JPS59104410A - Fluidized bed type preliminary reducing furnace - Google Patents

Fluidized bed type preliminary reducing furnace

Info

Publication number
JPS59104410A
JPS59104410A JP21139682A JP21139682A JPS59104410A JP S59104410 A JPS59104410 A JP S59104410A JP 21139682 A JP21139682 A JP 21139682A JP 21139682 A JP21139682 A JP 21139682A JP S59104410 A JPS59104410 A JP S59104410A
Authority
JP
Japan
Prior art keywords
furnace
gas
layer
fluidized bed
fluidization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21139682A
Other languages
Japanese (ja)
Inventor
Shiko Takada
高田 至康
Hisao Hamada
浜田 尚夫
Toshihiro Inatani
稲谷 稔宏
Eiji Katayama
英司 片山
Nobuo Tsuchitani
槌谷 暢男
Mitsuo Kadoto
角戸 三男
Tsutomu Fujita
勉 藤田
Shunji Hamada
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21139682A priority Critical patent/JPS59104410A/en
Publication of JPS59104410A publication Critical patent/JPS59104410A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To generate stable fluidization, by providing a granular refractory- accumulated layer where porous gas-dispersing plate having layer penetrating holes at the introducing port of a fluidization reducing gas into a furnace, while coarse grain refractory made more coarse in diameter than that of penetrating holes are placed at the lowest part thereon and small grain refractory is arranged at the top most layer. CONSTITUTION:A gas dispersing plate 3 with dispersing holes 3a having larger diameter than about 3mm. at the fluidization reducing gas introducing port 8 is provided in a fluidized bed type preliminary reducing furnace 1. The regulated flow layer 12 composed of granular refractory accumulated layer where coarse grain refractory 13 of about 8mm. diameter is distributed at the lowest part on the gas dispersing plate 3 and small grain refractory 14 consisting of about 1mm. diameter grain regulated to the size not fluidizable even when a powdery particulate ore material in the furnace reaches a fluidization starting speed, is placed.

Description

【発明の詳細な説明】 この発明は、流動層予備還元炉に関し、とくに流動還元
ガスの導入口部に位置するガス分散板機能を改良するこ
とで、クロム鉱石予備還元のように高温の流量化還元ガ
スを使う場合に有利(こ適用される予備還元炉について
提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluidized bed pre-reduction furnace, and in particular, by improving the function of the gas distribution plate located at the inlet of the fluidized reducing gas, high-temperature flow rates can be achieved, such as in the case of chromium ore pre-reduction. This is advantageous when using reducing gas (we propose a preliminary reduction furnace that can be used for this purpose).

近年、酸化鉄または各種金属酸化物を含有する鉱石原料
は、塊状鉱石が減少して粉状もしく(ま粒状の鉱石が多
くなっており、その傾向は今後ますます顕著になると予
想される。
In recent years, ore raw materials containing iron oxide or various metal oxides have been decreasing in bulk and becoming more powdery or granular, and this trend is expected to become more pronounced in the future.

こうした現状に鑑み、最近かかる分粒状鉱石を直接使用
して製錬する技術が発展してきた。例えば、流動層を用
いて粉粒状鉱石を予備還元し、その後この予(I?ii
還元鉱を電炉、転炉その他溶解炉で溶融還元する方法等
がそれである。この既知技術の場合、予備還元鉱にバイ
ンダーを添加して一旦塊成化し、その塊状化した物を溶
解炉で溶融還元する方式が多い。ところが、かかる従来
技術【こよれば、塊成化のための燃料、処理費、処理エ
ネルギーを余分に必要とするばかりでなく、塊成化した
のち、さらに焼成を必要とするような場合【こ(よ、焼
成塊状物とする際に、焼成炉から排出するガス中のNO
x 、soxおよびダスト等の処理が必要となり多大の
費用を要するという欠点があった。
In view of the current situation, a technology for directly using such granular ore for smelting has recently been developed. For example, a fluidized bed is used to pre-reduce granular ore and then this pre-reduction (I?ii
Examples include a method of melting and reducing reduced ore in an electric furnace, converter, or other melting furnace. In the case of this known technology, there are many methods in which a binder is added to the pre-reduced ore to once agglomerate it, and the agglomerated material is melted and reduced in a melting furnace. However, such conventional technology not only requires extra fuel, processing cost, and processing energy for agglomeration, but also requires additional firing after agglomeration. (NO in the gas discharged from the kiln when making the kiln into a lump)
This method has the disadvantage that it requires treatment of x, sox, dust, etc., which requires a large amount of cost.

また、上記方式の他にも、アーク炉やプラズマあるいは
純酸素を利用する炉を用いて予備還元鉱石を粉粒状のま
ま溶融還元する方式も提案されている。しかし、アーク
炉を用いる方式は電力消費量が莫大であるばかりでなく
立地条件にも制約がある。プラズマを利用する炉を用い
る方式は工業的規模には適用が困難である。純酸素を利
用する炉を用いる方式は高温雰囲気を得ることは容易で
あるが、酸素を予熱することができないため、入熱量が
小ざいこと、それに加えて還元雰囲気の維持が難しいこ
となど技術的に解決を要する問題が残されていると同時
に、また純酸素製造設備を準備する必要があり、立地的
な問題点もある。このように従来技術にあっては技術的
および経済的に解決を要する多くの課題が残されている
In addition to the above-mentioned method, a method has also been proposed in which the pre-reduced ore is melted and reduced in the form of powder using an arc furnace, a furnace that uses plasma, or pure oxygen. However, the method using an arc furnace not only consumes a huge amount of electricity but also has restrictions on location. A method using a furnace that utilizes plasma is difficult to apply on an industrial scale. Although it is easy to obtain a high-temperature atmosphere using a furnace that uses pure oxygen, there are technical issues such as a small amount of heat input because the oxygen cannot be preheated, and in addition, it is difficult to maintain a reducing atmosphere. At the same time, there are still problems that need to be solved, and at the same time, it is necessary to prepare pure oxygen production equipment, and there are also location problems. As described above, many problems remain in the prior art that require technical and economical solutions.

そこで最近は、電力によらないフェロクロムその他のフ
ェロアロイ製造技州として、溶融還元法が注目されるに
至っている。例えば、流動層予備還元炉と竪型溶融還元
炉との結合にかかる装置を用い、粉粒状鉱石から直接フ
ェロアロイを製造する方法がそれである。この既知の方
法は、金属酸化物含有鉱石の予備還元に必要な還元剤及
び熱の供給源として、溶融還元炉の高温排ガスを利用し
て流動層形式により予M還元する方法であり、粉粒状鉱
石を塊成化することなく直接使用できる点で前述の方法
に比べると低コストで溶融金属の製造が可能である。
Therefore, recently, the smelting reduction method has been attracting attention as a technique for producing ferrochrome and other ferroalloys that does not rely on electricity. For example, there is a method for directly producing ferroalloy from powdery ore using an apparatus that combines a fluidized bed pre-reduction furnace and a vertical smelting reduction furnace. This known method is a method for pre-reducing metal oxide-containing ores in a fluidized bed format using high-temperature exhaust gas from a smelting reduction furnace as a source of reducing agent and heat necessary for pre-reduction of metal oxide-containing ores. Since the ore can be used directly without agglomeration, it is possible to produce molten metal at a lower cost than the above-mentioned methods.

上記した既知方法における予備還元炉としての流動層に
必要な主な条件としては、 (1) 必要な還元速度が得られる反応温度維持のため
の熱供給が容易なこと、 (2) 局部過熱や高温域での予備還元鉱石の粘着によ
って焼結が起り流動化が阻害されるようなことがないこ
と、 (3) 均一かつ安定な流動化硯象が得られること、 (4) 短い滞留時間でも必要な還元率が得られるごと
く流動層を多段化する)、 (5) 粒子の流動層からの飛び出しによるダスト発生
が少ないこと、 などがある。
The main conditions necessary for the fluidized bed as a pre-reduction furnace in the above-mentioned known method are (1) easy heat supply to maintain the reaction temperature at which the required reduction rate can be obtained, (2) local overheating and (3) A uniform and stable fluidization pattern can be obtained; (4) Even with a short residence time (5) There is less dust generation due to particles flying out of the fluidized bed.

ところが、こうした各種の条件というのは、一般的に言
って予備還元に必要な流動層の温度が高いほど、その維
持が難しく、しかも溶融還元炉から発生する流動化ガス
中に多量のダストが含まれると、その操業法はさらに、
難しさを増大させるので、各種の新しい方法や装置の開
発が必要となる。
However, generally speaking, the higher the temperature of the fluidized bed required for pre-reduction, the more difficult it is to maintain these various conditions, and moreover, the fluidized gas generated from the smelting reduction furnace contains a large amount of dust. The operating method is further
This increases the difficulty and requires the development of various new methods and devices.

第1図に、流動層による粉粒状鉱石予備還元用の従来装
置を示す。予備還元炉1はたて型で、そのWI部に粉粒
状鉱石原料供給口4を具えており、ここには鉱石ホッパ
ー7からの鉱石を炉内に供給するための供給装置6が設
置しである。また、鉱石を滞留させるために炉内に設置
したガス分散板(火格子)3下に当る炉下部には、高温
の還元ガス導入口8が開口させである。上記還元ガスと
しては、加熱炉、還元ガス発生炉あるいは溶融還元炉か
ら発生した高温の排ガスを使い、還元剤ならびに流動化
ガスとする。この還元ガスを炉内に導入することにより
、ガス分散板3上の粉粒状鉱石は流動化して、流動層2
を形成し流動還元ができる。なお、図示の9は還元剤と
してメタンなどの炭化水素含有ガスを供給する還元剤供
給口である。
FIG. 1 shows a conventional apparatus for preliminary reduction of granular ore using a fluidized bed. The pre-reduction furnace 1 is of a vertical type, and has a powdery ore raw material supply port 4 in its WI section, and a supply device 6 for supplying ore from an ore hopper 7 into the furnace is installed here. be. Further, a high temperature reducing gas inlet 8 is opened in the lower part of the furnace under a gas distribution plate (grate) 3 installed in the furnace to retain ore. As the reducing gas, high-temperature exhaust gas generated from a heating furnace, a reducing gas generating furnace, or a melting reduction furnace is used as a reducing agent and a fluidizing gas. By introducing this reducing gas into the furnace, the powdery ore on the gas distribution plate 3 is fluidized and the fluidized bed 2
is formed and fluid reduction is possible. Note that the illustrated reference numeral 9 is a reducing agent supply port that supplies a hydrocarbon-containing gas such as methane as a reducing agent.

また、図示の10は排ガスの排出口で、ここを通じて排
出される流動層2からの排出カス中には、ダストを多口
に含有するのでサイクロン11で除塵する。一方、予備
還元生成物は、排出管5より排出され、次工程の溶融還
元炉などへ移送される。
Further, reference numeral 10 in the figure is an exhaust gas exhaust port, and since the waste from the fluidized bed 2 discharged through this port contains a large amount of dust, the dust is removed by a cyclone 11. On the other hand, the preliminary reduction product is discharged from the discharge pipe 5 and transferred to the next step, such as a smelting reduction furnace.

一般に、流動層での予備還元温度は、鉱石の種類や銘柄
で異なり、鉄鉱石では、600〜900℃位、クロム鉱
石では950〜1100℃位であり、還元鉱石の粘着性
によって流動化が阻害される焼結限界温度としては、鉄
鉱石では1000〜1100℃位、クロム鉱石では12
50〜1350℃位である。
Generally, the preliminary reduction temperature in a fluidized bed varies depending on the type and brand of ore, and is approximately 600 to 900 degrees Celsius for iron ore and 950 to 1100 degrees Celsius for chrome ore, and fluidization is inhibited by the stickiness of the reduced ore. The sintering limit temperature for iron ore is about 1000 to 1100℃, and for chromium ore it is about 120℃.
The temperature is about 50-1350°C.

ところで、従来の予備還元処理にあっては、特にM還元
性のクロム鉱石等の場合予備還元に必要な還元温度を、
流動化ガスとして導入する流動化還元ガスの顕然のみに
よって維持しようとすると、極めて高温の流動化還元ガ
スの導入が必要となり、そのために該還元ガスの温度が
上記焼結限界温度を越えてしまい、還元ガス導入口8お
よびガス分散板3の近辺では、粉粒状鉱石がしばしば焼
結限界温度以上に過熱されるので、焼結塊や付着物の成
長があったりしてガス分散板3が目づまりしたり、流動
化反応が阻害されるという欠点が見られた。
By the way, in the conventional pre-reduction treatment, the reduction temperature required for the pre-reduction, especially for M-reducible chromium ore, etc.
If maintenance is attempted only by the presence of a fluidizing reducing gas introduced as a fluidizing gas, it will be necessary to introduce an extremely high temperature fluidizing reducing gas, which will cause the temperature of the reducing gas to exceed the above-mentioned sintering limit temperature. In the vicinity of the reducing gas inlet 8 and the gas distribution plate 3, powdery ore is often heated to a temperature higher than the sintering limit temperature, so sintered lumps and deposits may grow, causing the gas distribution plate 3 to become obstructed. Disadvantages such as clogging and inhibition of fluidization reaction were observed.

上述したように、フェロクロム製造時のクロム鉱石予備
還元のように、どうしても高温の流動化還元ガスの利用
が避けられないような炉の場合、均一なガス分散を達成
して安定した流動化を起させるガス分散板機能の開発が
必要であり、本発明は正にそうした要請に応えられるも
のとして創案しIC予備還元炉について提案するもので
ある。その要旨とするところは、 炉内の流動化還元ガス導入部に、大きな通行を有する多
孔状のガス分散板を設置し、そのガス分散板の上に、少
なくとも最下層部には上記通孔よりもさらに大きい粒径
にした粗粒耐火材を置き、そして少なくとも最上層には
粉粒状鉱石原料が流動化開始速度に達してもなお流動化
しない程度の大きさに調整された小粒耐火材が置かれる
粒状耐火材堆積層からなるガス整流層を形成した点の構
成にある。以下にその構成の詳細を説明する。
As mentioned above, in the case of furnaces where the use of high-temperature fluidizing reducing gas is unavoidable, such as the preliminary reduction of chromium ore during the production of ferrochrome, it is necessary to achieve uniform gas dispersion and cause stable fluidization. It is necessary to develop a gas dispersion plate function to make the gas dispersion possible, and the present invention proposes an IC pre-reducing furnace as a device that can meet such a demand. The gist of this is that a porous gas distribution plate with large passages is installed in the fluidized reducing gas introduction section in the furnace, and on top of the gas distribution plate, at least the bottom layer is A coarse refractory material with a larger particle size is placed, and a small refractory material adjusted to a size that does not fluidize even when the powdery ore raw material reaches the fluidization starting speed is placed at least in the top layer. The structure consists of a gas rectifying layer formed of a layer of granular refractory material. The details of the configuration will be explained below.

要するに本発明の流動層予備還元炉は、還元ガス導入口
8部に、第1図に示すような従来のガス分散板3とは異
なり、該カス分散板に設けた通孔3aを、少なくとも該
高温還元ガスが冷却されて析出する凝縮物、あるいはガ
ス中含有のダスト等によって、簡単に目詰りを起さない
程度に大きな孔径(d )にしだ通孔3aを設けた点に
第1の特色がある。
In short, in the fluidized bed pre-reduction furnace of the present invention, unlike the conventional gas distribution plate 3 as shown in FIG. The first feature is that the through hole 3a is provided with a diameter (d) large enough to prevent clogging due to condensate deposited when the high temperature reducing gas is cooled, or dust contained in the gas. There is.

第2に、通孔3aを大きくすると、例えば還元ガスの導
入を中止したような場合に、粉粒状鉱石原料が該通孔3
aを通して落下することになる。
Second, if the through hole 3a is enlarged, for example, when the introduction of the reducing gas is stopped, the powdery ore raw material will flow through the through hole 3.
It will fall through a.

そこで、本発明では粒状耐火材堆積層よりなるガス整流
層12を、上記ガス分散板3′の上に形成することによ
り、原料の落下防止と炉内全体への均一なガス分散とを
図るようにした点に特色がある。
Therefore, in the present invention, a gas rectifying layer 12 made of a granular refractory material deposited layer is formed on the gas distribution plate 3' to prevent the raw materials from falling and to uniformly disperse the gas throughout the furnace. It is distinctive in that it has been

上記ガス整流層12は、ガス分散板3′に接する最下層
の部分に、上記通孔3aよりも大きな粒径をもつ略球状
の粗粒耐火材13を敷きつめ、上にいくに従い次第に粒
径の小さいものにする。そして、少なくとも最上層にあ
っては、その最小粒径が流動化開始速度(流動化を開始
するときの空塔速度)に達してもなおそのもの自身流動
化しない大きさの小粒耐火材14を置き積層させる。
The gas rectifying layer 12 is made of roughly spherical coarse refractory material 13 having a particle size larger than the through holes 3a, which is spread over the bottom layer in contact with the gas distribution plate 3', and gradually increases in particle size as it goes up. Make it small. At least in the uppermost layer, small-grain refractory material 14 is placed so that it does not itself become fluid even when its minimum particle size reaches the fluidization start speed (superficial velocity when fluidization starts). Laminate.

本発明者らの本発明にかかる実験によって知見したガス
分散板3′の通孔3a径は、略3 mmφよりも太き(
プれば、ダストの詰りかなくなることが判った。このこ
とから、上記粗粒耐火材13の粒径は3 +I1mφ以
上が要件となる。
The diameter of the through hole 3a of the gas distribution plate 3', which was found by the inventors through experiments related to the present invention, is larger than approximately 3 mmφ (
I found out that if I do that, the dust blockage will go away. From this, the grain size of the coarse refractory material 13 is required to be 3 + I1 mφ or more.

また、該ガス整流層12の層高Hと上記通孔3a間間隔
℃との関係は、H>℃にすると均一なガス流分布が得ら
れることが判った。
Further, it has been found that a uniform gas flow distribution can be obtained when the relationship between the layer height H of the gas rectifying layer 12 and the interval C between the through holes 3a is set to H>C.

上述のような整流層12を設けることによって、原料鉱
石は、たとえ前記通孔3aが大きくても落下することは
なく、また導入する流動化還元ガス中に含まれるダスト
や凝縮物は、通孔3aを大きくしたことによりここを通
過し、上記の小粒耐火材14の層で捕集される。一方該
小粒耐火材14に付着したそのダストは、当該小粒耐火
材14の流動・回転により離脱するからそこに堆積する
ことなく、従ってカス分散通路を塞ぐようなことは全く
起らない。
By providing the above-mentioned straightening layer 12, the raw material ore will not fall even if the through hole 3a is large, and the dust and condensate contained in the fluidized reducing gas introduced will be removed through the through hole. By increasing the size of 3a, the particles pass through this area and are collected by the layer of the small refractory material 14 mentioned above. On the other hand, since the dust adhering to the small refractory material 14 is separated by the flow and rotation of the small refractory material 14, it does not accumulate there, and therefore does not block the waste dispersion path at all.

なお、ガス分散板3′の形状に関しては、ガス整流層1
2を載せることもあって強度的に不足するような場合、
第2図に示すようなアーチ状にすることもよく、一般に
は第3図に示すような平板状のものにするのが経済的で
ある。
Regarding the shape of the gas distribution plate 3', the gas rectifying layer 1
2 may be added, and if the strength is insufficient,
It may be formed into an arch shape as shown in FIG. 2, but it is generally economical to form it into a flat plate shape as shown in FIG.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

予備還元炉 流動層部内径     1.2m 炉底部外筒内径    0.5m ガス分散板の材質   アルミナ系れんが分散板通孔径
(d)   5部m 分散板通孔間隔(β) 10肝 整流層層高(H)     50咋 整流層の粗・小粒耐火材 アルミナボール粗粒耐火材粒
径     81川 小粒耐火材粒径     1 mv 上記予備還元炉としての試験炉を用いて、以下に示す条
件で粉状クロム鉱石の予備還元を行なった。この試験に
おいて本発明ガス整流層による導入ガスの分散化手段を
設けた予備還元炉を用いたことによって、予備還元炉へ
の高温ガスの導入を従来炉において生ずるような問題を
起こすことなしに行うことができ、よって流動層の形成
を良好に行うことができた。
Prereduction furnace fluidized bed inner diameter 1.2 m Furnace bottom outer cylinder inner diameter 0.5 m Material of gas distribution plate Alumina brick Dispersion plate hole diameter (d) 5 parts m Dispersion plate hole interval (β) 10 liver straightening layer height (H) Coarse/small refractory material in 50 mm rectified bed Alumina balls Coarse refractory material particle size 81 River Small refractory material particle size 1 mv Powdered chromium was prepared under the following conditions using the test furnace as the preliminary reduction furnace. Performed preliminary reduction of ore. In this test, by using a pre-reduction furnace equipped with a means for dispersing the introduced gas using the gas straightening layer of the present invention, high-temperature gas could be introduced into the pre-reduction furnace without causing problems that would occur in conventional furnaces. Therefore, the fluidized bed could be formed satisfactorily.

1)クロム鉱石:フィリピン産クロム鉱石組成:Cr2
O349,2% Fe○     23.8% 粒径:28〜48M、7.9% 48〜100M  86.7% 100M以下  5.4% 〈Mはメツシュである) 2)予備還元炉操業データ クロム鉱石供給Mk   :180kg/hr高温ガス
としての 溶融還元炉排ガスffi : 61 ONm”/hrガ
ス温度      :1370℃ 予備還元温度    :1020℃ クロム鉱石予備還元率=35% 上述の本発し実施例に対し、第1図に示すような従来予
備還元炉にあっては、ガス分散板が高温の流動化還元ガ
スによって熱変形して長時間の運転が不可能であった。
1) Chromium ore: Chromium ore composition from the Philippines: Cr2
O349.2% Fe○ 23.8% Particle size: 28-48M, 7.9% 48-100M 86.7% 100M or less 5.4% (M is mesh) 2) Preliminary reduction furnace operation data Chrome ore Supply Mk: 180 kg/hr Melting reduction furnace exhaust gas ffi as high-temperature gas: 61 ONm”/hr Gas temperature: 1370°C Pre-reduction temperature: 1020°C Pre-reduction rate of chromium ore = 35% In a conventional preliminary reduction furnace as shown in FIG. 1, the gas distribution plate was thermally deformed by the high-temperature fluidized reducing gas, making it impossible to operate for a long time.

また、クロム鉱石の予備還元率も15%と低かった。Furthermore, the preliminary reduction rate of chrome ore was as low as 15%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来予備還元炉の路線図、 第2図および第3図は、いずれも本発明予備還元炉の炉
底部分を示す部分断面図である。 1・・・予備還元炉   2・・・流動層3・・・ガス
分散板   3a・・・通孔4・・・粉粒状鉱石供給口 5・・・予備還元鉱石排出口 6・・・供給装置くバルブ) 7・・・鉱石ホッパー  8・・・流動化還元ガス導入
口9・・・炭化水素含有ガス供給口 10・・・排ガス排出口  11・・・サイクロン12
・・・ガス整流層   13・・・粗粒耐火材14・・
・小粒耐火材 特許出願人 川崎製鐵株式会社 第普図 窮1頁の続き 0発 明 者 藤田勉 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 0発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内
FIG. 1 is a route diagram of a conventional pre-reducing furnace, and FIGS. 2 and 3 are partial sectional views showing the bottom portion of the pre-reducing furnace of the present invention. 1... Pre-reduction furnace 2... Fluidized bed 3... Gas distribution plate 3a... Through hole 4... Powdered ore supply port 5... Pre-reduced ore discharge port 6... Supply device 7...Ore hopper 8...Fluidization reducing gas inlet 9...Hydrocarbon-containing gas supply port 10...Exhaust gas outlet 11...Cyclone 12
...Gas rectifying layer 13...Coarse grain refractory material 14...
・Small refractory material patent applicant: Kawasaki Steel Co., Ltd. 1st page continued 0 Inventor: Tsutomu Fujita 1 Kawasaki-cho, Chiba City Kawasaki Steel Co., Ltd., Chiba Works 0 Inventor: Shunji Hamada 1, Kawasaki-cho, Chiba City Address Kawasaki Steel Corporation Chiba Works

Claims (1)

【特許請求の範囲】 1、炉壁部に流動化還元ガスの導入口を設け、炉側壁に
は流動層域に臨んで原料供給口を、またかかる流動層域
には予備還元生成物の排出口を開口させた構成にかかる
流動層予備還元炉において、 炉内の流動化還元ガス導入部、に大きな通孔を有する多
孔状のカス分散板を設置し、そのガス分散板の上に、少
なくとも最下層部には上記通孔よりもさらに大きい粒径
にした粗粒耐火材を置き、そして少なくとも最上層には
粉粒状鉱石原料が流動化開始速度に達してもなお流動化
しない程度の大きさに調整された小粒耐火材が首かれる
粒状耐火材堆積層からなるガス整流層を形成したことを
特徴とする流動層予備還元炉。
[Claims] 1. An inlet for the fluidized reducing gas is provided in the furnace wall, a raw material supply port is provided in the furnace side wall facing the fluidized bed area, and a preliminary reduction product discharge port is provided in the fluidized bed area. In a fluidized bed pre-reduction furnace configured with an open outlet, a porous waste dispersion plate having large through holes is installed in the fluidized reducing gas inlet in the furnace, and on top of the gas dispersion plate, at least A coarse refractory material with a particle size larger than that of the above-mentioned through holes is placed in the bottom layer, and at least in the top layer, the size is such that the powdery ore raw material does not become fluidized even when it reaches the fluidization start speed. 1. A fluidized bed pre-reduction furnace characterized in that a gas rectifying layer is formed of a layer of granular refractory material piled up with small granular refractory material adjusted to the desired temperature.
JP21139682A 1982-12-03 1982-12-03 Fluidized bed type preliminary reducing furnace Pending JPS59104410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21139682A JPS59104410A (en) 1982-12-03 1982-12-03 Fluidized bed type preliminary reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21139682A JPS59104410A (en) 1982-12-03 1982-12-03 Fluidized bed type preliminary reducing furnace

Publications (1)

Publication Number Publication Date
JPS59104410A true JPS59104410A (en) 1984-06-16

Family

ID=16605272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21139682A Pending JPS59104410A (en) 1982-12-03 1982-12-03 Fluidized bed type preliminary reducing furnace

Country Status (1)

Country Link
JP (1) JPS59104410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149062A (en) * 1990-02-27 1992-09-22 Nkk Corporation Prereduction furnace of a smelting reduction facility of iron ore
US5149487A (en) * 1990-02-27 1992-09-22 Nkk Corporation Prereduction furnace of a smelting reduction facility of iron ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149062A (en) * 1990-02-27 1992-09-22 Nkk Corporation Prereduction furnace of a smelting reduction facility of iron ore
US5149487A (en) * 1990-02-27 1992-09-22 Nkk Corporation Prereduction furnace of a smelting reduction facility of iron ore

Similar Documents

Publication Publication Date Title
CA2184008C (en) Fluidized bed type reduction apparatus for iron ores and method for reducing iron ores using the apparatus
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
US9512496B2 (en) Method and device for introducing fine particle-shaped material into the fluidised bed of a fluidised bed reduction unit
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JP2608736B2 (en) Method of charging exhaust gas dust in smelting reduction furnace
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPS6044366B2 (en) How to operate a fluidized bed pre-reduction furnace
TW479073B (en) Process for producing molten pig iron
JPS59176585A (en) Fluidized bed spare reducing furnce
JPS59109770A (en) Method of operating fluidized-bed spare reducing furnace
JPS59176584A (en) Disperser for gas of fluidized bed spare reducing furnace
JPS59104078A (en) Fluidized bed spare reducing furnace with internal
JPS59140313A (en) Transporting equipment of granular ore in melting and reducing apparatus
JPH0639608B2 (en) Iron ore preheating / reducing device
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPH03183715A (en) Fluidized bed pre-reduction method for powdery ore
JPS61284510A (en) Production of molten metal
JPH01100227A (en) Method for reducing fluidized bed of fine powdered ore
JP2502976B2 (en) Iron ore preliminary reduction device
JPH046778B2 (en)
JPH0246643B2 (en)
JPH03138309A (en) Apparatus for reducing ore