JPS59104608A - Chalcogen optical waveguide - Google Patents

Chalcogen optical waveguide

Info

Publication number
JPS59104608A
JPS59104608A JP21375282A JP21375282A JPS59104608A JP S59104608 A JPS59104608 A JP S59104608A JP 21375282 A JP21375282 A JP 21375282A JP 21375282 A JP21375282 A JP 21375282A JP S59104608 A JPS59104608 A JP S59104608A
Authority
JP
Japan
Prior art keywords
chalcogen
light
irradiated
optical waveguide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21375282A
Other languages
Japanese (ja)
Other versions
JPH0153762B2 (en
Inventor
Masato Hyodo
正人 兵藤
Hideo Kawahara
秀夫 河原
Tatsuhiko Matsushita
松下 辰彦
Akio Suzuki
晶雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP21375282A priority Critical patent/JPS59104608A/en
Publication of JPS59104608A publication Critical patent/JPS59104608A/en
Publication of JPH0153762B2 publication Critical patent/JPH0153762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Abstract

PURPOSE:To form an optical waveguide which is excellent in its boundary surface accuracy and small in its light scattering loss by irradiating locally a light to a chalcogen compound consisting of a specified ratio range of Se and Ga, and providing an optical refractive index difference between an irradiated part and a nonirradiated part. CONSTITUTION:A chalcogen compound thin film 1 having 65-97% Se and 3- 35% Ga by mol% is vapor-deposited and formed on a glass substrate 3. A p- xylylene film 2 is formed as a protective film on the film 1. A beam 4 whose wavelength is within 300-800mm. such as an He-Ne laser beam, etc. is irradiated to an optional minute area from the film 2 side by use of a condensing lens 5, and an irradiated area 6 is crystallized and is made larger than a refractive index of a non-crystallized part. In case of the irradiation, the beam 4 is controlled so that a temperature of the layer 1 is <=240 deg.C. In this way, it is possible to obtain an optical waveguide which is excellent in its boundary surface accuracy, small in its light scattering loss, and does not peel off by a mechanical vibration, etc.

Description

【発明の詳細な説明】 本発明は光伝送システムの構成要素である光分岐・光結
合回路素子等として優れた新規な光導波路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel optical waveguide that is excellent as an optical branching/coupling circuit element, etc., which is a component of an optical transmission system.

従来のこの種光導波路としては、オプティカルファイバ
ーを組合せたもの或いはガラス基板面に真空蒸着、スパ
ッタリング等の手段により、周囲よりも高光屈折率を有
する光通過ガラス部分を設けた先導波路が知られている
。しかし前者は高い組立精度を要する上に機械的振動に
弱く、後者は光通過ガラス部と基板ガラスとの境界面の
面精度が悪く、光の散乱損失が大きいという欠点を有し
ている。
As conventional optical waveguides of this kind, there are known guide waveguides that combine optical fibers or that have a light-transmitting glass part that has a higher optical refractive index than the surrounding area by means of vacuum deposition, sputtering, etc. on the surface of a glass substrate. There is. However, the former requires high assembly precision and is susceptible to mechanical vibration, while the latter has the disadvantage that the surface precision of the interface between the light-transmitting glass portion and the substrate glass is poor and the scattering loss of light is large.

本願発明の目的は前記した欠点を解消した光導波路を提
供することにあり、その要旨はモル%でse 乙!−9
7%、Ga、?〜35%を有する組成からなるカルコゲ
ン化合物に局部的に光を照射し、該照射部分と非照射部
分との間に光屈折率差を持たせたことを特徴とするカル
コゲン光導波路にある。
The purpose of the present invention is to provide an optical waveguide that eliminates the above-mentioned drawbacks, and the gist thereof is expressed in mol%. -9
7%, Ga,? The chalcogen optical waveguide is characterized in that a chalcogen compound having a composition of 35% is locally irradiated with light to create a difference in optical refractive index between the irradiated part and the non-irradiated part.

本願発明に用いられるカルコゲン化合物は特願昭J7−
/70乙53号として先に出願したもので、本カルコゲ
ン化合物を2110’C以下の温度下で光を2110°
C以上に加熱するとガラス化して可視光本願発明者等は
本カルコゲン化合物の物性についてさらに研究の結果、
前記ダークユング時にはブリーチング時に較べ光屈折率
が大きいことを見つ(ブ、局部的にダークニングを起さ
せることによって光導波路が容易に製作出来ることを発
明し、ここに開示するものである。
The chalcogen compound used in the present invention is
/70 Otsu No. 53, which was filed earlier, and this chalcogen compound is exposed to light at 2110°C at a temperature of 2110°C or less.
As a result of further research into the physical properties of this chalcogen compound, the inventors of the present application have conducted further research on the physical properties of this chalcogen compound.
We have discovered that the optical refractive index is higher during darkening than during bleaching (b.) We have invented and disclose herein that optical waveguides can be easily fabricated by locally causing darkening.

本願発明に用いるカルコゲン化合物を2qO°C以下の
温度に加熱した状態で光を照射すると、化合物のSe、
l!:Gaの配合比率によってオ/表の通りダークニン
グ状態での光屈折率が増大する。
When the chalcogen compound used in the present invention is heated to a temperature of 2qO°C or less and irradiated with light, the Se of the compound,
l! :The optical refractive index in the darkening state increases as shown in the table.

光導波路としての屈折率差は大きい程好ましいが、△n
が0.003あれば実用に耐える。また本カルコゲン化
合物はブリーチング時またはダークニン少いので近赤外
光の光導波路に適してしzる。
It is preferable that the refractive index difference as an optical waveguide is large, but △n
If it is 0.003, it is suitable for practical use. In addition, this chalcogen compound is suitable for near-infrared light optical waveguides because it has little darkening or bleaching properties.

本発明の光導波路の形状は問わなし)が、夕゛−クニン
グさせるための光はカルコゲン化合物の表層からあまり
深くには到達しないので、カルコゲン化合物は基体面上
に薄膜状に形成したもの力1望まシイ。また光を照射し
てダークニンク゛させる関係から基体は光を塵す板ガラ
スが望ましく、また力ルフゲン膜々厚コントロー元や膜
付着強度等の点からカルコゲン膜は蒸着膜であることが
好ましい0まだカルコゲン化合物合物は湿気に合うと劣
化しやすいので、表1fLi:+−ティングすることが
望ましく、コーテイング膜としてはバラキシリレン(化
学式2式% 真空蒸着したものが光透過率、耐熱性、膜強度。
The shape of the optical waveguide of the present invention does not matter), but since the light for dusk does not reach too deep from the surface layer of the chalcogen compound, the chalcogen compound is formed in the form of a thin film on the substrate surface. I want it. In addition, it is preferable that the substrate be a plate glass that wicks away light in order to cause a dark darkening when irradiated with light, and it is preferable that the chalcogen film is a vapor-deposited film from the viewpoint of controlling the thickness of the fluorophore film and adhesion strength of the film. Compounds tend to deteriorate when exposed to moisture, so it is desirable to use Table 1fLi: + - ting, and as a coating film, baraxylylene (Chemical formula 2%) Vacuum-deposited material has good light transmittance, heat resistance, and film strength.

耐水性などの点から特に好ましい0 ダークニングさせる光の波長は300〜zoonmの範
囲がよく、goqnmよりも長波長の光ではダークニン
グに長時間を要し、また300nmよりも短波長の光で
はダークニングを起さない。またダークニング時間短縮
の点から、またダークニング状態での結晶粒を微細化し
、境界面での散乱を防ぐ点からも光は強力なものが好ま
しく、光照射によってカルコゲン化合物の温度が、2グ
O′C以上に過熱されるのを防ぐためにも赤外域の波長
の光を含まない単色光源、例えばle −Neレーザー
、Arレーザーなどは特に好ましい。
Particularly preferable from the point of view of water resistance, etc. The wavelength of the light used for darkening is preferably in the range of 300 to 300 nm. Light with a wavelength longer than goqnm takes a long time to darken, and light with a wavelength shorter than 300 nm takes a long time. Does not cause darkening. In addition, from the viewpoint of shortening the darkening time, making the crystal grains finer in the darkening state, and preventing scattering at the interface, it is preferable that the light be strong. In order to prevent overheating above O'C, a monochromatic light source that does not contain light in the infrared wavelength range, such as a le-Ne laser or an Ar laser, is particularly preferable.

本発明に用いるカルコゲン化合物はrtio°C以下で
あれば高温である稈元照射によるダークニング時間が短
縮できる0 しかし2110°Cを越えると瞬時にブリーチングが起
るので、tqo℃以下でダークニングさせる必要があり
、安全をみて200〜230℃でダークニングさせるこ
とが好ましい。
The chalcogen compound used in the present invention can shorten the darkening time due to high-temperature culm irradiation if the temperature is below rtio°C. However, bleaching occurs instantaneously when the temperature exceeds 2110°C, so darkening is not possible at below tqo°C. For safety reasons, it is preferable to darken at 200 to 230°C.

本発明に用いるカルコゲン化合物中には不純物として不
本意ながら混入する成分以外に、A4.si、。
In addition to components that are unintentionally mixed in as impurities in the chalcogen compound used in the present invention, A4. si,.

P、 S、 Ge、 As+ In、 Sn、 Sb、
 Te 又はTlから選ばれた7種ないし2種以上の元
素が10m01%以下までなら含まれても本発明のカル
コゲン光導波路の性能に悪影響を与えることはない。
P, S, Ge, As+ In, Sn, Sb,
The performance of the chalcogen optical waveguide of the present invention will not be adversely affected even if seven or more elements selected from Te or Tl are contained up to 10m01% or less.

実施例/ Ga粉末、 se粉末(それぞれ9q、ワタ9%純度)
を原子百分率において0 : 100 、3 : 97
 、 j : 9K。
Example/Ga powder, se powder (9q each, 9% purity)
In atomic percentage, 0: 100, 3: 97
, j: 9K.

10 : 90 、20 :ざ0 、30 : 70.
3!; :訂、 lIo : to の割合で混合し、
各混合物を石英アンプルに封入し、真空状態においてこ
れを/100°C210時間加熱融解した後、急冷して
成分比の異なる5種のGa−se化合物を得た。
10: 90, 20: 0, 30: 70.
3! :Edited, mixed in the ratio of lIo:to,
Each mixture was sealed in a quartz ampoule, heated and melted at /100° C. for 210 hours in a vacuum state, and then rapidly cooled to obtain five types of Ga-se compounds having different component ratios.

次いでこれを取り出し粉砕して得られる3種の粉末を順
次蒸着源とし、真空蒸着装置でガラス基板上にそれぞれ
成分比の異なるGa−8e力ルコゲン化合物薄膜を形成
させた。この時の蒸着条件は基板温度:30°C1M着
レート:!;DA”/分、真空g: 、2X10−5t
orr であり得られたGa−3e力ルコゲン化合物薄
膜の厚味は!;000 A″であった。
Next, this was taken out and pulverized, and three types of powder obtained were sequentially used as vapor deposition sources to form Ga-8e lucogen compound thin films having different component ratios on glass substrates using a vacuum vapor deposition apparatus. The deposition conditions at this time are substrate temperature: 30°C, 1M deposition rate:! ;DA”/min, vacuum g: , 2X10-5t
What is the thickness of the Ga-3e-lucogen compound thin film obtained with orr? ;000 A''.

上、/X/(11”’3tOrrの真空度でバラキシリ
レンを蒸着源とし、当該薄膜上にバラキシリレンの保護
膜を被覆させた。この時のバラキシリレンの厚味は約/
、jμmであった。
Above, /X/(11''' A protective film of paraxylylene was coated on the thin film using paraxylylene as the evaporation source at a vacuum degree of 3tOrr.The thickness of paraxylylene at this time was approximately /
, jμm.

上記の様に調整した成分比の異なる5種類のca−se
カルコゲン化合物薄膜の屈折率変化を調べたものがオ/
図であり、当該薄膜の屈折率が約3.6〜2.7と変化
している。
Five types of ca-se with different component ratios adjusted as above
The study of refractive index changes in chalcogen compound thin films is
FIG. 3 shows that the refractive index of the thin film varies from about 3.6 to 2.7.

次いで上記5種類の成分比のGa−3e力ルコゲン化合
物薄膜につき、キセノンランプ(’A&toom/Cm
2 )を照射しつつ、270℃に加熱した。
Next, a xenon lamp ('A&toom/Cm
2) was heated to 270°C while irradiating the sample.

この照射および加熱により当該薄膜は、その透過色が橙
色から黒褐色に変化することが認められた。
It was observed that the transmitted color of the thin film changed from orange to blackish brown due to this irradiation and heating.

この現象はカルコゲン材料によく見られるダークニング
(darkening )である。
This phenomenon is darkening, which is commonly observed in chalcogen materials.

同時に得られる薄膜の屈折率も変化する。上記ざ種類の
にa−seカルコゲン化合物薄膜の光・熱処ca−3e
カルコゲン比合物薄膜のうち、aao−iSe o、り
の組成よりなりバラキシリレンを積層したカルコゲンガ
ラス薄膜サンプルをオフ図に示すように室温下でHe−
Neレーザー光線(λ=33.2ざA)をレンズで゛絞
り(スポット径700μ)微小領域にピントを合わせ、
任意の光回路パターン状に照射すると、この微小領域に
おいてダークニングによる結晶化現象が現われ、この微
小領域の屈折率が光を受けていない部分の屈折率に比べ
、オ/表で示した様な変化幅で増大した。このような操
作を行なうことにより容易に任意の光回路パターン導波
路を形成できることもわかる。
At the same time, the refractive index of the thin film obtained also changes. Light and heat treatment of the above types of a-se chalcogen compound thin films CA-3E
Among the chalcogen compound thin films, a chalcogen glass thin film sample with a composition of aao-iSe o and ri and laminated with baraxylylene was heated at room temperature with He-
Focus the Ne laser beam (λ = 33.2 A) on a minute area with a lens (spot diameter 700μ),
When an arbitrary optical circuit pattern is irradiated, a crystallization phenomenon due to darkening appears in this micro region, and the refractive index of this micro region becomes larger than the refractive index of the part not receiving light as shown in the table. The range of change increased. It can also be seen that by performing such operations, any optical circuit pattern waveguide can be easily formed.

以上から本願発明のカルコゲン光導波路は単に光を照射
するだけで自由自在な、<ターンの光導波路となり、か
つ従来の真空蒸着法等と較べて境界面精度の良いしたが
って光散乱損失の少い光導波路であることが判る0
From the above, the chalcogen optical waveguide of the present invention can be turned into an optical waveguide that can be freely turned by simply irradiating it with light, and has better boundary surface precision than conventional vacuum evaporation methods, and therefore has less light scattering loss. It turns out to be a wave path 0

【図面の簡単な説明】[Brief explanation of the drawing]

オ/図は本願発明に用いる力)レコゲン【ヒ合物のSe
: Gaの含有比率を変化させた場合の屈折率変化を示
したグラフ。牙2図は基板上に形成したカルコゲン薄膜
に光を照射して本発明の導波路を形成する方法を表した
図で、/:力7レコゲン化合物薄膜層2.2゛バラキク
リレン保護膜、3ニガラス基板、ll:レーザービーム
、S:集光レンズ。 乙:集光スポットである。 第1図 第2因
E/The figure shows the force used in the present invention) Recogen
: A graph showing changes in refractive index when the content ratio of Ga is changed. Figure 2 shows the method of forming the waveguide of the present invention by irradiating light onto a chalcogen thin film formed on a substrate. Substrate, ll: laser beam, S: condenser lens. B: It is a light-concentrating spot. Figure 1 2nd cause

Claims (5)

【特許請求の範囲】[Claims] (1)  モル%でse乙S〜97%、Ga  3〜3
s%を有する組成からなるカルコゲン化合物に局部的に
光を照射し、該照射部分と非照射部分との間に光屈折率
差を持たせたことを特徴とするカルコゲン光導波路。
(1) In mol% se O S ~ 97%, Ga 3 ~ 3
1. A chalcogen optical waveguide, characterized in that a chalcogen compound having a composition having a composition of s% is locally irradiated with light to create a difference in optical refractive index between the irradiated part and the non-irradiated part.
(2)前記カルコゲン化合物が、基体面上に薄膜状に形
成されたカルコゲン化合物である特許請求の範囲オ/項
記載のカルコゲン光導波路。
(2) The chalcogen optical waveguide according to claim 5, wherein the chalcogen compound is a chalcogen compound formed in the form of a thin film on a substrate surface.
(3)前記カルコゲン化合物が板ガラス面上に薄膜状に
蒸着されたカルコゲン化合物である特許請求の範囲オフ
項記載のカルコゲン先導波路。
(3) The chalcogen guided waveguide according to the off-claims, wherein the chalcogen compound is a chalcogen compound deposited in the form of a thin film on a plate glass surface.
(4)前記照射する光の波長が300〜ざQQ mtn
である特許請求の範囲オ/項記載のカルコゲン先導波路
(4) The wavelength of the irradiated light is 300~zaQQ mtn
A chalcogen guiding waveguide according to claim 1.
(5)前記カルコゲン化合物が2110°C以下の温度
で光照射される特許請求の範囲オ/項記載のカルコゲン
光導波路。
(5) The chalcogen optical waveguide according to claim 1, wherein the chalcogen compound is irradiated with light at a temperature of 2110°C or less.
JP21375282A 1982-12-06 1982-12-06 Chalcogen optical waveguide Granted JPS59104608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21375282A JPS59104608A (en) 1982-12-06 1982-12-06 Chalcogen optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21375282A JPS59104608A (en) 1982-12-06 1982-12-06 Chalcogen optical waveguide

Publications (2)

Publication Number Publication Date
JPS59104608A true JPS59104608A (en) 1984-06-16
JPH0153762B2 JPH0153762B2 (en) 1989-11-15

Family

ID=16644433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21375282A Granted JPS59104608A (en) 1982-12-06 1982-12-06 Chalcogen optical waveguide

Country Status (1)

Country Link
JP (1) JPS59104608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193248A2 (en) * 1985-03-01 1986-09-03 Philips Patentverwaltung GmbH Process for making lightwave guide structures
WO1996041775A1 (en) * 1995-06-12 1996-12-27 The Secretary Of State For Defence Microstructures in chalcogen-containing glasses
WO2002073254A1 (en) * 2001-03-09 2002-09-19 Corning Incorporated Laser-induced crystallization of transparent glass-ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193248A2 (en) * 1985-03-01 1986-09-03 Philips Patentverwaltung GmbH Process for making lightwave guide structures
WO1996041775A1 (en) * 1995-06-12 1996-12-27 The Secretary Of State For Defence Microstructures in chalcogen-containing glasses
WO2002073254A1 (en) * 2001-03-09 2002-09-19 Corning Incorporated Laser-induced crystallization of transparent glass-ceramics
US6928224B2 (en) * 2001-03-09 2005-08-09 Corning Incorporated Laser-induced crystallization of transparent glass-ceramics

Also Published As

Publication number Publication date
JPH0153762B2 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JP3270814B2 (en) Manufacturing method of diffractive optical element
FR2463103A1 (en) PHOTOCHROMIC GLASS ARTICLE WITH OPTICALLY CLEAR COPPER HALIDE (S)
US6284685B1 (en) Light-induced refractive index changes in low temperature glasses
CZ40093A3 (en) Steaming material for the production of high refractive optical layers
JPS59104608A (en) Chalcogen optical waveguide
JPH02275907A (en) Formation of optical waveguide
Petkov et al. Photo-induced changes in the optical properties of amorphous As-Ge-S thin films
Wang et al. Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system
JPS6157601B2 (en)
Kang et al. Scalable laser-written Ge-As-Pb-Se chalcogenide glass-ceramic films and the realization of infrared gradient refractive index elements
Kawaguchi Photoinduced surface deposition of Ag on Ag-rich Ag–Ge–S films: Optimal Ag content and film thickness for applications in optical recording devices
JP2023020448A (en) Substrate with film and method for manufacturing the same
JP2006193398A (en) Crystallized glass, optical device and etalon
JPS552263A (en) Production of optical guide circuits
US3999994A (en) Glass-ceramics
GB1563513A (en) Optical information storage material
JPH0812302B2 (en) Method for producing titanium oxide thin film
JPS62240908A (en) Production of waveguide type optical element
JPS6354659B2 (en)
JPS5957903A (en) Chalcogen compound
JPH0926514A (en) Thin film material for three-dimensional optical waveguide and its production
JP2004114046A (en) Method for forming rugged part onto amorphous thin film and amorphous thin film
GB2141423A (en) Infra-red transparent selenium-containing glass
Iovu et al. Investigation of registration of the optical information in the amorphous As-Se thin films
JP2005343702A (en) Optical material, optical device, and etalon