art keywords
metal oxide
metal
metallic
fine particles
metallic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57215697A
Other languages
Japanese (ja)
Inventor
Tomoji Hatanaka
畑中 友治
Ichiro Kikuchi
一郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP57215697A priority Critical patent/JPS59107904A/en
Publication of JPS59107904A publication Critical patent/JPS59107904A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state

Abstract

PURPOSE:To manufacture safely fine particles of metallic oxide in a high yield by gasifying a precursor for the metallic oxide by heating in an inert atmosphere, reacting the gasified product with a gas contg. oxygen while introducing steam, and cooling the reaction product. CONSTITUTION:Metallic halide, metallic salt of org. acid, alkyl metal, metallic alkoxide, compound oxyalkoxide, metallic chelate compound or a soln. thereof in an org. solvent is used as a precursor for metallic oxide. The precursor is heated in an inert atmosphere and gasified by evaporation, sublimation or thermal decomposition. The gasified product is reacted with a gas contg. oxygen in a vapor phase while introducing steam. The reaction product is cooled to incorporate metallic oxide into condensed droplets of steam as nuclei. Fine particles of metallic oxide can be recovered by a mild reaction in a high yield.

Description

【発明の詳細な説明】 本発明は、金属酸化物微粒子の製造法に係り、さらに詳
しくは、気相法による金属酸化物微粒子の製造法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine metal oxide particles, and more particularly to an improvement in the method for producing fine metal oxide particles by a vapor phase method.

金属酸化物微粒子は、顔料、セラミックス、触媒、その
他の工業分野において広く利用されてiるが、近年、粒
径が数ミクロン以下の超微粒子が、大きな比表面積と高
い表面エネルギーを有し、触媒活性、焼結性等において
特異な性質を有するため新しい材料として注目されてい
る。金属酸化物微粒子を製造する方法として、金属酸化
物の粗粉末を機械的に粉砕して微粒子化する方法がある
が、該方法においては、粒子径が小さくなるに従って粒
子の表面エネルギーが増大するため、それに伴って粉砕
エネルギーが増大するため得られる粒子径に限界がちシ
、さらに機械の磨滅およびそれに起因する金属酸化物微
粒子の純度低下があるため高機能材料としての金属酸化
物微粒子の製造法として採用することはできない。これ
に対して、金属酸化物を加熱して蒸発または昇華させて
生ずる蒸気を再凝縮して微粒子とする蒸発−凝縮法、お
よび金属酸化物前駆体を不活性雰囲気下に加熱して蒸発
または昇華させて生ずる蒸気と酸素含有ガスたとえば酸
素、空気等とを気相で反応させて金属酸化物微粒子を得
る気相化学反応法が知られている。前者は生成物の粒径
分布、純度のコントロールには有利であるが連続生産が
困難であシ生産性が低い。一方、後者は粒径分布、純メ
のコントロールが容易であり、かつ、連続生産が可能な
ので生産性の高、い利点を有するが、金属酸化物蒸気を
含有する中に酸化性ガスを導入するに際し、急激に反応
し爆発が起る怖れがあり極めて危険である。また、生成
した金属酸化物微粒子の粒径が極〈小さいためその捕集
が困難でありコットレル等の高価な捕集装置を用いても
せいぜい70チ程度しか回収できない欠点を有している
○ 本発明は爆発の怖れのない安全な、かつ、高回収率で生
成した金属酸化物微粒子を回収し得る金属酸化物微粒子
の製造法を提供することをその目的とする。
Metal oxide fine particles are widely used in pigments, ceramics, catalysts, and other industrial fields.In recent years, ultrafine particles with a particle size of several microns or less have a large specific surface area and high surface energy, and are used as catalysts. It is attracting attention as a new material because it has unique properties such as activity and sinterability. One method for producing metal oxide fine particles is to mechanically crush coarse powder of metal oxide to make it into fine particles, but in this method, the surface energy of the particles increases as the particle size decreases. However, due to the increase in crushing energy, there is a limit to the particle size that can be obtained, and furthermore, there is wear of the machine and a decrease in the purity of the metal oxide fine particles due to this. It cannot be adopted. On the other hand, there is a evaporation-condensation method in which metal oxide is heated to evaporate or sublimate and the resulting vapor is recondensed into fine particles, and a metal oxide precursor is heated in an inert atmosphere to evaporate or sublimate. A gas phase chemical reaction method is known in which metal oxide fine particles are obtained by reacting the resulting vapor with an oxygen-containing gas such as oxygen or air in the gas phase. The former method is advantageous in controlling the particle size distribution and purity of the product, but continuous production is difficult and productivity is low. On the other hand, the latter has the advantage of high productivity because it is easy to control the particle size distribution and purity, and continuous production is possible, but it requires the introduction of oxidizing gas into the metal oxide vapor. This is extremely dangerous as there is a risk of a sudden reaction and explosion. In addition, since the particle size of the metal oxide fine particles produced is extremely small, it is difficult to collect them, and even if an expensive collection device such as a Cottrell is used, only about 70 particles can be collected at most. SUMMARY OF THE INVENTION An object of the invention is to provide a method for producing metal oxide fine particles that is safe without fear of explosion and that allows the generated metal oxide fine particles to be recovered at a high recovery rate.

本発明者等は前記目的を達成すべく鋭意研究した結果、
金属酸化物前駆体蒸気またはそのガス化した熱分解生成
物と、酸素含有ガスとを水蒸気を導入しながら気相で反
応させることにより、反応が温和に進行し、かつ、反応
生成物を冷却することによる水蒸気の凝縮部中に核とし
て該金属酸化物が取込まれるため、単にコンデンサーを
設けるだけで高収率で回収し得ることを見出し、本発明
を完成した。
As a result of intensive research by the present inventors to achieve the above objective,
By reacting metal oxide precursor vapor or its gasified thermal decomposition product with oxygen-containing gas in the gas phase while introducing water vapor, the reaction proceeds mildly and the reaction product is cooled. The present invention was completed based on the discovery that the metal oxide is taken in as a nucleus in the water vapor condensation zone, and thus can be recovered in high yield simply by providing a condenser.

本発明は金属酸化物前駆体を不活性雰囲気下において加
熱して蒸発または熱分解させてガス化し、ついで酸素含
有ガスと水蒸気とを導入して気相中で反応させた後、冷
却して水蒸気を凝縮させることを特徴とする金属酸化物
微粒子の製造法である。
The present invention heats a metal oxide precursor in an inert atmosphere to evaporate or thermally decompose it to gasify it, then introduces an oxygen-containing gas and water vapor to react in the gas phase, and then cools it to vaporize it. This is a method for producing metal oxide fine particles, which is characterized by condensing.

本発明において金属酸化物前駆体は、加熱により蒸発、
昇華してガス化するもの、または、熱分解するものであ
ればいかなる金属化合物およびその有機溶剤溶液をも使
用することができる。たとえば塩化亜鉛、四塩化チタン
、四塩化ケイ素、四塩化スズ、塩化アルミニウム、塩化
ジルコニウム、塩化インジウム、塩化鉄(n、III)
、塩化クロム([1,III)、塩化鉛(II)、六塩
化タングステン、塩化タノタル、五塩化ニオブ、塩化カ
ルシウム、塩化バリウム、塩化マンガン等の金属ハロダ
ン化物等の無機金属化合物類、これらの金属類のギ酸塩
、酢酸塩等の金属有機酸塩類、アルキルチタネート等の
アルキル金属類、メトキシド、エトキシド、グロポキシ
ド、ブトキシド等の金属アルコキシド類、BaTi0.
 (OPr )、、PbTi02(OBu )2等の腹
合オ金属化合物類をガス化するには原料金属化合物類が
液体である場合にはそのまま、また、固体である場合に
は有機溶剤に溶解した溶液として、霧化した後加熱し蒸
発、昇華または熱分解してガス化する。また、原料金属
化合物がかなり大きな蒸気圧を有するものであれば、直
接加熱して蒸発または昇華させガス化することもできる
In the present invention, the metal oxide precursor is evaporated by heating,
Any metal compound and its organic solvent solution can be used as long as it sublimates and gasifies or thermally decomposes. For example, zinc chloride, titanium tetrachloride, silicon tetrachloride, tin tetrachloride, aluminum chloride, zirconium chloride, indium chloride, iron chloride (n, III)
, chromium chloride ([1,III), lead (II) chloride, tungsten hexachloride, tanotaru chloride, niobium pentachloride, calcium chloride, barium chloride, manganese chloride, and other metal halodides, inorganic metal compounds, and these metals. metal organic acid salts such as formates and acetates, alkyl metals such as alkyl titanates, metal alkoxides such as methoxide, ethoxide, glopoxide, butoxide, BaTi0.
(OPr), PbTi02(OBu)2, etc. can be gasified by using raw metal compounds as they are if they are liquid, or by dissolving them in an organic solvent if they are solid. As a solution, it is atomized and then heated to evaporate, sublimate, or thermally decompose and gasify. Further, if the raw metal compound has a considerably high vapor pressure, it can be directly heated to evaporate or sublimate and gasify.

本発明において、原料金属化合物のガス化は、不活性雰
囲気中たとえば、窒素ガス気流中、アルゴンガス気流中
、高真空下等において行い、ついで酸素含有ガスたとえ
ば酸素、空気等と共に水蒸気を導入して、当該金属成分
の酸化反応を気相中で行うことによシ、目的とする金属
酸化物の微粒子が生成する。生成した金属酸化物微粒子
は、反応ガスをコンデンサーを用いて冷却し、水蒸気を
凝縮させることによりその核として取込まれ容易に回収
することができる。本発明の好ましい態様は液状の原料
金属化合物を超音波霧化法、スフレ−法等により不活性
ガスたとえば窒素ガス、アルゴンガス等の気流中に霧化
浮遊させた後、加熱炉に導入して加熱し蒸発、昇華また
は熱分解してガス化し、ついでガス化気流中に酸素含有
ガスおよび水蒸気を導入し、気相反応により金属酸化物
微粒子を生成させる。液状の原料金属化合物を用いるこ
とにより、2種以上の全域を含む複合系金属酸化物たと
えばチタン酸バリウム、チタン酸ストロンチウム、チタ
ン酸鉛、チタンジルコン酸鉛(PμT)等および混合系
金属酸化物たとえばスズ−アンチモン酸化物、インジウ
ム−スズ酸化物、安定化ジルコニア、ランタン含有チタ
ンジルコン酸鉛(PLJ!T )等を原料段階で混合し
た組成(金属比)と同一の組成の金属酸化物類を容易に
得ることができる。特に液状原料化合物を超音波霧化法
を用いて霧化することにより平均粒径が数百オングスト
ロームないし数ミクロンの粒度分布幅の狭い均一な球型
または楕円型の金属酸化物超微粒子が得られる。
In the present invention, the raw metal compound is gasified in an inert atmosphere, such as in a nitrogen gas flow, an argon gas flow, or under a high vacuum, and then water vapor is introduced together with an oxygen-containing gas such as oxygen, air, etc. By carrying out the oxidation reaction of the metal component in the gas phase, fine particles of the desired metal oxide are produced. The generated metal oxide fine particles can be easily recovered by cooling the reaction gas using a condenser and condensing the water vapor, so that the metal oxide particles are taken in as the core. In a preferred embodiment of the present invention, a liquid raw metal compound is atomized and suspended in a stream of an inert gas such as nitrogen gas or argon gas by ultrasonic atomization method, soufflé method, etc., and then introduced into a heating furnace. It is heated to evaporate, sublimate or thermally decompose to gasify it, and then oxygen-containing gas and water vapor are introduced into the gasification stream to produce metal oxide fine particles through a gas phase reaction. By using liquid raw material metal compounds, composite metal oxides containing two or more types of the entire range, such as barium titanate, strontium titanate, lead titanate, lead zirconate titanate (PμT), etc., and mixed metal oxides, such as It is easy to produce metal oxides with the same composition (metal ratio) as the raw materials mixed with tin-antimony oxide, indium-tin oxide, stabilized zirconia, lanthanum-containing lead titanium zirconate (PLJ!T), etc. can be obtained. In particular, by atomizing a liquid raw material compound using an ultrasonic atomization method, it is possible to obtain uniform spherical or elliptical ultrafine metal oxide particles with a narrow particle size distribution width of several hundred angstroms to several microns in average particle size. .

本発明の方法で得られる金属酸化物として、シリカ、ア
ルミナ、チタニア、ジルコニア、マグネシア、イツトリ
ア、酸化ニッケル、酸化クロム、酸化鉄、酸化亜鉛、酸
化スズ等の単一系金属酸化物類、チタン酸バリウム、チ
タン酸ストロンチウム、チタン酸鉛、チタンジルコン酸
鉛等の複合系金属酸化物類、スズ−アンチモン酸化物、
インジウム−スズ酸化物、安定化ジルコニア等の混合物
系金属酸化物類を挙げることができる。
Metal oxides obtained by the method of the present invention include monometallic oxides such as silica, alumina, titania, zirconia, magnesia, ittria, nickel oxide, chromium oxide, iron oxide, zinc oxide, tin oxide, titanic acid, etc. Composite metal oxides such as barium, strontium titanate, lead titanate, lead titanium zirconate, tin-antimony oxide,
Mixture metal oxides such as indium-tin oxide and stabilized zirconia can be mentioned.

本発明において、気相酸化反応を水蒸気の存在下に行う
ことにより、反応は温和に進行し、爆発等の危険がなく
、また、生成した金属酸化物微粒子の回収に当り、冷却
して水蒸気を凝縮させることによシ凝縮液滴と共に効率
よく回収される。また、液状の金属酸化物前駆体を超音
波霧化法によシ処理することにより平均粒径が小さくか
つ、粒度分布幅の狭い金属酸化物超微粒子が得られる。
In the present invention, by carrying out the gas phase oxidation reaction in the presence of water vapor, the reaction proceeds mildly and there is no risk of explosion, and when collecting the generated metal oxide fine particles, the water vapor is removed by cooling. By condensing it, it is efficiently collected along with the condensed droplets. Further, by treating a liquid metal oxide precursor by ultrasonic atomization, ultrafine metal oxide particles having a small average particle size and a narrow particle size distribution width can be obtained.

本発明で得られる金属酸化物超微粒子は平均粒径が小さ
く、かつ粒度分布幅が狭いため、低圧成型、低温焼結が
可能であり、かつ高品質の焼結体が得られることが期待
され、また触媒活性等その他の種々の性質において特異
性を有するものと期待される。
Since the metal oxide ultrafine particles obtained by the present invention have a small average particle size and a narrow particle size distribution width, it is expected that low-pressure molding and low-temperature sintering will be possible, and that high-quality sintered bodies will be obtained. , and are expected to have specificity in various other properties such as catalytic activity.

本発明は気相酸化反応法による金属酸化物微粒子の製造
法において爆発の危険のない、かつ生成微粒子を高い回
収率で回収できる金属酸化物微粒子の製造法を提供する
ものであり、その産業的意義は極めて大きい。
The present invention provides a method for producing metal oxide fine particles using a gas-phase oxidation reaction method, which is free from the danger of explosion and allows the produced fine particles to be recovered at a high recovery rate, and is useful for industrial purposes. The significance is extremely large.

以下、実施例を挙げて本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

ただし、本発明は下記実施例に限定されるものではない
However, the present invention is not limited to the following examples.

実施例1 原料に四塩化チタンを使用した。四塩化チタンを窒素雰
囲気下で超音波式霧滴発生器(市販の超音波加湿器と同
等の装置で耐腐蝕対策を行なったもの、周波数的1.7
メガヘルツ)に注入する。一方項状電気炉(炉の部分太
さ3.0crn、長さ30c1n)を2台用意し、連続
的に接続し、はじめの電気炉(電気炉(1)とする)の
炉心管を霧滴発生器に接続する。電気炉(1)と2台目
の電気炉(電気炉(2)とする)の炉心管接続部分に酸
素ガスおよび水蒸気を導入する管をつける。電気炉(2
)の炉心管出口にはガラス製のコンデンサーおよび大型
フラスコヲ接続し捕集装置とする。
Example 1 Titanium tetrachloride was used as a raw material. Titanium tetrachloride was heated under a nitrogen atmosphere using an ultrasonic mist generator (a device equivalent to a commercially available ultrasonic humidifier with anti-corrosion measures, frequency 1.7).
megahertz). On the other hand, prepare two cylindrical electric furnaces (partial thickness of the furnace: 3.0 crn, length: 30 crn), connect them continuously, and spray the furnace core tube of the first electric furnace (referred to as electric furnace (1)) with mist droplets. Connect to generator. A tube for introducing oxygen gas and water vapor is attached to the joint between the electric furnace (1) and the second electric furnace (referred to as electric furnace (2)). Electric furnace (2
) A glass condenser and large flask are connected to the outlet of the reactor core tube to serve as a collection device.

実験操作はまず超音波霧滴発生器に予め乾燥した窒素ガ
スを流しながら霧滴を発生させる。発生した霧滴はキャ
リヤーガスである窒素ガスにより電気炉(1)に導かれ
る。予め電気炉(1)温度を500℃にセットしておき
、ここで霧滴をガス化する。更に電気炉(2) (10
00℃にセットしておく)に入ると同時に導入された酸
素ガスおよび水蒸気と混合され反応する。その後これら
をコンデンサーを通してガラスフラスコ中に導入し凝縮
水と共に微粒子を捕集した。
The experimental procedure begins by generating mist droplets by flowing pre-dried nitrogen gas through an ultrasonic mist generator. The generated mist droplets are guided to the electric furnace (1) by nitrogen gas, which is a carrier gas. The temperature of the electric furnace (1) is set in advance to 500°C, and the mist droplets are gasified here. Furthermore, electric furnace (2) (10
At the same time, the gas is mixed with the introduced oxygen gas and water vapor and reacts. Thereafter, these were introduced into a glass flask through a condenser, and the fine particles were collected together with condensed water.

実験条件、結果は次の通9゜ 四塩化チタン消費量(30分間)201窒素ガス流量 
       200 mt/m酸素ガス流量    
   400 ml/m水蒸気流量      200
m1/lan収      量           
   7.Of収      率          
  83.5%生成物を分析した結果次のことが分かっ
た。
The experimental conditions and results are as follows: 9゜Titanium tetrachloride consumption (30 minutes) 201 Nitrogen gas flow rate
200 mt/m oxygen gas flow rate
400 ml/m water vapor flow rate 200
m1/lan yield
7. Of yield
Analysis of the 83.5% product revealed the following.

粒径分布(95チ重量分布)  700−150OA(
電子顕微鏡) 平均粒径           1000  A結  
 晶             fナターゼ型形 状 
      楕円球体 実施例2 原料にテトラメトキシシランを用いた。
Particle size distribution (95cm weight distribution) 700-150OA (
(electron microscope) Average particle size 1000 A
Crystal f-natase shape
Ellipsoid Example 2 Tetramethoxysilane was used as a raw material.

装置及び操作は実施例1と同じである。The equipment and operation are the same as in Example 1.

実験条件及び結果は次の通シであった。The experimental conditions and results were as follows.

テトラメトキシシラン消費量(30分間)23 1窒素
ガス流量        2oomt/=酸素ガス流量
       600−/m水蒸気流量      3
00m1/”収      量           
  7.42収      率           
 81.0%生成物粒径分布(95%重量分布) 80
0−200OX平均粒径    120OA 結  晶  形         非晶質形    状
      頃日球体 実施例3 原料として四塩化スズ(無水)及び塩化アンチモンを使
用し複合酸化物を生成した。
Tetramethoxysilane consumption (30 minutes) 23 1 Nitrogen gas flow rate 2oomt/=Oxygen gas flow rate 600-/m Water vapor flow rate 3
00m1/”Yield
7.42 Yield
81.0% product particle size distribution (95% weight distribution) 80
0-200OX Average Particle Size 120OA Crystal Shape Amorphous Shape Spherical Example 3 A composite oxide was produced using tin tetrachloride (anhydrous) and antimony chloride as raw materials.

窒素雰囲気下で四塩化スズ28.2 を及び塩化アンチ
モン1.24 fをフラスコに取り加熱しながらカクハ
ンする。温度が約閣℃に達すると固体の塩化アンチモン
が溶解し均一透明溶液が得られこれを原料溶液とする。
Under a nitrogen atmosphere, 28.2 f of tin tetrachloride and 1.24 f of antimony chloride are placed in a flask and stirred while heating. When the temperature reaches about 10°C, solid antimony chloride dissolves to obtain a homogeneous and transparent solution, which is used as the raw material solution.

実験中原料溶液はカ℃を維持する。During the experiment, the raw material solution was maintained at 5°C.

装置及び操作は実施例1と同じ、但し電気炉温度を(1
)600℃、(2) 1ooo cに設定した。
The equipment and operation were the same as in Example 1, except that the electric furnace temperature was changed to (1
) 600°C, (2) 100°C.

実験条件及び結果は次の通りであった。The experimental conditions and results were as follows.

原料溶液 塩化1ンチモン   1.24  0−00−0O54
40,050原料溶液消費量(30分)     15
.3  r窒素ガス流量     2001nt/m*
酸素ガス流量     400 d、/6+水蒸気流量
    200 mttl頗収        量  
         14.60  ?収       
 率           87.o %生成物粒径分
布(95%重Ji分布) 7oo −1600X平均粒
径   950 A 組   成   比  8b/an    49/10
0結   晶   形         正方晶形  
   状      楕円球体 実施例4 実施例1と同一の装置を用い、原料および条件を変えて
各種金属酸化物微粒子を製造した。製造争件および結果
を第1表中に示す。
Raw material solution 1 timony chloride 1.24 0-00-0O54
40,050 Raw material solution consumption (30 minutes) 15
.. 3rNitrogen gas flow rate 2001nt/m*
Oxygen gas flow rate 400 d, /6 + water vapor flow rate 200 mttl Yield
14.60? Collection
Rate 87. o% Product particle size distribution (95% weight Ji distribution) 7oo -1600X Average particle size 950 A Composition ratio 8b/an 49/10
0 Crystal shape Tetragonal crystal shape
Shape: Elliptical sphere Example 4 Using the same apparatus as in Example 1, various metal oxide fine particles were produced by changing the raw materials and conditions. Manufacturing disputes and results are shown in Table 1.

251027202−4G 30100            7202−4 G
371027202−4G 491027202−4G 53104           7202−4 G0
発 明 者 菊池一部 横浜市金沢区並木1丁目17番13 1403
251027202-4G 30100 7202-4G
371027202-4G 491027202-4G 53104 7202-4 G0
Inventor Kikuchi Part 1-17-13 Namiki, Kanazawa-ku, Yokohama-shi 1403

Claims (1)

【特許請求の範囲】 1、金属酸化物前駆体を不活性雰囲気中において加熱し
て蒸発、昇化または熱分解させてガス化し、ついで酸素
含有ガスと水蒸気とを導入して気相中で反応させた後、
冷却して水蒸気を凝縮させることを特徴とする金属酸化
物微粒子の製造法。 2、液状の金属酸化物前駆体を不活性ガス気流中に霧化
浮遊させて加熱し、蒸発、昇華または熱分解させガス化
する特許請求の範囲第1項記載の方法。 3、液状の金属酸化物前駆体の霧化を超音波霧化法によ
り行う特許請求の範囲第2項記載の方法。 4、液状の金属酸化物前駆体が金属ハロゲン化物、金属
有機酸塩、アルキル金属、金属アルコキシド、複合オキ
ジアルコキシド、または金属キレート化合物もしくはそ
れらの有機溶剤溶液である特許請求の範囲第2項ないし
第3項記載の方法。 5、金属酸化物前駆体が2種以上の金属を含む混合物、
化合物またはそれらの有機溶剤溶液である特許請求の範
囲第1項ないし第4項記載の方法。
[Claims] 1. A metal oxide precursor is heated in an inert atmosphere to evaporate, elevate, or thermally decompose to gasify it, and then introduce an oxygen-containing gas and water vapor to react in the gas phase. After letting
A method for producing metal oxide fine particles characterized by cooling and condensing water vapor. 2. The method according to claim 1, wherein a liquid metal oxide precursor is atomized and suspended in an inert gas stream, heated, and gasified by evaporation, sublimation, or thermal decomposition. 3. The method according to claim 2, wherein the liquid metal oxide precursor is atomized by an ultrasonic atomization method. 4. Claims 2 to 4, wherein the liquid metal oxide precursor is a metal halide, a metal organic acid salt, an alkyl metal, a metal alkoxide, a composite oxydialkoxide, a metal chelate compound, or a solution thereof in an organic solvent. The method described in Section 3. 5. A mixture in which the metal oxide precursor contains two or more metals;
5. The method according to claim 1, which is a compound or a solution thereof in an organic solvent.
JP57215697A 1982-12-09 1982-12-09 Manufacture of fine particle of metallic oxide Pending JPS59107904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215697A JPS59107904A (en) 1982-12-09 1982-12-09 Manufacture of fine particle of metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215697A JPS59107904A (en) 1982-12-09 1982-12-09 Manufacture of fine particle of metallic oxide

Publications (1)

Publication Number Publication Date
JPS59107904A true JPS59107904A (en) 1984-06-22

Family

ID=16676653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215697A Pending JPS59107904A (en) 1982-12-09 1982-12-09 Manufacture of fine particle of metallic oxide

Country Status (1)

Country Link
JP (1) JPS59107904A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186418A (en) * 1984-03-06 1985-09-21 Hiroyoshi Inoue Production of ultrafine particle of titanium oxide
JPH01503294A (en) * 1987-05-18 1989-11-09 コンパニー・ユーロペンヌ・ドユ・ジルコニウム・セジユス Method for producing fine powder of metal (zirconium, hafnium, titanium) oxide having a predetermined specific surface area or particle size
EP0401999A2 (en) * 1989-06-03 1990-12-12 Tioxide Group Limited Stabilized metal oxide powder compositions
EP0640565A1 (en) * 1993-08-30 1995-03-01 General Electric Company Process for gas phase conversion of diethylzinc to zinc oxide powder
JP2000178018A (en) * 1998-12-16 2000-06-27 Jgc Corp Production of polycrystalline silicon and high purity silica
EP1428896A2 (en) * 2002-12-13 2004-06-16 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
WO2005021425A1 (en) * 2003-09-01 2005-03-10 Showa Denko K.K. Process for producing fine metal oxide particles
WO2005063629A1 (en) 2003-12-31 2005-07-14 Council Of Scientific & Industrial Research Synthesis of ultrafine rutile phase titanium dioxide particles at low temperature
JP2007039282A (en) * 2005-08-03 2007-02-15 Mitsubishi Materials Corp Method and apparatus for manufacturing conductive tin oxide powder
JP2013112537A (en) * 2011-11-25 2013-06-10 Nagase Chemtex Corp Complex metal oxide fine particle for optical material
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
CN109607602A (en) * 2018-12-19 2019-04-12 云南锡业集团(控股)有限责任公司研发中心 A kind of preparation method of stannic oxide
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118002A (en) * 1980-12-29 1982-07-22 Kiichiro Kamata Manufacture of oxide by chemical vapor phase deposition method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118002A (en) * 1980-12-29 1982-07-22 Kiichiro Kamata Manufacture of oxide by chemical vapor phase deposition method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159217B2 (en) * 1984-03-06 1989-12-15 Hiroyoshi Inoe
JPS60186418A (en) * 1984-03-06 1985-09-21 Hiroyoshi Inoue Production of ultrafine particle of titanium oxide
JPH01503294A (en) * 1987-05-18 1989-11-09 コンパニー・ユーロペンヌ・ドユ・ジルコニウム・セジユス Method for producing fine powder of metal (zirconium, hafnium, titanium) oxide having a predetermined specific surface area or particle size
EP0401999A2 (en) * 1989-06-03 1990-12-12 Tioxide Group Limited Stabilized metal oxide powder compositions
EP0640565A1 (en) * 1993-08-30 1995-03-01 General Electric Company Process for gas phase conversion of diethylzinc to zinc oxide powder
US5582812A (en) * 1993-08-30 1996-12-10 General Electric Company Process for gas phase conversion of diethylzinc to zinc oxide powder
JP4542209B2 (en) * 1998-12-16 2010-09-08 日揮株式会社 Method for producing polycrystalline silicon and method for producing high-purity silica
JP2000178018A (en) * 1998-12-16 2000-06-27 Jgc Corp Production of polycrystalline silicon and high purity silica
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
EP1428896A3 (en) * 2002-12-13 2004-11-17 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
US7510680B2 (en) 2002-12-13 2009-03-31 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
EP1428896A2 (en) * 2002-12-13 2004-06-16 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
WO2005021425A1 (en) * 2003-09-01 2005-03-10 Showa Denko K.K. Process for producing fine metal oxide particles
WO2005063629A1 (en) 2003-12-31 2005-07-14 Council Of Scientific & Industrial Research Synthesis of ultrafine rutile phase titanium dioxide particles at low temperature
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
JP2007039282A (en) * 2005-08-03 2007-02-15 Mitsubishi Materials Corp Method and apparatus for manufacturing conductive tin oxide powder
JP2013112537A (en) * 2011-11-25 2013-06-10 Nagase Chemtex Corp Complex metal oxide fine particle for optical material
CN109607602A (en) * 2018-12-19 2019-04-12 云南锡业集团(控股)有限责任公司研发中心 A kind of preparation method of stannic oxide

Similar Documents

Publication Publication Date Title
Mazdiyasni et al. Preparation of ultra‐high‐purity submicron refractory oxides
JPS59107904A (en) Manufacture of fine particle of metallic oxide
Yang et al. Synthesis of Nd2O3 nanopowders by sol–gel auto-combustion and their catalytic esterification activity
JPS58223606A (en) Preparation of ultrafine hollow microsphere of metallic oxide
JPS59107905A (en) Manufacture of hyperfine particle of metallic oxide
JPH10167717A (en) Oxide obtained by thermal decomposition and doped
Xia et al. Low temperature vapor-phase preparation of TiO2 nanopowders
KR101282142B1 (en) Apparatus and method for manufacturing composite nano particles
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
JP2001017857A (en) Spray pyrolytic apparatus
Huang et al. Synthesis of nanocrystalline titanium nitride by reacting titanium dioxide with sodium amide
JPS60121207A (en) Manufacture of hyperfine particle
Brewster et al. Generation of unagglomerated, Dense, BaTiO3 particles by flame‐spray pyrolysis
US20140206529A1 (en) Apparatus and method for manufacturing silica-titania catalyst
JP4979174B2 (en) Method for producing titanium oxide-containing particulate oxide composite
JPH01192708A (en) Production of composite oxide powder
JPH0244766B2 (en)
JPH0457602B2 (en)
JP2001287996A (en) Anatase-type titanium oxide single crystal
KR100793163B1 (en) Method for manufacturing nano size powder of iron using RF plasma device
CN1121359C (en) Process for preparing high-purity super-fine metal oxide ceramic powder
Jodhani et al. Flame spray pyrolysis processing to produce metastable phases of metal oxides
KR102044380B1 (en) Fabricating method of titania nano-particles
Shi et al. Morphological structure of nanometer TiO2–Al2O3 composite powders synthesized in high temperature gas phase reactor
JPH0159966B2 (en)