JPS59104110A - Butt joint reactor - Google Patents

Butt joint reactor

Info

Publication number
JPS59104110A
JPS59104110A JP21335982A JP21335982A JPS59104110A JP S59104110 A JPS59104110 A JP S59104110A JP 21335982 A JP21335982 A JP 21335982A JP 21335982 A JP21335982 A JP 21335982A JP S59104110 A JPS59104110 A JP S59104110A
Authority
JP
Japan
Prior art keywords
core
legs
divided
leg
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21335982A
Other languages
Japanese (ja)
Inventor
「つつみ」 弘喜
Hiroyoshi Tsutsumi
Toru Tonomura
徹 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP21335982A priority Critical patent/JPS59104110A/en
Publication of JPS59104110A publication Critical patent/JPS59104110A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To shorten the average magnetic path length of a butt joint reactor by a method wherein an elliptic core leg is divided into two pieces at the center to form flat horseshoe-shape core legs, and the legs thereof are divided in the axial direction moreover. CONSTITUTION:Loop type laminated cores of two pieces of large and small are pressed from the outsides thereof to be deformed into the elliptic shapes, and then a heat treatment is applied to form elliptic yokes 2, 2' of two groups. Similarly, loop type laminated cores of two pieces of large and small are pressed to be deformed into the elliptic shapes, a heat treatment is applied, and the cores are divided into two parts vertically at the center thereof to form flat horseshoe-shape core legs 3, 3', 3'', 4, 4', 4''. Heat resistingly insulating plates having the prescribed magnetic resistances are inserted in space between the flat horseshoe-shape core legs. The core legs are arranged in series, and the necessary windings 5, 5' are wound around thereon.

Description

【発明の詳細な説明】 に言えば、大小2個の環状成層鉄心を変形熱処理するこ
とにより得られる断面がだ円形状のヨークと、同じく大
小2個の環状成層鉄心を変形熱処理することにより得ら
れる断面がだ円形状の複数個の中央において二分割され
た扁平馬てい形鉄心脚とより成り、この扁平馬てい形鉄
心脚相互間の空隙に所定の磁気抵抗を有する耐熱性絶縁
板を挿入する構成の衝合型リアクトルに関する。
[Detailed Description of the Invention] In other words, a yoke with an elliptical cross section obtained by heat-treating two large and small annular laminated cores, and a yoke obtained by heat-treating two large and small annular laminated cores. A heat-resistant insulating plate having a predetermined magnetic resistance is inserted into the gap between the flat horse-shaped core legs, each of which has an elliptical cross section and is divided into two at the center. This invention relates to a collision type reactor configured to

本発明の衝合型リアクトルの一実施例を示す第1図より
第3図に卦いて、大小2個の環状成層鉄心1,1′はそ
の外部より矢印方向の加圧を受けてだ円形状に変形され
、ついで熱処理されて2絹の同形のだ円形状ヨーク2.
2′となり、同様に大小2個の環状成層鉄心を加圧して
だ円形状に変形し熱処理して得らり、るだ円形鉄心は、
その中央におりて成層に垂直の方向に二分割l−で扁平
用てい形鉄心脚3 、3’、3”、4.4’ 、4“と
なる。扁平用てい形鉄心脚3と同3′と同3“との間お
よび扁平用てい形鉄心脚4と同4′と同4“との間にあ
る空隙には、所定の磁気抵抗を有する耐熱性絶縁板6.
6′がそね、それ挿入される。上記の扁平用てい形鉄心
脚31同3′、同3“および扁平用てい形鉄心脚4.同
4′。
As shown in FIGS. 1 to 3, which show an embodiment of the butting type reactor of the present invention, two large and small annular stratified cores 1 and 1' are pressurized from the outside in the direction of the arrow to form an elliptical shape. and then heat treated to form two identical elliptical yokes of silk.
2', which is obtained by pressurizing two large and small annular laminated iron cores, deforming them into elliptical shapes, and heat-treating them.
At its center, it is divided into two parts l- in the direction perpendicular to the stratification, resulting in flat tubular core legs 3, 3', 3", 4.4', and 4". A heat-resistant material having a predetermined magnetic resistance is provided in the air gap between the flattened rectangular core legs 3 and 3' and 3'' and between the flattened conical core legs 4 and 4' and 4''. Insulating board 6.
6' is inserted. The above-mentioned flat scoop-shaped core legs 31 3' and 3'' and flat scoop-shaped core legs 4 and 4'.

同4“はいずれも直列に配置されてこの鉄心脚には所要
の巻線5.5′かけん装される。
4" are all arranged in series, and the required winding 5.5' is connected to this core leg.

次に、第1図より第3図に示す実施例について、巻線の
電流■とこの巻線のインダクタンスLとの関係を、上記
の空隙のギャップ量L2 および平均磁路長■、B に
関連i〜で説明する。
Next, for the embodiments shown in FIGS. 1 to 3, the relationship between the winding current ■ and the winding inductance L is related to the above-mentioned air gap amount L2 and average magnetic path length ■,B. I will explain in i~.

一般の巻線の端子間に加えられる電圧EXはEX−2π
f L T            ・・・・・・(1
)で表わされ、電圧EX を得るに必要な巻線の巻数N
は 4.44 f t(ms で表わされる。
The voltage EX applied between the terminals of a general winding is EX-2π
f L T ・・・・・・(1
), and the number of turns N of the winding required to obtain the voltage EX is
is expressed in 4.44 f t (ms).

ここに L:巻線のインダクタンス ■=巻線の電流 Bm:鉄心脚の磁束密度 S:鉄心脚の有効断面積      である。Here L: Winding inductance ■=Winding current Bm: Magnetic flux density of core leg S: Effective cross-sectional area of the core leg.

鉄心脚の有効断面積Sは鉄心脚の外径りおよび同内径d
により占積率を0.96係としてS =−(D2− d
2 ) X fl、96二〇25π(I)2−d2)×
096       ・・・・・・(3)で表わされ、
式(2)を式(3)に代入することにより巻線の巻数N
は 1.88T、T で表わされる。
The effective cross-sectional area S of the core leg is the outer diameter and inner diameter d of the core leg.
S=-(D2- d
2) X fl, 962025π(I)2-d2)×
096...Represented by (3),
By substituting equation (2) into equation (3), the number of turns N of the winding can be determined.
is expressed as 1.88T, T.

ここで、所要のりアクタンスを得るに必要とされる鉄心
脚相互間の空隙のギャップ量t2け0.8 f石1 で得られるが、式(5)に式(4)を代入することによ
りギャップ量t2は次のとおり表わされる。
Here, the gap amount of the air gap between the core legs required to obtain the required shear actance can be obtained by t2 x 0.8 f stone1, but by substituting equation (4) into equation (5), the gap can be calculated as follows: The quantity t2 is expressed as follows.

第3図に示す鉄心構成においては、鉄心の平均磁路長L
llは、鉄心脚の高さT、P、同窓幅tおよび鉄心脚の
円弧の中心よりその一辺までの長さAを用いて トナリ、扁平馬てい形鉄心脚の場合の一辺は、環状成層
鉄心脚の場合に比し短く、したがって平均磁路長LBは
扁平用てい形鉄心脚については著しく短縮される。
In the iron core configuration shown in Fig. 3, the average magnetic path length L of the iron core is
ll is calculated by using the heights T and P of the core legs, the window width t, and the length A from the center of the arc of the core leg to one side. The average magnetic path length LB is therefore significantly shortened for the flattened core legs.

次に、IJ/T、n=αとおけば、式(6)および式(
7)より が得られる。
Next, by setting IJ/T and n=α, equation (6) and equation (
7) You can get more strength.

第5図はギャップ量t2 と平均磁路長T、B  との
比αをノぐラメータとする巻線のインダクタンスLと巻
線の電流■との関係を示す曲線群で、鉄心の有効断面積
Sを小さクシ、巻線の巻数Nを大とし、ギャップ量ty
を大きくし、平均磁路長LHを小さくすることにより、
それぞれ比α1.α2.α3の値に従ってインダクタン
スLと電流■とが変化することが実験的に実証されてい
る。
Figure 5 is a group of curves showing the relationship between the winding inductance L and the winding current ■, where the ratio α between the gap amount t2 and the average magnetic path length T, B is the parameter, and the effective cross-sectional area of the iron core is S is a small comb, the number of winding turns N is large, and the gap amount ty
By increasing , and decreasing the average magnetic path length LH,
Ratio α1. α2. It has been experimentally demonstrated that the inductance L and the current ■ change according to the value of α3.

第6図は飽和を無視したときの鉄心脚の磁束密度Bmは
電流■に比例すると仮定した場合のインダクタンスLと
電流Iとの変化を比αl、α2をノぐラメ−夕として示
す曲線群である。
Figure 6 is a group of curves showing the changes in inductance L and current I as ratios αl and α2, assuming that the magnetic flux density Bm of the core leg is proportional to current I when saturation is ignored. be.

第7図は1/α=β とし、  11m==Xとおいた
場合のインダクタンスLと磁束密度11m=Xとの関係
を示す曲線である。第7図においてインダクタンスLが
同一の値を示すBm=Xの範囲は Bm=X”〜「π刀−・・・・・・(9)となり、式(
9)に式(8)を代入することにより弐〇〇がここに、
θは鉄心材質、鉄心構造によって決定される定数(例え
ば3)であって、実験的最大の磁束密度Bm を得るこ
とを実証することにより得られる値である。
FIG. 7 is a curve showing the relationship between inductance L and magnetic flux density 11m=X when 1/α=β and 11m==X. In FIG. 7, the range of Bm=X in which the inductance L has the same value is Bm=X'' to
By substituting formula (8) into 9), 200 is here,
θ is a constant (for example, 3) determined by the core material and core structure, and is a value obtained by experimentally proving that the maximum magnetic flux density Bm is obtained.

このように、本発明の衝合型リアクトルの扁平馬てい形
鉄心脚の構造においては、平均磁路長を著しく短縮し得
るので、ギャップ量を大きくすることにより、両者の比
の選定に従って、巻線の電流の変化する一定の範囲内に
おいて巻線のインダクタンスを一定に維持しうろことが
判明した。
As described above, in the structure of the flat horse-shaped core legs of the abutment type reactor of the present invention, the average magnetic path length can be significantly shortened. It has been found that the inductance of the winding can be kept constant within a certain range of changes in the current in the wire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の衝合型リアクトルの環状成層鉄心の変
形状態を示す説明図である。 第2図(5)および同(B)および第3図へ)および同
(B)は、いずれも、本発明の衝合型リアクトルの一実
施例の、それぞれ、平面図および側面図あるいは正面図
を示す概略図である。 第4図より第7図は、第2図および第3図に示す実施例
のインダクタンスと電流あるいは磁束密度等との関係を
示す特性図である。 図において 2.2’:だ円形状ヨーク 3 、3’、 3” 4 、4/ 、 4/7:扁平馬
てい形鉄心脚5.5’:巻線 6.6’:絶縁板 D=鉄心脚の外径 d:鉄心脚の内径 ■4.:鉄心脚の高さ t:鉄心脚の窓幅 7− A:鉄心脚の円弧の中心よりその一辺寸での長さL:イ
ンダクタンス ■=雷電 流m:磁束密度 X  :  T’(m 特許出願人 トクデン株式会社 ’−51− 8− フtベロ4..ムナ コ tMl;l<P 5
FIG. 1 is an explanatory diagram showing a deformed state of an annular layered core of a butting type reactor according to the present invention. 2(5) and 2(B) and 3) and 3(B) are respectively a plan view and a side view or a front view of an embodiment of the butting type reactor of the present invention. FIG. FIGS. 4 to 7 are characteristic diagrams showing the relationship between inductance and current, magnetic flux density, etc. of the embodiments shown in FIGS. 2 and 3. In the figure, 2.2': Elliptical yoke 3, 3', 3'' 4, 4/, 4/7: Flat horse-shaped core Leg 5.5': Winding 6.6': Insulating plate D = core Outer diameter of the leg d: Inner diameter of the core leg ■4.: Height of the core leg t: Window width of the core leg 7- A: Length from the center of the arc of the core leg to one side dimension L: Inductance ■ = Lightning Current m: Magnetic flux density

Claims (1)

【特許請求の範囲】 (])環状成層鉄心を変形熱処理i〜で得る断面がだ円
形状のヨークと、および、同じく環状成層鉄心を変形熱
処理して得る断面がだ円形状の鉄心脚とより成り、この
だ円形状の鉄心脚が中央において二分割されて扁平馬て
い形鉄心脚を形成し、この扁平馬てい形鉄心脚がさらに
その軸方向に分割されて上記の環状成層鉄心より成る鉄
心脚に比して平均磁路長を短縮するように構成されるこ
とを特徴とする衝合型リアクトル。 (2)  ギャップ量t2  と平均磁路長LRとの比
αが1.58 T、T2X ] Q11 にて表わされるとき、インダクタンスLが比αに従って
変化することを特徴とする特許請求の範囲第1項に記載
される衝合型リアクトル。 にて表わされるとき、鉄心材質あるいは鉄心構造により
決定される定数θが3のときに最大の磁束密度を得るこ
とを特徴とする特許請求の範囲第1項に記載される衝合
型リアクトル。
[Scope of Claims] (]) A yoke with an elliptical cross section obtained by subjecting the annular layered iron core to deformation heat treatment i~, and a core leg having an elliptical cross section obtained by similarly obtaining the deformation heat treatment of the annular layered iron core. This elliptical core leg is divided into two at the center to form a flat horse-shaped core leg, and this flat horse-shaped core leg is further divided in the axial direction to form the core made of the above-mentioned annular stratified core. An abutting reactor characterized by being configured to shorten the average magnetic path length compared to the legs. (2) When the ratio α between the gap amount t2 and the average magnetic path length LR is expressed as 1.58 T, T2X]Q11, the inductance L changes according to the ratio α, Claim 1 Collision type reactor described in Section. 2. The butting type reactor according to claim 1, wherein the maximum magnetic flux density is obtained when a constant θ determined by the core material or core structure is 3.
JP21335982A 1982-12-07 1982-12-07 Butt joint reactor Pending JPS59104110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21335982A JPS59104110A (en) 1982-12-07 1982-12-07 Butt joint reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21335982A JPS59104110A (en) 1982-12-07 1982-12-07 Butt joint reactor

Publications (1)

Publication Number Publication Date
JPS59104110A true JPS59104110A (en) 1984-06-15

Family

ID=16637865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21335982A Pending JPS59104110A (en) 1982-12-07 1982-12-07 Butt joint reactor

Country Status (1)

Country Link
JP (1) JPS59104110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025327A1 (en) * 1998-10-26 2000-05-04 A.T.T. Advanced Transformer Technologies (1998) Ltd. A three-phase transformer
JP2015119089A (en) * 2013-12-19 2015-06-25 スミダコーポレーション株式会社 Coil component, manufacturing method of the same, and coil component set

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025327A1 (en) * 1998-10-26 2000-05-04 A.T.T. Advanced Transformer Technologies (1998) Ltd. A three-phase transformer
US6792666B1 (en) 1998-10-26 2004-09-21 A.T.T Advanced Transformer Technologies (1998) Ltd. Three-phase transformer
US6880228B2 (en) 1998-10-26 2005-04-19 A.T.T. Advanced Transformer Technologies, Ltd. Method for manufacturing a three-phase transformer
JP2015119089A (en) * 2013-12-19 2015-06-25 スミダコーポレーション株式会社 Coil component, manufacturing method of the same, and coil component set

Similar Documents

Publication Publication Date Title
JP6317679B2 (en) Three-phase magnetic core for magnetic induction device and method for manufacturing the same
US2456458A (en) Electromagnetic induction apparatus and method of forming same
US2489977A (en) Laminated core
US2142066A (en) Transformer core structure
JPS59104110A (en) Butt joint reactor
US3328737A (en) Transformer cores and method of making same
US3613229A (en) Method of making transformer cores
US2906977A (en) Means of producing hipersil cores to facilitate mounting thereof
US3032863A (en) Method of constructing stationary induction apparatus
US3404360A (en) Transformer core construction
JPS6136912A (en) Three phase abutting type reactor
JPH0635456Y2 (en) Inverter transformer
JPS6136911A (en) Three phase abutting type leakage transformer
JPS6430816U (en)
JPS6136910A (en) Parallel and side abutting type core
JPS62263618A (en) Electromagnetic equipment
US2995720A (en) Magnetic cores
JPS61179517A (en) Manufacture of stationary induction electric apparatus
CN218826449U (en) Magnetic element winding
DE1233936B (en) Symmetrical magnetic core of the temple type for three-phase transformers
CN211907185U (en) Two-path magnetic integrated inductor with high balance rate
JPH04196205A (en) Converter transformer
US3014268A (en) Bridged-gap inductor
JPS6136913A (en) Three phase and side abutting type core
JPS5858712A (en) Shell type transformer