JPS5910723A - Secondary air control device for internal-combustion engine - Google Patents

Secondary air control device for internal-combustion engine

Info

Publication number
JPS5910723A
JPS5910723A JP3152982A JP3152982A JPS5910723A JP S5910723 A JPS5910723 A JP S5910723A JP 3152982 A JP3152982 A JP 3152982A JP 3152982 A JP3152982 A JP 3152982A JP S5910723 A JPS5910723 A JP S5910723A
Authority
JP
Japan
Prior art keywords
pressure
secondary air
air
chamber
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152982A
Other languages
Japanese (ja)
Inventor
Shozo Miyazaki
宮崎 昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP3152982A priority Critical patent/JPS5910723A/en
Publication of JPS5910723A publication Critical patent/JPS5910723A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent the ill effects of heating due to a rise in the exhaust temperature of an exhaust system and the temperature of a catalyzer without worsening the exhaust gases, by installing an on-off operation device operating an air flow outlet, leading air into an interconnecting port and the exhaust system, to open or close. CONSTITUTION:When engine speed or load rises, the pressure P1 of a first pressure chamber 16 goes up as well, and attending upon this, the pressure P3 of a signal takeout tube 25 goes up too. And, when pressure in a diaphragm chamber 19 exceeds the set pressure of a spring 26, a diaphragm 18 is displaced to the right, and following this displacement, a valve body 23 separates from a diaphragm 15 whereby, as shown in a chain line, an air flow outlet 21 is blocked up and an interconnecting port 22 is opened instead. The secondary air flowing into the first pressure chamber 16 flows into the second pressure chamber 17 from the interconnecting port 22 and is released to the air via an opening 31.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は内燃機関の2次空気制御装置に係り、特に高負
荷・高速時にのみ排気系への2次空気の供給を確実に断
ち、排気ガスの悪化をきだすことなく排気系の排気温度
や触媒温度の上昇による熱害等を防止し得る内燃機関の
2次空気制御装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a secondary air control device for an internal combustion engine, and in particular, it reliably cuts off the supply of secondary air to the exhaust system only at high loads and high speeds, thereby reducing exhaust gas. The present invention relates to a secondary air control device for an internal combustion engine that can prevent heat damage caused by a rise in exhaust gas temperature or catalyst temperature in an exhaust system without causing deterioration of the temperature.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

自動車等のエンジンには、燃焼室から排出される排気ガ
スに含まれるHCやCOを再燃焼させて浄化処理するた
めに、排気系に2次空気を供給する2次空気供給装置が
設けられている。2次空気供給装置はエアポンプから2
次空気供給通路を介して排気系に2次空気を送供するが
、高負荷・高速運転時においても2次空気を供給するど
排気系が過熱され、触媒コノバータやサーマルリアクタ
が熱損傷されるなどの問題がある。このだめ、2次空気
供給通路には、負荷変動等に応じて排気系への2次空気
喰を制御する2次空気制御装置が採用されている。
Engines such as automobiles are equipped with a secondary air supply device that supplies secondary air to the exhaust system in order to reburn and purify HC and CO contained in exhaust gas discharged from the combustion chamber. There is. The secondary air supply device is from the air pump 2
Secondary air is supplied to the exhaust system through the secondary air supply passage, but even during high-load and high-speed operation, the exhaust system is overheated and the catalytic converter and thermal reactor may be damaged by heat. There is a problem. However, the secondary air supply passage is equipped with a secondary air control device that controls the intake of secondary air to the exhaust system in accordance with load fluctuations and the like.

以下に従来のこの種制御装置について説明する。A conventional control device of this type will be explained below.

従来の2次空気量制御は、主に吸気管負圧を利用するも
のであり、第1図のように構成されている。
Conventional secondary air amount control mainly utilizes intake pipe negative pressure, and is configured as shown in FIG.

図において、aはエアポンプからの2次空気を排気マニ
ホルドに送供するだめの2次空気供給通路であり、2次
空気供給通路aには、2次空気制御バルブbが設けられ
ている。2次空気制御バルブl)は、供給通路aから2
次空気が流入する流入室Cと、流入室Cの空気を大気解
放等ダイバートさせるダイバート室dと、吸気管負圧信
号チューブCを介して吸気マニホルドと連通しダイヤフ
ラムfにより密閉状に区画されたダイヤフラム室gとを
有している。吸気管負圧は、エンジン負荷に比例し、低
負荷のときには吸気管負圧は大きく(低圧)、ダイヤフ
ラム室g内負圧によりダイヤフラ1、 (はスプリング
1.をFF、縮しつつ図中7F方へと引っ張られ、ダイ
ヤフラノ・「に井棒電で連結された弁体Jは流入室Cと
ダイバート室(1とを連通ずる連通口1(を寒ぐことと
なり、流入室Cの空気は流出0看より排気マニホルド側
の2次空気供給通路aを経て排気マニホルドに供給され
る(第1図実線矢印)。
In the figure, a is a secondary air supply passage for supplying secondary air from the air pump to the exhaust manifold, and the secondary air supply passage a is provided with a secondary air control valve b. The secondary air control valve l) is connected to the supply passage a to 2
An inlet chamber C into which the next air flows, a divert chamber d which diverts the air in the inlet chamber C to release to the atmosphere, etc., communicates with the intake manifold via an intake pipe negative pressure signal tube C, and is hermetically divided by a diaphragm f. It has a diaphragm chamber g. The negative pressure in the intake pipe is proportional to the engine load, and when the load is low, the negative pressure in the intake pipe is large (low pressure). The valve body J connected to the diaphragm and the diversion chamber cools the communication port 1 (which connects the inflow chamber C and the divert chamber 1), and the air in the inflow chamber C cools down. Outflow 0 is supplied to the exhaust manifold through the secondary air supply passage a on the exhaust manifold side (solid line arrow in Figure 1).

一方、エンジン高負荷のときには、吸気管負圧は小さく
大気圧に近づくだめ、ダイヤフラム「はスプリング11
の復元力により右方へと戻され、弁体Jも右方へと移動
し弁体Jにより流出0看は覆われ2次空気供給通路aは
遮断され、流入室Cに供給された空気は連通口によりダ
イバート室dに流入し排出口mより排出され(第1図破
線矢印)、排気マニホルドへの2次空気の供給は断たれ
る。
On the other hand, when the engine is under high load, the intake pipe negative pressure is small and cannot approach atmospheric pressure, so the diaphragm ``spring 11''
is returned to the right by the restoring force, and the valve body J also moves to the right, the outflow area is covered by the valve body J, the secondary air supply passage a is blocked, and the air supplied to the inflow chamber C is The air flows into the divert chamber d through the communication port and is discharged through the exhaust port m (dashed arrow in FIG. 1), and the supply of secondary air to the exhaust manifold is cut off.

と、ころが、このような吸気管負圧変動すなわち負荷変
動による2次空気制御では、所定以上の高負荷のときに
は、エンジン回転数に関係なく2次空気をダイバートさ
せることとなり、第2図中、斜線で示すように2次空気
ダイバート域がエンジン低回転域にも存在する。しかし
ながら、排気系が過熱され触媒コンバータの熱害などが
問題となるのは、高負荷・高速回転域だけであり、上記
のように高負荷・低速域においても2次空気をダイバー
トさせて排気系への2次空気の供給を止めてしまうと排
気ガスの悪化を招いてし壕う。このことは、殊に高負荷
走行時間が長い高地走行において問題となる。
However, in secondary air control based on intake pipe negative pressure fluctuations, that is, load fluctuations, when the load is higher than a predetermined level, the secondary air is diverted regardless of the engine speed, as shown in Figure 2. , as shown by diagonal lines, a secondary air divert region also exists in the low engine speed region. However, problems such as overheating of the exhaust system and heat damage to the catalytic converter only occur in the high load/high speed range, and as mentioned above, even in the high load/low speed range, secondary air is diverted to the exhaust system. If the supply of secondary air to the engine is stopped, the exhaust gas will worsen. This becomes a problem especially when driving at high altitudes for a long time under high load.

このだめ、吸気管負圧のみならず、これにエンジンスピ
ードセンサにより検出されたエンジン回転速度をも加味
して高負荷・高速域のみ排気系への2次空気を遮断制御
する方法も提案されている。
To solve this problem, a method has been proposed in which not only the intake pipe negative pressure but also the engine speed detected by the engine speed sensor is taken into account to control the secondary air to the exhaust system only in high load and high speed ranges. There is.

しかしながら、この方法では、エンジンスピードセンサ
などが追加されるため、配管・配線が複雑化すると共に
、コストアップを余儀なくされるという問題がある。
However, in this method, since an engine speed sensor and the like are added, piping and wiring become complicated, and costs are inevitably increased.

〔発明の目的〕[Purpose of the invention]

本発明は以上の従来の問題点全治効に解決すべく創案さ
れたものであり、本発明の目的は、高負荷・高速時にの
み排気系への2次空気供給を確実に遮断でき、排気ガス
の悪化をきたすことなく、排気系の過熱による熱害等を
防止し得、しかも構造簡単な2次空気制御装置を提供す
ることにある。
The present invention has been devised to completely solve the above-mentioned conventional problems, and an object of the present invention is to reliably cut off the secondary air supply to the exhaust system only at high load and high speed, and to reduce exhaust gas. To provide a secondary air control device which can prevent heat damage caused by overheating of an exhaust system without causing deterioration of air flow, and which has a simple structure.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の好適一実施例を添付図面に従って詳述す
る。
A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第3図において、1はエンジン本体でアリ、エンジン本
体1には、その各燃焼室に気化器2からの混合気を供給
する吸気マニホルド3が接続されると共に、燃焼室から
の燃焼排ガスを排気すべく排気マニホルド4が連設され
ている。まだ、5はエンジンのクランク軸にベルト等を
介して連結されエンジン回転により駆動され2次空気を
排気系に供給するエアポンプである。エアポンプ5はエ
アクリ−す7、吸気管6を介して吸気した空気を2次空
気として、2次空気供給通路8を通って排気マニホルド
4に設けられた2次空気噴射スハージャ9から排気−マ
ニホルド4内に噴射するようになっている。なお、10
は2次空気供給通路8への排気ガスの流入を阻止する逆
止弁である。まだ、11け排気管であり、排気管11に
は触媒コ/ノ<−夕12が設けられている。
In Fig. 3, reference numeral 1 denotes the engine body. The engine body 1 is connected to an intake manifold 3 that supplies the air-fuel mixture from the carburetor 2 to each combustion chamber, and also exhausts combustion exhaust gas from the combustion chambers. An exhaust manifold 4 is provided in series. Reference numeral 5 designates an air pump that is connected to the engine crankshaft via a belt or the like and is driven by engine rotation to supply secondary air to the exhaust system. The air pump 5 uses the air taken in through the air cleaner 7 and the intake pipe 6 as secondary air, and supplies the air through the secondary air supply passage 8 to the exhaust manifold 4 from the secondary air injection shajar 9 provided in the exhaust manifold 4. It is designed to be sprayed inside. In addition, 10
is a check valve that prevents exhaust gas from flowing into the secondary air supply passage 8. There are still 11 exhaust pipes, and the exhaust pipe 11 is provided with a catalytic converter 12.

2次空気供給通路8には、エアポンプ5から送られる2
次空気の空気量を制御する2次空気制御装置13の中空
筒体状のバルブケーシング14がNQ ケラれている。
The secondary air supply passage 8 has 2 air supplied from the air pump 5.
The hollow cylindrical valve casing 14 of the secondary air control device 13 that controls the amount of secondary air is NQ vignetted.

バルブケーンフグ14内には、隔壁15により隔だれて
第1圧力室16と第2圧力室17とが区画されると共に
、ダイヤフラム18によりダイヤフラム室19とスプリ
ング室37とが1メ画形成されている。第1圧力室16
には、エアポツプ5からの2次空気が流入する空気流入
口20と、第1圧力室16に流入した空気を排気マニホ
ルド4側の2次空気供給通路8に送る空気流出口21と
が形成されている。まだ第1圧力室16と第2圧力室1
7とは隔壁15に形成された連通口22を介して連通さ
れている。
Inside the valve cane puffer 14, a first pressure chamber 16 and a second pressure chamber 17 are separated by a partition wall 15, and a diaphragm chamber 19 and a spring chamber 37 are formed in one square by a diaphragm 18. There is. First pressure chamber 16
An air inlet 20 through which the secondary air from the air pop 5 flows in, and an air outlet 21 through which the air flowing into the first pressure chamber 16 flows into the secondary air supply passage 8 on the exhaust manifold 4 side are formed. ing. Still the first pressure chamber 16 and the second pressure chamber 1
7 through a communication port 22 formed in the partition wall 15.

更に、第1圧力室16には、連通口22と空気流出口2
1とを開閉するだめの弁t*23が設けられており、弁
体23とダイヤフラノ、18との間は、連通口22を挿
通させて設けられだ弁棒24により連結されている。ま
た、第1圧力室16とタ゛イヤフラム室19とは信号取
出チューブ25により連通接続されており、第1圧力室
16の)「力変動がダイヤフラム室19に伝達され、こ
れに応じてダイヤフラム18が偏位することにより弁体
23が移動シフ、連通口22捷たけ空気流出口21が閉
塞されるように構成されている。大気解放されたスプリ
ング室37には、ダイヤフラノ、室19内の圧力が設定
圧具」二にならないと、ダイヤフラム18が右方へと移
動して弁体23が連通口22から離間しないように圧力
調整するスプリング26が設けられている。スプリング
26はスプリング受け27とダイヤフラム18との間に
介設され、また、スプリング受け27は、弁棒24のガ
イドとしての機能も有している。
Furthermore, the first pressure chamber 16 has a communication port 22 and an air outlet 2.
A valve t*23 is provided to open and close the valve body 23 and the diaphragm 18, and the valve body 23 and the diaphragm 18 are connected by a valve rod 24 which is inserted through the communication port 22. Further, the first pressure chamber 16 and the diaphragm chamber 19 are connected to each other by a signal extraction tube 25, and force fluctuations in the first pressure chamber 16 are transmitted to the diaphragm chamber 19, and the diaphragm 18 is biased accordingly. When the valve body 23 is positioned, the valve body 23 is moved, the communication port 22 is closed, and the air outlet 21 is closed. A spring 26 is provided to adjust the pressure so that the diaphragm 18 moves to the right and the valve body 23 does not separate from the communication port 22 unless the set pressure is reached. The spring 26 is interposed between the spring receiver 27 and the diaphragm 18, and the spring receiver 27 also functions as a guide for the valve rod 24.

信号取出チューブ25には、圧力調整オリフィス28が
設けられると共に、信号取出チコーーブ25内の空気を
第2圧力室17にリークさせるだめのリーク通路29が
第2圧力室17と信号取出デユープ25との間に介設さ
れている。リーク通路29には、信号取出チューブ25
から第2圧力室17へのリーク量を調整するリーク調整
オリフィス30が設けられている。第2圧力室17には
、リーク通路29から第2圧力室17にリークされた空
気、あるいは第1圧力室16から連通口22を介して第
2圧力室11に流入してきた空気を大気開放するだめの
開口31が設けられている。
The signal extraction tube 25 is provided with a pressure adjustment orifice 28 , and a leak passage 29 for leaking the air in the signal extraction tube 25 to the second pressure chamber 17 is provided between the second pressure chamber 17 and the signal extraction duplex 25 . is interposed in between. A signal extraction tube 25 is installed in the leak passage 29.
A leak adjustment orifice 30 is provided to adjust the amount of leak from the pressure chamber 17 to the second pressure chamber 17. The second pressure chamber 17 is vented to the atmosphere from air leaked from the leak passage 29 to the second pressure chamber 17 or from air flowing into the second pressure chamber 11 from the first pressure chamber 16 through the communication port 22. A reservoir opening 31 is provided.

次に、本実施例の作用について述べる。Next, the operation of this embodiment will be described.

排気系の排気圧力は、エンジン回転数及び負荷に比例し
て大きくなるが、エアポンプ5の吐出圧も排気圧力に打
ち勝つように排気圧力に比例して増大する。そこで、本
発明では、エアポンプ5の吐出圧力を利用して排気系へ
の2次空気の供給を制御している。
The exhaust pressure of the exhaust system increases in proportion to the engine speed and load, and the discharge pressure of the air pump 5 also increases in proportion to the exhaust pressure so as to overcome the exhaust pressure. Therefore, in the present invention, the discharge pressure of the air pump 5 is used to control the supply of secondary air to the exhaust system.

エアポツプ5から吐出された空気は、2次空気供給通路
8を通って空気流入口20より第1圧力室16内に流入
するが、エンジンの低中速、低中負荷運転時においては
、第1圧力室16の圧力(エアポツプの吐出圧)p+は
低い。従って、信号取出チュー725を介して連通され
たダイヤフラム室19の圧力も低く、ダイヤフラム18
はスプリング26により図中左方へと押され、弁体23
は隔壁15に押し付けられ弁体23により連通口22は
閉成される。このため、第1圧力室16に流入した空気
は、空気流出口21より2次空気供給通路8を通って2
次空気噴射スパージャ9から排気マニホルド4内に噴射
される(2次空気インジェクション)。このときの第1
圧力室16の圧力p、は、第4図中実線で示すように、
エンジン回転数及び負荷とともに増大している。(図中
、−200mmHg 、−100mmHgは負荷に比例
する吸気管負圧で、WOTは絞り弁全開時のときのもの
であるっ)また、第1圧力室16から圧力調整オリフィ
ス28を介して供給される信号取出チューブ25内空気
の圧力P3は、第5図中、実線で示すようになる。信号
取出チューブ25の空気はIJ、−り通路29から第2
圧力室17にリークされるが、このIJ−り量は少ない
ので、開口31により大気開放される第2圧力室17内
の圧力P2は、はぼ大気圧である(高速回転のときでも
2〜31M Ig程度である。)。
Air discharged from the air pop 5 passes through the secondary air supply passage 8 and flows into the first pressure chamber 16 from the air inlet 20. The pressure in the pressure chamber 16 (air pop discharge pressure) p+ is low. Therefore, the pressure in the diaphragm chamber 19 communicated via the signal extraction tube 725 is also low, and the diaphragm 18
is pushed to the left in the figure by the spring 26, and the valve body 23
is pressed against the partition wall 15, and the communication port 22 is closed by the valve body 23. Therefore, the air flowing into the first pressure chamber 16 passes through the secondary air supply passage 8 from the air outlet 21 and into the second pressure chamber 16.
Secondary air is injected into the exhaust manifold 4 from the sparger 9 (secondary air injection). At this time, the first
The pressure p in the pressure chamber 16 is as shown by the solid line in FIG.
It increases with engine speed and load. (In the figure, -200mmHg and -100mmHg are intake pipe negative pressures proportional to the load, and WOT is when the throttle valve is fully open.) Also, the pressure is supplied from the first pressure chamber 16 through the pressure adjustment orifice 28. The pressure P3 of the air inside the signal extraction tube 25 is as shown by the solid line in FIG. The air in the signal extraction tube 25 is supplied to the IJ from the second passage 29.
However, since the amount of IJ leaked to the pressure chamber 17 is small, the pressure P2 in the second pressure chamber 17, which is opened to the atmosphere through the opening 31, is approximately atmospheric pressure (even at high speed rotation, 31M Ig).

エンジンの回転数まだは負荷が上昇すると、第1圧力室
16の圧力P、が上昇し、これに伴って信号取出チュー
ブ25の圧力P3も上昇する。そして、ダイヤフラム室
19圧がスプリング26の設定圧以上になると、ダイヤ
フラム18は右方へ、と偏位し、これに従って弁体23
は隔壁15より離れ、第3図中、鎖線で示すように、空
気流出口21は塞がれ、連通口22が開成される。こう
して、第1圧力室16に流入した2次空気は、連通口2
2から第2圧力室17に流入し開口31より大気解放さ
れる(2次空気ダイバート)。第1圧力室16の空気が
第2圧力室17にダイバートされると、圧力P、は第4
図中、破線で示すように急激に低下するが、第2圧力室
17の圧力P2は、第2圧力室17にダイバートされる
2次空気量が多く、また開口31が絞りとして機能する
ため、第4図中一点鎖線で示すように大幅に増大する。
When the engine speed and load increase, the pressure P in the first pressure chamber 16 increases, and the pressure P3 in the signal extraction tube 25 increases accordingly. When the pressure in the diaphragm chamber 19 becomes equal to or higher than the set pressure of the spring 26, the diaphragm 18 is deflected to the right, and accordingly the valve body 23
is separated from the partition wall 15, and as shown by the chain line in FIG. 3, the air outlet 21 is closed and the communication port 22 is opened. In this way, the secondary air that has flowed into the first pressure chamber 16 is transferred to the communication port 2.
2 into the second pressure chamber 17 and released to the atmosphere through the opening 31 (secondary air divert). When the air in the first pressure chamber 16 is diverted to the second pressure chamber 17, the pressure P,
Although the pressure P2 in the second pressure chamber 17 decreases rapidly as shown by the broken line in the figure, the amount of secondary air diverted to the second pressure chamber 17 is large, and the opening 31 functions as a restrictor. As shown by the dashed line in FIG. 4, it increases significantly.

このため信号取出チューブ25かもリーク通路29を介
してリークされる空気量は」二記インジェクション時よ
り少なくなり、圧力P3は、第5図中、破線で示すよう
に、インジェクション時よりやや」二昇する。それ故、
弁体23は第1 IE力室16の圧力P+の低下にかか
わらず、2次空気供給通路8の空気流入口21に密着し
た!、ま保持され、弁体23がばたつくチャタリングの
発生を防止できる。本発明の特長とするところは、この
ように第1圧力室16の圧力P1が、ダイバート時には
急激に落ちてしまうため、圧力P+ だけでは弁体23
の開閉制御はできないが、ダイバート時に上昇する第2
圧力室17の圧力P2を利用し、圧力調整オリフィス2
8、リーク調整オリフィス30を上述した条件を満足す
るように選定し、信号取出チューブ25内の圧力P3が
イ/ジエクション時、ダイバート時ともに、はぼ同一と
なるようにしたことにある。
Therefore, the amount of air leaked through the signal extraction tube 25 and the leak passage 29 is smaller than during the second injection, and the pressure P3 is slightly higher than during the second injection, as shown by the broken line in Fig. 5. do. Therefore,
The valve body 23 was in close contact with the air inlet 21 of the secondary air supply passage 8 regardless of the decrease in the pressure P+ in the first IE force chamber 16! , it is possible to prevent the occurrence of chattering caused by flapping of the valve body 23. The feature of the present invention is that the pressure P1 in the first pressure chamber 16 drops rapidly during the diversion, so if only the pressure P+
Although it is not possible to control the opening and closing of the
Using the pressure P2 of the pressure chamber 17, the pressure adjustment orifice 2
8. The leak adjustment orifice 30 is selected to satisfy the above-mentioned conditions so that the pressure P3 inside the signal extraction tube 25 is almost the same during both ejection and diversion.

エンジンが高速、高負荷域から低中速、低中負荷域に戻
ると、圧力PI、P2の低下とともに圧力P3も低下し
、ダイヤフラム18は左方へと偏位し、弁体23は空気
流出口21から離れ隔壁15に密着し連通口22は遮断
され、2次空気は2次空気噴射スパージャ9から噴射さ
れ、再びインジエク/ヨン状態となる。第5図でP4を
設定圧とすると、WOT 、 −+ 00關Hg、−2
00陥Hg、の負荷では回転数N、、N、、N3以上で
2次空気はダイバートされるどととなる。
When the engine returns from the high-speed, high-load range to the low-medium speed and low-medium load range, the pressure P3 decreases as well as the pressures PI and P2, the diaphragm 18 deviates to the left, and the valve body 23 It separates from the outlet 21 and comes into close contact with the partition wall 15, and the communication port 22 is blocked, and the secondary air is injected from the secondary air injection sparger 9, returning to the injected/yon state. In Figure 5, if P4 is the set pressure, WOT, -+ 00Hg, -2
At a load of 0.00 Hg, the secondary air is diverted at rotation speeds N, , N, , N3 or higher.

以上のようにして、本実施例の2次空気制御装置13に
より、第6図に斜線で示すように、排気系への2次空気
の供給を断ちダイバートさせる2次空気ダイバート域が
高速・高負荷域に限定されるだめ、排気ガス中のCOや
HCの増大を招くことなく、触媒コンバータ12等の過
熱を防止することができる。
As described above, the secondary air control device 13 of this embodiment allows the secondary air divert area to cut off and divert the supply of secondary air to the exhaust system at high speed and high speed, as shown by diagonal lines in FIG. Since it is limited to the load range, overheating of the catalytic converter 12 and the like can be prevented without causing an increase in CO and HC in the exhaust gas.

なお、上記実施例において、圧力P、、P、の変化によ
って変動する信号取出チューブ25の圧力P3の急激な
変化を抑止し、弁体23のチャタリング発生を更に防止
すべく、第3図中、破線で示すように、信号取出チュー
ブ25にオリフィス32を設けてもよい。本実施例にお
いては、ダイヤフラム18、ダイヤフラム室19、弁体
23、弁棒24、スプリング26等が開閉作動手段であ
る。
In the above embodiment, in order to suppress sudden changes in the pressure P3 of the signal extraction tube 25, which fluctuates due to changes in the pressures P, P, and to further prevent chattering of the valve body 23, the following steps are shown in FIG. An orifice 32 may be provided in the signal extraction tube 25 as shown by the broken line. In this embodiment, the diaphragm 18, the diaphragm chamber 19, the valve body 23, the valve rod 24, the spring 26, etc. are the opening/closing operating means.

上記実施例における2次空気制御は、エアボ/プ5から
吐出され第1圧力室16に流入する2次空気自身の圧力
によって弁体23を作動するものであるが、第7図、第
8図に示すように、これとは別系統の吸気マニホルド負
圧を作動源として弁体23を作動するようにしてもよい
The secondary air control in the above embodiment operates the valve body 23 by the pressure of the secondary air itself discharged from the air pump 5 and flowing into the first pressure chamber 16. As shown in FIG. 2, the valve body 23 may be operated using the intake manifold negative pressure in a separate system as the operating source.

第7図においては、信号取出チューブ25に吸気管負圧
制御弁33が設けられている。低中速、低中負荷域では
、第1圧力室16の圧力P+は低く、未だ制御弁33の
ダイヤフラノ、34を作動し得す、バルブ35は吸気管
からの負圧通路36を閉じ、大気がスプリング室37に
導かれており、ダイヤフラム18は左方に押され弁体2
3は連通口22を遮断し、2次空気は排気系へと送られ
インジェクション状態にある。負荷又は工/ジン回転が
−にかり高負荷・高速域になると、圧力P3が上昇し、
’+l1ll i++弁33のダイヤフラム室38の圧
力も上昇し、ダイヤフラム34がスプリング39を圧縮
しつつダイヤフラム34を左方へと偏位させ、バルブ3
5が大気パイプ40を塞ぎ、負圧通路36が開く。する
と、吸気管負圧により負圧通路36を介してスプリング
室37の空気が吸入されダイヤフラム18は右方へと偏
位され、弁体23d、空気流出口21を遮断し、2次空
気は連通口22を通って第2圧力室17、開口31へと
ダイハートされる。この状態より再び負荷まだはエンジ
ン回転が低下すると、ダイヤプラム室38の圧力が「が
り、ダイヤフラム34は右動しバルブ36は負圧通路3
6を閉じ大気パイプ40よりスプリング室37には大気
が導かれて弁体23は左方へと作動され連通口22は閉
成されて再びインジエク7ヨン状態となる。
In FIG. 7, the signal extraction tube 25 is provided with an intake pipe negative pressure control valve 33. In the low-medium speed and low-medium load range, the pressure P+ in the first pressure chamber 16 is low and the diaphragm 34 of the control valve 33 can still be operated, and the valve 35 closes the negative pressure passage 36 from the intake pipe. Atmospheric air is guided into the spring chamber 37, and the diaphragm 18 is pushed to the left and the valve body 2
3 blocks the communication port 22, and the secondary air is sent to the exhaust system and is in an injection state. When the load or engine rotation becomes negative and reaches a high load/high speed range, pressure P3 increases,
'+l1ll i++ The pressure in the diaphragm chamber 38 of the valve 33 also increases, and the diaphragm 34 compresses the spring 39 while deflecting the diaphragm 34 to the left.
5 closes the atmospheric pipe 40, and the negative pressure passage 36 opens. Then, the air in the spring chamber 37 is sucked in through the negative pressure passage 36 due to the negative pressure in the intake pipe, and the diaphragm 18 is deflected to the right, blocking the valve body 23d and the air outlet 21, and allowing the secondary air to communicate. It is die-hardened through the opening 22 to the second pressure chamber 17 and the opening 31 . When the engine speed decreases again from this state, the pressure in the diaphragm chamber 38 decreases, the diaphragm 34 moves to the right, and the valve 36 opens the negative pressure passage 3.
6 is closed, atmospheric air is introduced into the spring chamber 37 from the atmospheric pipe 40, the valve body 23 is actuated to the left, the communication port 22 is closed, and the injector is in the injected state again.

まだ、第・8図の実施例においては、信号取出チューブ
25をプレッシャースイッチ41に接続すると共に、プ
レッシャースイッチ41によりON 。
However, in the embodiment shown in FIG. 8, the signal extraction tube 25 is connected to the pressure switch 41, and the pressure switch 41 is turned on.

OF下副制御れスプリング室37に吸気管負圧才だは大
気を導<:つ方ルノイド弁42を設けて、スプリング室
37に吸気管負圧捷だは大気を切換えて導くようにして
ダイヤフラム18及び弁体23を作動し2次空気を制御
するものである。
A diaphragm valve 42 is provided to guide the intake pipe negative pressure or the atmosphere into the spring chamber 37 under the OF lower sub-control, and to switch between the intake pipe negative pressure and the atmosphere to guide the spring chamber 37. 18 and the valve body 23 to control the secondary air.

上記、2つの実施例においては、信号取出チューブ25
の圧力信号ないし圧力P3が変動しても、吸気管負圧制
御弁33およびプレッシャースイッチ41には、通常ヒ
ステリンスがあり、第9図に示すようなヒステリンスル
ープを描き、圧力幅(1においては弁体23が作動され
ることのない不動域が形成される。まだ、吸気管負圧と
いう、2次空気とは全く別系統のより安定した信号によ
り弁体23を作動しているだめより安定した制御ができ
る。更に、上述し7だような不動域が存在し制御弁33
、プレツ/ヤースイッチ41のダイヤフラム室38.4
3圧力変化は、ディレィバルブ44の絞りオリフィス4
5と1方向弁46との作用によりおだやかな変化される
ため、第10図実線で示す圧力P3変動に対して破線の
ごとき動特性を示ス。このだめ、弁体23のP3変動に
伴うチャタリングの発生は完全に防止される。
In the above two embodiments, the signal extraction tube 25
Even if the pressure signal or pressure P3 fluctuates, the intake pipe negative pressure control valve 33 and the pressure switch 41 usually have hysteresis, and a hysterin loop as shown in FIG. 9 is drawn, and the pressure width (in 1) A stationary region is formed in which the valve body 23 is not operated.It is still more stable than if the valve body 23 was operated by a more stable signal called intake pipe negative pressure, which is completely different from the secondary air. In addition, there is a stationary region such as 7 mentioned above, and the control valve 33
, diaphragm chamber 38.4 of prez/ya switch 41
3 The pressure change is caused by the throttle orifice 4 of the delay valve 44.
5 and the one-way valve 46, the pressure P3 exhibits dynamic characteristics as shown by the broken line with respect to the fluctuation of the pressure P3 shown by the solid line in FIG. As a result, the occurrence of chattering due to P3 fluctuation of the valve body 23 is completely prevented.

以上の説明より明らかなように本発明によれば、内燃機
関の高負荷・高速運転時にのみ排気系への2次空気の供
給を確実に遮断でき、排気ガスの悪化を招くことなく、
排気系の過熱による熱害等を防止することができ、しか
も構造簡単にして安価に提供できる等の優れた効果を発
揮することができる。
As is clear from the above description, according to the present invention, it is possible to reliably cut off the supply of secondary air to the exhaust system only when the internal combustion engine is operating under high load and at high speed, without causing deterioration of exhaust gas.
It is possible to prevent heat damage caused by overheating of the exhaust system, and it is also possible to exhibit excellent effects such as being able to simplify the structure and provide it at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2次空気制御装置を示す概略断面図、第
2図は第1図の装置による2次空気制御を説明するグラ
フ、第3図は本発明に係る装置を有する内燃機関の一実
施例を示す全体概略系統図、第4図、第5図は第3図の
2次空気制御装置の各部の圧力値を示すグラフ、第6図
は同装置による2次空気制御を説明するグラフ、第7図
は本発明の他の実施例を示す概略断面図、第8図は本発
明の別の実施例を示す概略断面図、第9図は第7図ない
し第8図の装置の静的作動特性を示すグラフ、第10図
は同装置の動的作動特性を示すグラフである。 図中、1はエンジン本体、3は吸気マニホルド、4は排
気マニホルド、5はニーアポ7プ、6は吸気%燕蕃台嬌
蘂、8は2次空気供給通路、10は逆止弁、13は2次
空気制御装置、16は第1川力室、17は第2圧力室、
18はダイヤフラム、19はダイヤフラム室、20は空
気流入口、21は空気流出口、22は連通口、23は弁
体、24は弁棒、25は信号取出チューブ、28は圧力
調整オリフィス、29はリーク通路、30はリーク調整
オリフィス、31は開口、33は吸気管負圧制御弁、3
4はダイヤフラム、36は負圧通路、37はスプリング
室、38はダイヤフラム室、40は大気パイプ、41は
プレッ/ヤースイッチ、42は;3方ソレノイド弁、P
i  + P 2  + P 3は圧力である。 特許出願人 いすソ自動車株式会社 代理人弁理士 絹 谷 信 雄 第1図 第2図 イヘー     、          −高エンシン
回昧 第7図 第9図 休−仄h   −高 第10図 ヂρ(I     −− ルー Aう苛  −尺
FIG. 1 is a schematic sectional view showing a conventional secondary air control device, FIG. 2 is a graph explaining secondary air control by the device in FIG. 1, and FIG. 3 is an internal combustion engine equipped with the device according to the present invention. An overall schematic system diagram showing one embodiment, Figures 4 and 5 are graphs showing pressure values of each part of the secondary air control device in Figure 3, and Figure 6 explains secondary air control by the device. 7 is a schematic sectional view showing another embodiment of the present invention, FIG. 8 is a schematic sectional view showing another embodiment of the present invention, and FIG. 9 is a schematic sectional view of the apparatus shown in FIGS. 7 to 8. FIG. 10 is a graph showing the static operating characteristics, and FIG. 10 is a graph showing the dynamic operating characteristics of the device. In the figure, 1 is the engine body, 3 is the intake manifold, 4 is the exhaust manifold, 5 is the knee pop-up, 6 is the intake percentage, 8 is the secondary air supply passage, 10 is the check valve, and 13 is the Secondary air control device, 16 is the first river pressure chamber, 17 is the second pressure chamber,
18 is a diaphragm, 19 is a diaphragm chamber, 20 is an air inlet, 21 is an air outlet, 22 is a communication port, 23 is a valve body, 24 is a valve stem, 25 is a signal extraction tube, 28 is a pressure adjustment orifice, 29 is a Leak passage, 30 is a leak adjustment orifice, 31 is an opening, 33 is an intake pipe negative pressure control valve, 3
4 is a diaphragm, 36 is a negative pressure passage, 37 is a spring chamber, 38 is a diaphragm chamber, 40 is an atmospheric pipe, 41 is a pressure/ear switch, 42 is a three-way solenoid valve, P
i + P 2 + P 3 is pressure. Patent Applicant Isuso Jidosha Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 1 Figure 2 Ihe, - High Enshin Kai Figure 7 Figure 9 Shu - 组h - High Figure 10 ヂρ (I - - Lou A urai - shaku

Claims (1)

【特許請求の範囲】 1  エアポツプから吐出された空気を排気系に供給す
る2次空気供給通路の2次空気量を制mlする2次空気
制御装置において、上記2次空気供給通路に介設された
第1圧力室と、該第1圧力室に連通口を介して連通接続
され大気開放のだめの開口を有する第2圧力室と、上記
第1圧力室の圧力信号を取り出すべく、第1圧力室に接
続された信号取出チューブと、該チューブ 内の空気を
上記第2圧力室にリークすべく、第2圧力室と信号取出
チューブとの間に介設されたリーク通路と、上記信号取
出チューブの圧力信号に応じて上記連通口と一ヒ記第1
圧力室に流入した空気を上記排気系に導くだめの空気流
出口とを開閉作動する開閉作動手段とを備えだことを特
徴とする内燃機関の2次空気制御装置。 2 上記信号取出チューブが流計調整のオリフィスを有
することを特徴とする特許 囲第1項記載の内燃機関の2次空気制御装置。 3 −ヒ記すーク通路がそのリーク量を調整するだめの
オリフィスを有することを特徴とする上記特許請求の範
囲第1項乃至第2項記載の内燃機関の2次空気制御装置
[Scope of Claims] 1. In a secondary air control device that controls the amount of secondary air in a secondary air supply passage that supplies air discharged from an air pop to an exhaust system, a first pressure chamber that is connected to the first pressure chamber through a communication port and has an opening for venting to the atmosphere; a signal extraction tube connected to the signal extraction tube, a leak passage interposed between the second pressure chamber and the signal extraction tube to leak air in the tube to the second pressure chamber, and a signal extraction tube connected to the signal extraction tube. According to the pressure signal, the communication port and
A secondary air control device for an internal combustion engine, comprising an opening/closing means for opening/closing an air outlet for guiding air flowing into the pressure chamber to the exhaust system. 2. The secondary air control device for an internal combustion engine as set forth in paragraph 1 of the patent specification, characterized in that the signal extraction tube has an orifice for flow meter adjustment. 3. The secondary air control device for an internal combustion engine according to claims 1 and 2, wherein the soak passage has an orifice for adjusting the amount of leakage thereof.
JP3152982A 1982-02-27 1982-02-27 Secondary air control device for internal-combustion engine Pending JPS5910723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152982A JPS5910723A (en) 1982-02-27 1982-02-27 Secondary air control device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152982A JPS5910723A (en) 1982-02-27 1982-02-27 Secondary air control device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5910723A true JPS5910723A (en) 1984-01-20

Family

ID=12333718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152982A Pending JPS5910723A (en) 1982-02-27 1982-02-27 Secondary air control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5910723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433691A1 (en) * 1989-11-22 1991-06-26 Siemens Aktiengesellschaft Combined air flow control and check valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433691A1 (en) * 1989-11-22 1991-06-26 Siemens Aktiengesellschaft Combined air flow control and check valve

Similar Documents

Publication Publication Date Title
US3906723A (en) Exhaust gas purifying system
US3921396A (en) Exhaust gas purification system
US4085586A (en) Secondary air supply system for internal combustion engines
US4437311A (en) Apparatus for controlling the flow of exhaust gas in an internal combustion engine with a turbocharger and a catalytic converter
US3888080A (en) Air flow control valve
US4257227A (en) Secondary air controlling apparatus for internal combustion engines
US4070830A (en) Integral air switching diverter valve
US4163434A (en) Air-fuel ratio regulator for internal combustion engine
US5375579A (en) Evaporated fuel controller
US4098241A (en) Apparatus for preventing after-fire in an internal combustion engine
JPS5910723A (en) Secondary air control device for internal-combustion engine
US4270347A (en) Exhaust gas purification system for an internal combustion engine
US3591961A (en) Air pump flow control valve for engine exhaust emission control system
US4177641A (en) Apparatus for cleaning exhaust gas for an internal combustion engine
US4202173A (en) Secondary air supplying device of an internal combustion engine
US5509397A (en) Air supply system preventing backflow
CA1108996A (en) Power cruise diverter valve
US4177642A (en) Diverter valve for exhaust system of internal combustion engine
JPS5911723B2 (en) Secondary air control device for internal combustion engine exhaust system
US4148189A (en) Exhaust gas purifying system for engines
US4147032A (en) Secondary air supply control system
US4104880A (en) Exhaust gas purifying system having a diaphragm type control valve
US4164207A (en) Exhaust gas recirculation means
CA1188940A (en) Constant pressure relief valve for an air control valve
CN100520039C (en) Fuel supply limiter for carburetor