JPS5910765A - Air-fuel ratio controller of engine - Google Patents

Air-fuel ratio controller of engine

Info

Publication number
JPS5910765A
JPS5910765A JP12039482A JP12039482A JPS5910765A JP S5910765 A JPS5910765 A JP S5910765A JP 12039482 A JP12039482 A JP 12039482A JP 12039482 A JP12039482 A JP 12039482A JP S5910765 A JPS5910765 A JP S5910765A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
circuit
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12039482A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shidahara
志田原 康博
Megumi Fukushima
福島 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP12039482A priority Critical patent/JPS5910765A/en
Publication of JPS5910765A publication Critical patent/JPS5910765A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve fuel consumption of an engine, by controlling a fuel injection amount so as to obtain the minimum output voltage of an O2 sensor at steady operation of the engine and performing the steady operation of the engine with its air-fuel ratio in a lean range in he vicinity of the misfiring limit. CONSTITUTION:When an engine is operated under a steady condition, a detector 11 detects a fixed operating condition of the engine to generate a detection signal (e) of steady operation and open a gate circuit 12, and an output of an integrating circuit 10 is applied to a driver circuit 13 via the circuit 12, while a circuit 13 generates a driving signal, in which air-fuel ratio is controlled to a lean state in accordance with an output of the circuit 10, then a fuel injection valve 14 injects fuel of amount in accordance with the driving signal. In this way, the injection amount is gradually decrease till an O2 sensor generates a minimum output, that is, till an output of the circuit 10 becomes zero, and air-fuel ratio is controlled to a lean state to reach air-fuel ratio A or B of the misfiring limit, while the injection valve 14 is controlled to be within a preset range in a smaller side of air-fuel ratio of the misfiring limit by a feedback control characteristic in the circuit 13, then fuel consumption is improved.

Description

【発明の詳細な説明】 この発明は、エンジンの空燃比制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an engine.

一般にエンジンの空燃比制御装置として、排気通路に設
けた酸素濃度センサ(以下02センサと記す)によって
排気ガス中の酸素濃度を検出し、このO,センサの出力
に応じて混合気の空燃比をフィードバック制御し、失火
の発生を低減するようにしたものがある(特開昭50−
8919号公癲参照)。
Generally, as an air-fuel ratio control device for an engine, an oxygen concentration sensor (hereinafter referred to as 02 sensor) installed in the exhaust passage detects the oxygen concentration in the exhaust gas, and adjusts the air-fuel ratio of the mixture according to the output of this O sensor. There is a device that uses feedback control to reduce the occurrence of misfires (Japanese Patent Application Laid-Open No. 1973-
(See Publication No. 8919).

そしてこのような空燃比制御装置においては、従来、空
燃比対出力電圧特性として空燃比が理論空燃比付近まで
増大する間ははは一定であり1.理論空燃比付近で急激
に低下し、その後はその低下した値では11′一定とカ
るような特性を有する02センサが使用されている。
In such an air-fuel ratio control device, conventionally, the air-fuel ratio vs. output voltage characteristic is constant while the air-fuel ratio increases to around the stoichiometric air-fuel ratio. An 02 sensor is used which has a characteristic that the air-fuel ratio rapidly decreases near the stoichiometric air-fuel ratio, and thereafter remains constant at 11' at that decreased value.

ところでエンジンの加速・減速時においては20ツトル
弁の一度が急激に変化し、エンジン回転数、負荷、車速
等も変動することとなるが、エンジンの定常運転時にお
いてはスロットル弁の開度はは#I一定であシ、エンジ
ン回転数等もはぼ一定である□そのためこの定常運転時
には混合気の空燃比をリーン化すること、いわゆるリー
ン運転を行なうことが可能であシ、これによって燃費等
を向上させることができる。しかしながら上述のような
理論空燃比付近で急激に変化する空燃比対出力電圧特性
を有する従来の02センサでは、空燃比のリーン領域に
おいては空燃比変化に対して出力電圧にほとんど差がで
ないため、実際の空燃比の検出が難しく、リーン運転制
御ができなかった。
By the way, when the engine is accelerating or decelerating, the opening of the 20 throttle valve changes rapidly, and the engine speed, load, vehicle speed, etc. also fluctuate, but during steady engine operation, the opening of the throttle valve changes rapidly. #I is constant, and the engine speed etc. are also almost constant. Therefore, during steady operation, it is possible to make the air-fuel ratio of the mixture lean, so-called lean operation, which improves fuel efficiency, etc. can be improved. However, with the conventional 02 sensor, which has an air-fuel ratio vs. output voltage characteristic that changes rapidly near the stoichiometric air-fuel ratio as described above, there is almost no difference in the output voltage with respect to changes in the air-fuel ratio in the lean region of the air-fuel ratio. It was difficult to detect the actual air-fuel ratio, making it impossible to control lean operation.

このような問題を解決した02七ンサとして、空燃比変
化に対して出力電圧が線形的に変化する特性を有するも
のが種々提案されており、本件出願人も線形的な空燃比
対出力電圧特性を有する02センサを開発し、既に出願
している(特願昭56−174972号)。すなわち、
この先願の02センサは、一端が閉鎖され他端が大気に
連通された酸素イオン伝導性の固体電解質管を有し、該
固体電解質管の内外壁面に導電性物質よりなる内部電極
層および外部電極層を形成した素子であって、少なくと
も上記外部電極を半触媒性能を持った電極とするととも
に、該外部電極層の表面にT i02 、 S n O
@等の還元性ガスを吸着する物質よりなる被膜な形成し
たことを特徴とする酸素濃度検出素子である。
Various types of 027 sensors that solve these problems have been proposed, and the output voltage varies linearly with changes in the air-fuel ratio. We have developed a 02 sensor having the following characteristics and have already filed an application (Japanese Patent Application No. 174972/1982). That is,
The 02 sensor of this prior application has an oxygen ion conductive solid electrolyte tube with one end closed and the other end communicated with the atmosphere, and an inner electrode layer made of a conductive material and an outer electrode layer on the inner and outer walls of the solid electrolyte tube. An element having a layer formed thereon, in which at least the external electrode is an electrode having semi-catalytic performance, and the surface of the external electrode layer is coated with T i02 , S n O
This oxygen concentration detection element is characterized by being formed of a film made of a substance that adsorbs reducing gases such as @.

そして本件発明者は上記先願に係る02センザの空燃比
対出力電圧特性についてさらに実験を行ない、次のよう
な結果を得た。即ち第1図は空燃比対出力電圧特性の実
験結果を示し、図中実線a及び1点鎖abの特性は次の
ような運転状態における実験結果である。
The inventor further conducted experiments on the air-fuel ratio versus output voltage characteristics of the 02 sensor according to the prior application, and obtained the following results. That is, FIG. 1 shows the experimental results of the air-fuel ratio vs. output voltage characteristics, and the characteristics indicated by the solid line a and the dotted chain ab in the figure are the experimental results under the following operating conditions.

エンジンの排気量+a 、bとも2000 CCエンジ
ン回転数+a、bとも2500rpm吸気管負圧:a、
bとも−150〜−400mHg02センサ先端部での
排気ガス温度:aの場合550℃、bの場合600℃ この実験結果によれば、排気ガスの温度が異なれば曲線
λ、bは異々つた特性を示し、両曲線a。
Engine displacement + a and b both 2000 CC engine rotation speed + a and b both 2500 rpm Intake pipe negative pressure: a,
-150 to -400 mHg for both b Exhaust gas temperature at the tip of the 02 sensor: 550°C for a, 600°C for b According to the experimental results, curves λ and b have different characteristics if the exhaust gas temperature is different. and both curves a.

bとも、空燃比の増大につれて出力電圧が徐々に低下し
、失火限界の空燃比A、Bでほぼ最小値となシ、その抜
栓々に増加していることが分る。
In both cases, it can be seen that the output voltage gradually decreases as the air-fuel ratio increases, reaches a minimum value at the misfire limit air-fuel ratios A and B, and increases as the air-fuel ratio is removed.

この発明は上述した0!センサの空燃比対出力電圧特性
が空燃比の増大につれて出力電圧が徐々に低下し、失火
限界の空燃比で最小値となシ、その抜栓々に増加するよ
うな特性であることを利用してなされたもので、エンジ
ンの定常運転時においてO!センサの出力電圧が最小と
なるように燃料噴射量を制御することによシ、定常運転
時には混合気の空燃比が失火限界付近のリーンな領域で
エンジンの運転を行ない、燃費を大きく向上できるよう
にしたエンジンの空燃比制御装置を提供することを目的
としている。
This invention is based on the above-mentioned 0! The sensor's air-fuel ratio vs. output voltage characteristic is such that the output voltage gradually decreases as the air-fuel ratio increases, reaches a minimum value at the air-fuel ratio at the misfire limit, and then increases as the air-fuel ratio increases. This has been done and the engine is operating normally. By controlling the fuel injection amount so that the output voltage of the sensor is minimized, the engine operates in a lean region where the air-fuel ratio of the air-fuel mixture is near the misfire limit during steady operation, greatly improving fuel efficiency. The purpose of the present invention is to provide an air-fuel ratio control device for an engine that has the following characteristics.

以下本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例によるエンジンの空燃比制御
装置を示す。図において、1はエンジンの排気通路に設
けられ、排気ガス中の酸素濃度を検出する02センサで
あシ、該02センサ1は空燃比対出力電圧特性として空
燃比の増大につれて出力電圧が徐々に低下し、失火成性
の空燃比で最小となシ、その抜栓々に増加する特性を有
する。2は所定周波数のパルス信号Cを発生する第1の
発振回路、3は第1の発振回路2のパルス信号Cを移相
する移相回路、4はゲート信号gを発生する第2の発振
回路、5,6はそれぞれ上記第1の発振回路2の出力C
2移相回路3の出力dを受けている間02センサ1の出
力値をサンプルホールドする第1.第2のサンプルホー
ルド回路、7,8はそれぞ°れ上記ゲート信号gを受け
ている間開いて第1、第2のサンプルホールド回路5,
6の出力を通過させるゲート回路である。
FIG. 2 shows an engine air-fuel ratio control device according to an embodiment of the present invention. In the figure, 1 is an 02 sensor that is installed in the exhaust passage of the engine and detects the oxygen concentration in the exhaust gas.The 02 sensor 1 has an air-fuel ratio vs. output voltage characteristic, and the output voltage gradually increases as the air-fuel ratio increases. It has the characteristic that the air-fuel ratio decreases and is minimum at the misignition-prone air-fuel ratio, and increases as the air-fuel ratio is removed. 2 is a first oscillation circuit that generates a pulse signal C of a predetermined frequency, 3 is a phase shift circuit that shifts the phase of the pulse signal C of the first oscillation circuit 2, and 4 is a second oscillation circuit that generates a gate signal g. , 5 and 6 are the outputs C of the first oscillation circuit 2, respectively.
The 1st. The second sample and hold circuits 7 and 8 are opened while receiving the gate signal g, respectively, and the first and second sample and hold circuits 5 and 8 are opened while receiving the gate signal g.
This is a gate circuit that allows the output of No. 6 to pass through.

また9は第1.第2のゲート回路7,8を通過したサン
プルホールド回路5,6の出力の差を差動増幅する差動
増幅器、10は差動増幅器9の出力を積分する積分回路
、11はエンジンがほぼ一定の運転状態にあることを検
出し、定常運転検出信号eを発生する定常運転検出器、
12は定常運転検出信号eを受けている間開いて積分回
路10の出力を通過させるゲート回路、13はゲート回
路12を通過した積分回路10の出力に応じた駆動信号
を発生する駆動回路、14は駆動信号の大きさに応じた
量の燃料を噴射する燃料噴射弁である。そして図中1点
鎖線で囲んだ部分によって制御回路15が構成されてお
シ、該制御回路15は定常運転検出器11によって検出
されたエンジンの定常運転状態において02センサ1の
出力が最小となるように燃料噴射弁14の噴射量を調整
し、混合気の空燃比を失火限界の空燃比からそれより小
さい側の設定範囲内に制御するものである。
Also, 9 is the first. A differential amplifier differentially amplifies the difference between the outputs of the sample and hold circuits 5 and 6 that have passed through the second gate circuits 7 and 8; 10 is an integrating circuit that integrates the output of the differential amplifier 9; 11 is an engine that is approximately constant. a steady-state operation detector that detects the operating state and generates a steady-state operation detection signal e;
12 is a gate circuit that is open while receiving the steady operation detection signal e and allows the output of the integrating circuit 10 to pass through; 13 is a drive circuit that generates a drive signal in accordance with the output of the integrating circuit 10 that has passed through the gate circuit 12; 14; is a fuel injection valve that injects an amount of fuel according to the magnitude of the drive signal. A control circuit 15 is constituted by a portion surrounded by a dashed line in the figure, and the output of the 02 sensor 1 is minimized in the steady operating state of the engine detected by the steady operating detector 11. The injection amount of the fuel injection valve 14 is adjusted as shown in FIG.

次に第3図を用いて動作について説明する。とこで第3
図(a)〜(C)は移相回路3、第1.第2の発振回路
2,4の出力タイミングチャートである。
Next, the operation will be explained using FIG. But the third
Figures (a) to (C) show the phase shift circuit 3, the first . 5 is an output timing chart of second oscillation circuits 2 and 4. FIG.

エンジンが作動すると、02センサ1は排気ガス中の酸
素濃度を検出し、該センサ1の出力は第1゜第2のサン
プルホールド回路5,6に加えられ、該第1.第2のサ
ンプルホールド回路5,6は第1の発振回路2.移相回
路3の出力パルス信号C。
When the engine operates, the 02 sensor 1 detects the oxygen concentration in the exhaust gas, and the output of the sensor 1 is applied to the first and second sample and hold circuits 5 and 6, and the output of the sensor 1 is applied to the first and second sample and hold circuits 5 and 6. The second sample and hold circuits 5 and 6 are connected to the first oscillation circuit 2. Output pulse signal C of phase shift circuit 3.

dを受け、第3図(b) (a)に示すタイミングでそ
れぞれ02センザ1の出カイ直をサンプルホールドする
d, and sample and hold the outputs of the 02 sensor 1 at the timings shown in FIGS. 3(b) and 3(a).

また第1.第2のゲート回路7,8は第3図(C)に示
すようなタイミングで出力される第2の発振回路4のゲ
ート信号gを受けて開き、第1.第2のサンプルホール
ド回路5,6の出力を通過させて差動増幅器9に加える
。との差動増幅器9は第1第2のサンプルホールド回路
5,6の出力の差、即ち所定時間ずれた2つの時点での
02センサ1の出力の差を演算し、積分回路10は差動
増幅器9の出力を積分する。そしてエンジンの定常運転
時には、エンジンの運転状態かほぼ一定していることか
ら、定常運転検出器11はそれを検出して定常運転検出
信号eを発生して、ゲート回路12を開いており、上記
積分回路10の出力は該ゲート回路12を経て駆動回路
13に加えられる。するとこの駆動回路13は積分回路
10の出力の大きさに応じて空燃比がリーンとなるよう
な駆動信号を発生し、燃料噴射弁14は駆動信号に応じ
た量の燃料を噴射する。このようにして燃料噴射量は0
!センサ1の出力が最小となるまで、即ち積分回路10
の出力かはは零となるまで徐々に低減され、混合気の空
燃比がリーン化されていって失火限界の空燃比(第1図
のA又はB)に到達することとなる。すると、その後は
駆動回路13内のフィードバック制御を用いた制御特性
によって、空燃比が常に上記失火限界の空燃比(A又は
B)よシ小さい側の設定範囲内に入るように燃料噴射弁
14の噴射蓋の制御がなされ、この空燃比の設定範囲内
でエンジンの運転制御がなされることとなる。
Also number 1. The second gate circuits 7 and 8 open upon receiving the gate signal g of the second oscillation circuit 4 output at the timing shown in FIG. The outputs of the second sample and hold circuits 5 and 6 are passed through and applied to the differential amplifier 9. The differential amplifier 9 calculates the difference between the outputs of the first and second sample and hold circuits 5 and 6, that is, the difference between the outputs of the 02 sensor 1 at two points shifted by a predetermined time. The output of amplifier 9 is integrated. During steady operation of the engine, since the operating state of the engine is almost constant, the steady operation detector 11 detects this, generates the steady operation detection signal e, and opens the gate circuit 12. The output of the integrating circuit 10 is applied to the driving circuit 13 via the gate circuit 12. Then, the drive circuit 13 generates a drive signal that makes the air-fuel ratio lean in accordance with the magnitude of the output of the integration circuit 10, and the fuel injection valve 14 injects fuel in an amount corresponding to the drive signal. In this way, the fuel injection amount is 0
! Until the output of the sensor 1 becomes minimum, that is, the integration circuit 10
The output power is gradually reduced until it becomes zero, and the air-fuel ratio of the air-fuel mixture becomes leaner until it reaches the misfire limit air-fuel ratio (A or B in FIG. 1). Thereafter, the control characteristics using feedback control within the drive circuit 13 control the fuel injector 14 so that the air-fuel ratio is always within a set range smaller than the misfire limit air-fuel ratio (A or B). The injection lid is controlled, and the engine operation is controlled within the air-fuel ratio setting range.

これによってエンジンの燃費は大きく向上し、又空燃比
を失火限界の空燃比からそれよシリツチ側の設定範囲内
に保持しているので、失火が発生することもなく、エン
ジンを安定に運転できる。
As a result, the fuel efficiency of the engine is greatly improved, and since the air-fuel ratio is maintained within the range set by the engine rather than the air-fuel ratio at the misfire limit, misfires do not occur and the engine can be operated stably.

またこのように空燃比をリーン化してエンジンを運転し
ている際に、加速又は減速が行なわれると、定常運転検
出器11は定常運転検出信号eの発生を停止し、ゲート
回路12が閉じるため、エンジンのリーン運転は停止さ
れるものである。
Furthermore, when the engine is operated with the air-fuel ratio lean in this manner, if acceleration or deceleration is performed, the steady-state operation detector 11 stops generating the steady-state operation detection signal e, and the gate circuit 12 closes. , lean operation of the engine is to be stopped.

なお上記実施例では制御回路15をノ・−ド回路によシ
構成したが、この制御回路15は勿論マイクロコンピュ
ータを用いてソフト構成してもよいものである。
In the above embodiment, the control circuit 15 is configured as a node circuit, but the control circuit 15 may of course be configured as a software using a microcomputer.

以上のように本発明によれば、空燃比対出力電圧特性と
して空燃比の増大につれて徐々に低下し、失火限界の空
燃比で最小となシ、その後増加するというような特性を
持つ0!センサを利用してエンジンの定常運転時におい
て02センサの出力電圧が最小となるように燃料供給量
を制御するようにしたので、定常運転時には混合気の空
燃比が失火限界付近のリーンな領域で運転を行なうこと
ができ、燃費を大きく向上できる効果がある。
As described above, according to the present invention, the air-fuel ratio vs. output voltage characteristic gradually decreases as the air-fuel ratio increases, reaches a minimum at the air-fuel ratio at the misfire limit, and then increases. Since the sensor is used to control the fuel supply amount so that the output voltage of the 02 sensor is at its minimum during steady engine operation, the air-fuel ratio of the mixture is in the lean region near the misfire limit during steady engine operation. This has the effect of greatly improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本件出願人の先願に係る0!センサの空燃比対
出力電圧特性の実験結果を示す図、第2図は本発明の一
実施例によるエンジンの空燃比制御装置の構成図、第3
図(a)〜(C)は上記装部における移相回路、第1.
第2の発振回路の出力タイミングを示す図である。 1・・・酸素濃度センサ、11・・・定常運転検出器、
14・・・燃料噴射弁(燃料供給手段)、15・・・制
御回路。 特許出願人 東洋工業株式会社 代理人 弁理士 早 瀬 憲 −
Figure 1 shows 0! related to the applicant's earlier application. FIG. 2 is a diagram showing the experimental results of the air-fuel ratio versus output voltage characteristics of the sensor. FIG. 2 is a configuration diagram of an engine air-fuel ratio control device according to an embodiment of the present invention.
Figures (a) to (C) show the phase shift circuit in the above mounting section, the first.
FIG. 7 is a diagram showing the output timing of the second oscillation circuit. 1... Oxygen concentration sensor, 11... Steady operation detector,
14... Fuel injection valve (fuel supply means), 15... Control circuit. Patent applicant: Toyo Kogyo Co., Ltd. Representative Patent attorney: Ken Hayase −

Claims (1)

【特許請求の範囲】[Claims] (1)排気系に設けられた酸素濃度センサの出力に応じ
て燃料供給手段を作動し、混合気の空燃比を制御するよ
うにしたエンジンにおいて、空燃比対出力電圧特性とし
て空燃比の増大につれて出力電圧が徐々に低下し失火限
界の空燃比でほぼ最小値となった抜栓々に増加する特性
を有する酸素濃度センサと、エンジンがほぼ一定の運転
状態にあることを検出する定常運転検出器と、該検出器
によシ検出された定常運転状態において混合気の空燃比
が上記酸素濃度センサの出力がほぼ最小値となる上記失
火限界の空燃比からそれよシ小さい側の設定範囲内にな
るように燃料供給手段を制御する制御回路とを備えたこ
とを特徴とするエンジンの空燃比制御装置。
(1) In an engine that operates a fuel supply means according to the output of an oxygen concentration sensor installed in the exhaust system to control the air-fuel ratio of the air-fuel mixture, as the air-fuel ratio versus output voltage characteristic increases, An oxygen concentration sensor has a characteristic in which the output voltage gradually decreases and increases each time the engine is unplugged, reaching a minimum value at the air-fuel ratio at the misfire limit, and a steady-state operation detector that detects when the engine is in a nearly constant operating state. , in the steady state of operation detected by the detector, the air-fuel ratio of the mixture falls within a set range that is smaller than the misfire limit air-fuel ratio at which the output of the oxygen concentration sensor is approximately at its minimum value. 1. An air-fuel ratio control device for an engine, comprising: a control circuit for controlling a fuel supply means.
JP12039482A 1982-07-09 1982-07-09 Air-fuel ratio controller of engine Pending JPS5910765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12039482A JPS5910765A (en) 1982-07-09 1982-07-09 Air-fuel ratio controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12039482A JPS5910765A (en) 1982-07-09 1982-07-09 Air-fuel ratio controller of engine

Publications (1)

Publication Number Publication Date
JPS5910765A true JPS5910765A (en) 1984-01-20

Family

ID=14785117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12039482A Pending JPS5910765A (en) 1982-07-09 1982-07-09 Air-fuel ratio controller of engine

Country Status (1)

Country Link
JP (1) JPS5910765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239074A (en) * 2000-02-03 2001-09-04 Mcpherson's Ltd Scissors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239074A (en) * 2000-02-03 2001-09-04 Mcpherson's Ltd Scissors

Similar Documents

Publication Publication Date Title
JPH033054B2 (en)
JPS62247142A (en) Air-fuel ratio controller for internal combustion engine
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
EP0619422B1 (en) Air/fuel ratio feedback control system for an internal combustion engine
GB2185592A (en) Controlling air/fuel ratio of an internal combustion engine
US4391256A (en) Air-fuel ratio control apparatus
JPS62121843A (en) Air-fuel ratio controller
JPS5910765A (en) Air-fuel ratio controller of engine
US4498441A (en) Air-fuel ratio control system
JPS6221971B2 (en)
JPH0480653A (en) Correction of output of air/fuel ratio sensor
US20030111068A1 (en) Fuel control method for internal combustion engine
JPS6345499B2 (en)
JPH08158915A (en) Air fuel ratio control device for internal combustion engine
JP3055378B2 (en) Control device for internal combustion engine
US6209314B1 (en) Air/fuel mixture control in an internal combustion engine
JP2600824B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61106941A (en) Air-fuel ratio control device of engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP4604361B2 (en) Control device for internal combustion engine
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine
JP3304653B2 (en) Air-fuel ratio control device for internal combustion engine
JP4220082B2 (en) Catalyst function verification method, air-fuel ratio sensor verification method, and air-fuel ratio control method
JPH06323185A (en) Air-fuel ratio control device