JPS5910412A - Method for cold rolling - Google Patents

Method for cold rolling

Info

Publication number
JPS5910412A
JPS5910412A JP11956082A JP11956082A JPS5910412A JP S5910412 A JPS5910412 A JP S5910412A JP 11956082 A JP11956082 A JP 11956082A JP 11956082 A JP11956082 A JP 11956082A JP S5910412 A JPS5910412 A JP S5910412A
Authority
JP
Japan
Prior art keywords
emulsion
particle size
rolling
oil
oil particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11956082A
Other languages
Japanese (ja)
Other versions
JPS6260165B2 (en
Inventor
Shuichi Iwato
岩藤 秀一
Hiroshi Kuwamoto
鍬本 紘
Hiroshi Nishimura
啓 西村
Takeshi Shiyariyou
社領 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11956082A priority Critical patent/JPS5910412A/en
Publication of JPS5910412A publication Critical patent/JPS5910412A/en
Publication of JPS6260165B2 publication Critical patent/JPS6260165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a product of high quality stably and highly efficiently, by using an emulsion containing >=1/2 of its oil content consisting of the prescribed particle size, in rolling a material. CONSTITUTION:An emulsion is prepared, in which >=50% of the oil content is formed into oil particles having 6-15mu average particle size. The emulsion is used as a rolling lubricant in rolling steel plates. In this way, the rolling is operated stably, and a high quality product is manufactured highly efficiently.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は一定範囲の粒径分布を有するクーラントエマ
ルジョンを用いることを特徴とTる冷間圧延方法に関す
るものである。 従来冷間圧延(二用いられる潤滑油はCJ/vv(Mv
水)型エマルジョンの形でロールバイ)−二供給されて
いるが、エマルジョンの供給系内での安定性と、#4滑
性能を出Tためのプレートアウト(離水展看)性とは全
く逆の方向である0丁なわち、安定なエマルジョンを得
るためにはエマルジョン中の油粒径を細かくし乳化を深
くする必要があるが、こうした場合、水と油との親和力
が強くなり板へのプレートアウト性が損なわれるので潤
滑性能が低下し、ロール疵の発生。 能率の低下等を余儀なくされる。又逆
The present invention relates to a cold rolling method characterized by using a coolant emulsion having a particle size distribution within a certain range. Conventional cold rolling (2) The lubricating oil used is CJ/vv (Mv
Although it is supplied in the form of a roll-by (water) type emulsion, the stability within the emulsion supply system and the plate-out (water syneresis) property to achieve #4 slip performance are completely opposite. In other words, in order to obtain a stable emulsion, it is necessary to reduce the oil particle size in the emulsion and deepen the emulsification, but in this case, the affinity between water and oil becomes strong and the plate Since the outability is impaired, the lubrication performance decreases and roll flaws occur. This will inevitably lead to a decrease in efficiency. And vice versa

【二曲粒径を太き
(すれはプレートアウト性は同上するが。 系内で曲が浮上分離しゃすくなるため、潤滑5−ムラが
出易く、チャタリングぶ不安定ヌリップg二よる板犀変
動が生じるので、原単位が縄くなるという問題が起る。 これらの現象は、冷間匝延油のシステムでは一般に経験
されることであるが、直接方式よりも、供給系統が大規
模となる循環方式の万が、この傾向は顕著である〇そこ
で、この相反する現ψをいが≦二つよ(適正範囲Cニコ
ントロールするかが、安定で、高能率に、商品寅な製品
を生産できるかを左右することl二なる。 従来、クーラントエマルジョンの乳化は界面活性剤の瘉
加2機械的攪拌等によって行なわれているが、これまで
は前述のごときエマルジョンの潤滑性と安定性との相反
Tる2つの性貿ン満足するための定量的な指標はなく、
小に経験的に乳化の状態を目視又は何らかの粒径測定装
置で測定して操業の目安としていた。また従来の乳化剤
である界面活性剤や1機械的な攪拌だけでは2第】図5
−ポ↑θ11<、油粒子粒径の分布が幅広(、ピークも
弱いため定量的な指標を得るのが困難であることや、温
度の変化、経時変化による影響が大きいことが、更ご二
問題解決を困難にしていた。 そこでこQ〕相反する現象を適正範囲にコントロールす
るためにtま、エマ、ルジョンを形成している油粒子の
粒径分布を一定の範囲に収めること及び機械攪拌の大小
や経時変化等の外乱の影響を受けI;(り且つ油粒子の
粒径?コントロールできろ乳化分散剤が必要となる。本
発明者らは、研究σ)結果、上記の緒特性を充足する乳
化分散剤を開発てることに成功した。 この発明は、上記のような実情直−かんがみてなされた
もす〕で、その目的はエマルジョンを形成する油粒子の
粒径分布が一定の範囲内に収まるエマルジョンを用いて
圧延することC−より。 高能率、高品質で安定した操業のできる冷開IF延方法
配提供しようとするものである◎この発明の冷間圧延方
法の特徴は、圧延潤滑剤としてのエマルジョン中の油分
の50%以上が平均粒径6〜15μの直径なもつ油粒子
で形成されゐ油粒子の分布形態を有Tるエマルジョンを
用いて圧姑することである。 以丁エマルジョン中の油粒子の適正な平均径及び分布形
態を求めるため行なった各種の実験結果について説明す
る。第2図は本発明者らが開発した乳化分散剤を用いた
エマルジョン中の油粒子の分布状態の一例を示Tもので
あり、第1図C二本した従来のものに比べ、極めてシャ
ープな粒度分布となっており、f:た循環供給系統内の
各部に8いて安定した分布形態となっている。第3図は
本発明のエマルジョンA(平均粒径15μ)及び1」(
平均粒径9μ)並び(二従来のエマルジョンC(平均粒
径7μ)を用いて。 その敲;すと付右i′との関係を調査した結果を不すも
のである0従来のエマルジョンCの場合。 第1図(二示したようC1粒径分布の幅が広くなりでい
るθ〕で、一定濃度のエマルジョンをスプレーした場合
にも付右館のバラツキが大きくなりて、いる。これC二
対し1本発明のエマルジョンA、Bでは、エマルジョン
のプレートアウト性が安定しており、濃度と付@甑との
相関性、再環性が強(、潤滑性を濃度でコントロールす
ることかできる。 次C二、平均粒径と潤滑性能としての単位幅当りの圧下
刃との関係を第4図C示すO平均粒径が6μ未満になる
と急激を二潤滑性能が低くなり圧下力が上昇している。 又逆に15μを超えると過潤滑となり圧=F力が低下す
る他チャタリン■ グAS不安定スリップが発生している。これらテークと
そのときの被圧延材の変形抵抗を用いて)万ン・カルマ
ンの微分方程式からロールノ(イト内の平均厚」祭係数
を求めると第5図(二示す如くなる0平均粒径6μ未満
で急激C二面くなり。 また15μな超えると不安定スリップ舶載に入つている
0木発明者らの経験と解析から、摩擦係数が0.01以
下程度が不安定スリップ領域である。 また、上記C二より求められた潤滑性能の良好な平均粒
子径6〜15μのエマルジョン油粒の全体C1占める割
合と付右礒υ〕バラツキを調査して第7図C二示り結果
を得た。これより、エマルジョン中の油分の50%以上
が平均粒径6〜15μの直径をもった油粒子で形成され
る油粒子の分布形態を有するエマルジョンを用いないと
、付看量のバラツキが大きくなり安定した付右量を得ら
れないことが明らかとなった◎また粒径C−大小がある
と、微視的な潤滑性能でみた場合1局部的C二潤滑の優
れた部分と、潤滑の不足した部分ができ不安定スリップ
を起しや丁いの【二加えて、潤滑不足の部分ではヒート
スクラッチを発生しやすく、安定した操業乞行なうこと
ができない0 この発明tま上記の各種実験結果を総合的C二検討して
得られたもので、圧延潤滑剤としての工:、’yノy’
ジョン中の油分の50%以上が平均粒径6−15μの直
径をもつ油粒子で形成される油粒子の分布形態を有する
エマルジョンを用いて圧延することによ0.高能率で高
品質の製品を安定し7た汗延操業により生産下ることが
できる。 4、図面ノMi’l f(’−f(Ah’、門弟]l\
1は従来のエマルジョン中の油粒子の粒径分布なボT説
明図、第2図は、この発明のエマルジョン中の油粒子の
粒径分布を示す説明図、第3図【・まエマルジョン濃度
と付右量との関係を示す説明図、第4図及び第5図はエ
マルジョン中の油粒子の平均粒径と単位幅当りの圧下刃
及びji7擦係数との関係を示T説明図、第6図は粒子
径6〜15μのエマルジョン油粒の全体C1占める割合
と付右量θ〕バラツキどの関係を示T説明図である。 出願人代理人弁理土鈴江 武彦 67一 (、”/[)順40− (z”15)↓X41、・C6妻賢聾−違圭が11−一 =68−
[Increasing the curved grain size (although the plate-out property is the same as above for sliding. Because the grains are less likely to float and separate in the system, uneven lubrication is likely to occur, chattering and unstable nullip g2). occurs, resulting in the problem that the unit consumption becomes variable.These phenomena are commonly experienced in cold rolled oil systems, but the supply system is larger in scale than in the direct system. Regardless of the circulation method, this tendency is remarkable. Therefore, if we control this contradictory current ψ to ≦2 (appropriate range C), we can produce products that are stable, highly efficient, and of high quality. Traditionally, emulsification of coolant emulsions has been carried out by adding surfactants, mechanical stirring, etc., but up until now, the emulsions had a conflicting effect on lubricity and stability, as mentioned above. There are no quantitative indicators for satisfying the two sex trades.
The state of emulsification was measured visually or using some kind of particle size measuring device empirically and used as a guideline for operation. In addition, surfactants, which are conventional emulsifiers, and mechanical stirring alone cannot be used.
−Po↑θ11<, the distribution of oil particle size is wide (and the peak is weak, so it is difficult to obtain quantitative indicators, and it is also important to note that changes in temperature and changes over time have a large effect. This made it difficult to solve the problem. Therefore, in order to control the conflicting phenomena within an appropriate range, it was necessary to keep the particle size distribution of the oil particles forming the emulsion within a certain range and mechanical agitation. An emulsifying and dispersing agent that can control the particle size of oil particles is required.As a result of our research, we found that the above-mentioned characteristics We have succeeded in developing an emulsifying and dispersing agent that satisfies the needs of the emulsifier.This invention was made in view of the above-mentioned actual situation, and its purpose is to improve the particle size distribution of oil particles forming an emulsion within a certain range. From C-, the cold rolling method of the present invention is characterized by the following: The method is to use an emulsion as a rolling lubricant in which 50% or more of the oil content in the emulsion is formed of oil particles having an average particle diameter of 6 to 15 μm, and the emulsion has a distribution form of oil particles. We will explain the results of various experiments conducted to determine the appropriate average diameter and distribution form of oil particles in Itcho emulsion. Figure 2 shows oil particles in emulsion using the emulsifying dispersant developed by the present inventors. Figure 1 shows an example of the distribution state of the particle size distribution.Compared to the conventional particle size distribution with two C, it has an extremely sharp particle size distribution, and the particle size distribution is stable in each part of the circulating supply system. Fig. 3 shows emulsions A (average particle size 15μ) and 1'' (average particle size) of the present invention.
(2) Conventional emulsion C (average particle size 7μ) was used. In the case of Figure 1 (θ where the width of the C1 particle size distribution becomes wider as shown in Figure 2), even when an emulsion of a constant concentration is sprayed, the variation in the diameter increases. On the other hand, in emulsions A and B of the present invention, the plate-out properties of the emulsions are stable, there is a strong correlation between concentration and heating, and the recyclability is strong (and the lubricity can be controlled by concentration. Figure 4 shows the relationship between the average particle diameter and the rolling blade per unit width as a function of lubrication performance. When the average particle diameter becomes less than 6μ, the lubrication performance decreases and the rolling force increases. On the other hand, if it exceeds 15μ, overlubrication occurs, causing the pressure = F force to drop and chattering AS unstable slip to occur. Calculating the Rollno (average thickness within the grain) coefficient from Karman's differential equation, it becomes as shown in Figure 5 (2).If the zero average grain diameter is less than 6μ, it becomes C2-faced sharply.If it exceeds 15μ, unstable slip occurs. Based on the experience and analysis of the inventors of Oki, which has been installed on ships, a friction coefficient of about 0.01 or less is an unstable slip region.In addition, the average particle size with good lubrication performance determined from C2 above We investigated the proportion of emulsion oil particles of 6 to 15μ in the total C1 and the variation in their diameter, and obtained the results shown in Figure 7C.From this, it is clear that more than 50% of the oil in the emulsion has an average particle size. It has become clear that unless an emulsion with a distribution form of oil particles formed of oil particles with a diameter of 6 to 15 μm is used, the variation in the amount of adhesion becomes large and it is not possible to obtain a stable amount of adhesion. ◎Also, if the particle size C is large or small, in terms of microscopic lubrication performance, there will be areas with excellent lubrication and areas with insufficient lubrication, causing unstable slipping and In addition, heat scratches are likely to occur in areas with insufficient lubrication, making stable operation impossible. Work as an agent:, 'y-no-y'
By rolling an emulsion having an oil particle distribution form in which 50% or more of the oil content in the emulsion is formed by oil particles having an average particle diameter of 6 to 15 μm. It is possible to produce high-efficiency, high-quality products through stable, continuous operation. 4. Drawing no Mi'l f ('-f (Ah', apprentice) l\
1 is an explanatory diagram showing the particle size distribution of oil particles in the conventional emulsion, FIG. 2 is an explanatory diagram showing the particle size distribution of oil particles in the emulsion of the present invention, and FIG. Figures 4 and 5 are explanatory diagrams showing the relationship with the amount of application, and Figures 4 and 5 are explanatory diagrams showing the relationship between the average particle diameter of oil particles in the emulsion and the rolling blade and friction coefficient per unit width. The figure is an explanatory diagram showing the relationship between the proportion of emulsion oil particles having a particle size of 6 to 15 μm in the total C1 and the variation in the amount of attachment θ. Applicant's attorney Takehiko Suzue 671 (,"/[) order 40- (z"15) ↓

Claims (1)

【特許請求の範囲】[Claims] 圧延潤滑剤としてのエマルジョン中の油分の50%以上
が、平均粒径6〜15μの直径をもつ油粒子で形成され
る油粒子の分布形態を有するエマルジョンを用いて圧延
することを特徴とTる冷間圧延方法◎
Rolling is carried out using an emulsion in which 50% or more of the oil content in the emulsion as a rolling lubricant has an oil particle distribution form in which oil particles have an average particle diameter of 6 to 15 μm. Cold rolling method◎
JP11956082A 1982-07-09 1982-07-09 Method for cold rolling Granted JPS5910412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11956082A JPS5910412A (en) 1982-07-09 1982-07-09 Method for cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11956082A JPS5910412A (en) 1982-07-09 1982-07-09 Method for cold rolling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3200649A Division JPH0783892B2 (en) 1991-08-09 1991-08-09 Cold rolling method

Publications (2)

Publication Number Publication Date
JPS5910412A true JPS5910412A (en) 1984-01-19
JPS6260165B2 JPS6260165B2 (en) 1987-12-15

Family

ID=14764340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11956082A Granted JPS5910412A (en) 1982-07-09 1982-07-09 Method for cold rolling

Country Status (1)

Country Link
JP (1) JPS5910412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186004A (en) * 1984-10-05 1986-05-01 Nippon Steel Corp Skinpass rolling method of stainless steel sheet
EP2429732A1 (en) * 2009-05-08 2012-03-21 Quaker Chemical Corporation Small particle size oil in water lubricant fluid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511935A (en) * 1978-07-10 1980-01-28 Nissan Motor Co Ltd Residual pressure mechanism for master cylinder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511935A (en) * 1978-07-10 1980-01-28 Nissan Motor Co Ltd Residual pressure mechanism for master cylinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186004A (en) * 1984-10-05 1986-05-01 Nippon Steel Corp Skinpass rolling method of stainless steel sheet
EP2429732A1 (en) * 2009-05-08 2012-03-21 Quaker Chemical Corporation Small particle size oil in water lubricant fluid
EP2429732A4 (en) * 2009-05-08 2014-10-15 Quaker Chem Corp Small particle size oil in water lubricant fluid

Also Published As

Publication number Publication date
JPS6260165B2 (en) 1987-12-15

Similar Documents

Publication Publication Date Title
EP1193004B1 (en) Rolling oil supplying method for cold rolling
Saha et al. Influence of plastic strain on friction in sheet metal forming
EP1829625A1 (en) Method for supplying lubricating oil in cold rolling
Chang et al. Lubrication of strip rolling in the low-speed mixed regime
BRPI0614932A2 (en) process for lubricating and cooling roll and metal strip when rolling, especially when cold rolling metal strips
Pal et al. Flow behaviour of oil‐in‐water emulsions
JPH02151309A (en) Method for cooling and lubricating roll and material to be pressed and emulsion circulating device therefor
Shirizly et al. The effect of lubrication on mill loads during hot rolling of low carbon steel strips
Xie et al. Lubrication characterisation analysis of stainless steel foil during micro rolling
Lenard et al. A study of friction during the lubricated cold rolling of an aluminum alloy
JPS5910412A (en) Method for cold rolling
JPH0356277B2 (en)
Dubey et al. A study of lubrication mechanism of oil‐in‐water (O/W) emulsions in steel cold rolling
AU643729B2 (en) The rolling of metal strip
JP2003181517A (en) Cold-rolling method
JPS6049041B2 (en) Rolling lubrication control method in cold rolling
Mazur et al. Lubricant action of emulsions in rolling: theory and practice
JP3402217B2 (en) Cold rolling method
Jung et al. Fuzzy algorithm for calculating roll speed variation based on roll separating force in hot rolling
US3783664A (en) Process for control of lubricants in an aluminium rolling mill
JPH04356315A (en) Cold rolling method
CN109433036A (en) A kind of concentration of emulsion used automatic mixing method
JPS63124B2 (en)
WO1999051369A1 (en) Process for adjusting lubricant oil droplet size in an aluminum rolling mill
JPH09253727A (en) Cold rolling method for metal strip