JPS59104107A - Gas insulated transformer - Google Patents

Gas insulated transformer

Info

Publication number
JPS59104107A
JPS59104107A JP21429082A JP21429082A JPS59104107A JP S59104107 A JPS59104107 A JP S59104107A JP 21429082 A JP21429082 A JP 21429082A JP 21429082 A JP21429082 A JP 21429082A JP S59104107 A JPS59104107 A JP S59104107A
Authority
JP
Japan
Prior art keywords
transformer
radiator
gas
radiators
gas insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21429082A
Other languages
Japanese (ja)
Other versions
JPS646527B2 (en
Inventor
Haruo Ono
春雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21429082A priority Critical patent/JPS59104107A/en
Publication of JPS59104107A publication Critical patent/JPS59104107A/en
Publication of JPS646527B2 publication Critical patent/JPS646527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/20Cooling by special gases or non-ambient air

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Abstract

PURPOSE:To enhance the cooling effect, to reduce noise and to reduce the floor area of a gas insulated transformer by a method wherein the heat transfer rate on the insulating gas side and the air side of the self cooled radiators of the gas insulated transformer is enhanced. CONSTITUTION:Self cooled radiators 80 of the plural pieces are arranged in parallel and facing mutually on both the sides of right and left of an upper part header pipe 12 at the upper part of a transformer tank 10. The upper part connecting pipes 80a and the lower part connecting pipes 80b of the radiators 80 are connected removal freely to an upper part header pipe 12 and lower part header pipes 16, 18 respectively through flanges. A shielding hood 105 is made to hang down on both the sides and in front and in rear of the radiators 80, and the whole of the radiators are covered from the upper part by the hood 105. The hood 105 thereof is connected to the ventilating hole 103 of the partition wall 101 of a transformer chamber 100 through an air duct 106.

Description

【発明の詳細な説明】 この発明は、室内に設置するガス絶縁変圧器の放熱器の
絶縁ガス側および空気側の熱伝達率を増大して冷却効果
を大幅に向上させるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention significantly improves the cooling effect by increasing the heat transfer coefficient on the insulating gas side and the air side of a radiator of a gas insulated transformer installed indoors.

この種の変圧器の冷却は、一般に自冷式放熱器を用いて
騒音発生を防止することが望ましく、また、放熱器は冷
却効果を高くして放熱面積または単位数量を減少し、変
圧器全体の床面、@をできるだけ縮小することが望まれ
る。
For cooling this type of transformer, it is generally desirable to use a self-cooling type radiator to prevent noise generation, and the radiator increases the cooling effect and reduces the heat radiation area or unit quantity, and the entire transformer It is desirable to reduce the floor surface of @ as much as possible.

従来のこの種変圧器の構造および変圧器室の換気設備は
、第1図および第2図に示すとお9である。変圧器タッ
ク1の中に巻線2および鉄心6を収容して絶縁ガス4が
封入されている。符号5は高圧側シツシング、6け低圧
f#!Iブッシングをそれぞれ示し、タンク1の側面壁
からそれぞれ高圧側および低IF側の引出線を外部端子
5a 、 6k)に導出して、該外部端子5a、6aV
C接続したリード線(図示せず〕は、それぞれブスダク
ト7 a、7:b内に配設している。この変圧器タンク
1の側面壁には、自冷式放熱器8が複数個取p付けであ
る。
The conventional structure of this type of transformer and the ventilation equipment of the transformer room are as shown in FIGS. 1 and 2. A transformer tack 1 houses a winding 2 and an iron core 6, and is filled with an insulating gas 4. Code 5 is high pressure side shushing, 6 low pressure f#! I bushings are respectively shown, and the high pressure side and low IF side lead wires are led out from the side wall of the tank 1 to external terminals 5a, 6k), respectively, and the external terminals 5a, 6aV
C-connected lead wires (not shown) are arranged in the bus ducts 7a and 7:b, respectively.A plurality of self-cooling type radiators 8 are installed on the side wall of the transformer tank 1. It is attached.

該放熱器8けJ:部および下部のヘッダに中空パネルを
並列に接続した構造であり(何れも図示せ楓その上部接
続管8aと下部接続管8f)とを変圧器タンク1の側面
壁に連結して、変圧器タンク1と一体となって支持され
ている。
The radiator has a structure in which hollow panels are connected in parallel to the header and the lower header (upper connecting pipe 8a and lower connecting pipe 8f, both shown) are connected to the side wall of the transformer tank 1. They are connected and supported integrally with the transformer tank 1.

上記の変圧器が設置された変圧器室IU[Jには、その
隔壁101に換気扇102を設けた換気口106が開設
されていて、該換気口ID6VCは。
In the transformer room IU[J where the above transformer is installed, a ventilation port 106 equipped with a ventilation fan 102 is provided in the partition wall 101, and the ventilation port ID6VC is.

変圧器全体の床面積と同等の911口部で変圧器の上方
を覆って吊架した遮蔽フード105が通気ダクト106
を介して連結されている。
A ventilation duct 106 has a shielding hood 105 suspended above the transformer at the 911 opening, which is equivalent to the floor area of the entire transformer.
are connected via.

この変圧RHの巻1g2および鉄心6から発生した損失
熱は、タンク1内の絶縁ガス4に伝達され。
The heat loss generated from the winding 1g2 of the transformer RH and the iron core 6 is transferred to the insulating gas 4 in the tank 1.

温度差による自然対流によって上昇した絶縁ガス4が放
熱器8の上部接続管8aから放熱器8内に導かれ、放熱
器8を構成する中空パネルの放熱面(表面〕から変圧器
室1(JO内に熱を放散して冷却されたのち、下部接続
管8j)を経てタンク1に戻る循環作用を繰Q返して変
圧器を冷却する。
The insulating gas 4 that has risen due to natural convection due to the temperature difference is guided into the radiator 8 from the upper connection pipe 8a of the radiator 8, and is then introduced into the transformer chamber 1 (JO After being cooled by dissipating heat into the tank 1, the transformer is cooled by repeating the circulation process Q in which it returns to the tank 1 via the lower connecting pipe 8j).

変圧器室100内の空気は、換気扇102によって矢印
で示すように遮蔽フード105に導入して%遮蔽フード
105から通気ダクト106を経て換気口1(J6に吸
引し、換気口103から室外に放出することにより、変
圧器室100の通風冷却を行なっている。
The air in the transformer room 100 is introduced into the shielding hood 105 by the ventilation fan 102 as shown by the arrow, and is sucked from the shielding hood 105 through the ventilation duct 106 into the ventilation opening 1 (J6), and is discharged to the outside from the ventilation opening 103. By doing so, the transformer room 100 is cooled by ventilation.

しかしながら、従来の迦蔽フード105は、その開口部
の下端縁と放熱器8の土面との間に大きな間隔をおいて
吊架されているため、換気扇102によって趣蔽フード
105に導入される空気のうち、その一部が主として放
熱器8の放熱面の上部と接触して通過するにすぎず、こ
のような通気経路では放熱器8の放熱面における空気側
の熱伝達率の低下を免れず、冷却効果が劣る欠点があっ
たさらに、絶縁ガスを自然対流させる変圧器において、
絶縁ガス75に温度差によって自然対流するときの速度
は、放熱器の中心高さく冷却中心高さ)と巻線および鉄
心の中心高さく発熱中心高さ〕との差に比例し1巻線お
よび鉄心の表面の熱伝達率は、絶縁ガスの自然対流速度
に比例することが知られているが、従来の変圧器の冷却
中心高さと発熱中心高さとの差は小ざなものであるため
、絶縁ガス側の熱伝達率の増大にも限界があり、空気1
則の熱伝達率の低下と相゛まって放熱器の冷却効果はさ
らに低減するという欠点があった。
However, since the conventional ventilation hood 105 is suspended with a large distance between the lower edge of its opening and the soil surface of the radiator 8, the ventilation fan 102 is introduced into the ventilation hood 105. Only a part of the air mainly passes through in contact with the upper part of the heat radiating surface of the radiator 8, and in such a ventilation path, a decrease in the heat transfer coefficient on the air side of the heat radiating surface of the radiator 8 is avoided. In addition, in transformers that allow natural convection of insulating gas,
The speed of natural convection in the insulating gas 75 due to the temperature difference is proportional to the difference between the center height of the radiator (the height of the cooling center) and the center height of the winding and the iron core (the height of the heating center). It is known that the heat transfer coefficient on the surface of the iron core is proportional to the natural convection velocity of the insulating gas, but since the difference between the height of the cooling center and the height of the heating center of a conventional transformer is small, There is a limit to the increase in heat transfer coefficient on the gas side, and air 1
This has the disadvantage that the cooling effect of the radiator is further reduced as a result of the reduction in the heat transfer coefficient.

また、一般に、自冷式ガス絶縁変圧器においては、冷媒
ガスの冷却性能の点から変圧器容量が犬−3〜 きくなると、放i器の設置数を増加するか、あるい1は
冷却扇を附設して風冷式としなければならないが、放熱
器を増設することは変圧器全体が大型となって設置床面
積に制約のある室内には設置できず、風冷式にすること
は騒音防11二上好ましくないという問題があった。
In addition, in general, in self-cooling gas insulated transformers, when the transformer capacity increases from the point of view of the cooling performance of the refrigerant gas to -3 or more, the number of radiators installed must be increased, or the number of cooling fans must be increased. However, adding a radiator would make the entire transformer large, making it impossible to install it indoors where floor space is limited, and using a wind-cooled system would result in noise. There was a problem that defense 11 and 2 were unfavorable.

この発明は、上記の欠点を除去して、ガス絶縁変圧器の
自冷式放熱器の絶縁ガスイ110および空気側における
熱伝達率を高くして冷却効果を大幅(で向上させ、室内
設置用として好適な低騒音、かつ床面積の小さなガス絶
縁変圧器を提供することを目的とする。
This invention eliminates the above-mentioned drawbacks, increases the heat transfer coefficient in the insulating gas I 110 and the air side of the self-cooling radiator of a gas insulated transformer, greatly improves the cooling effect, and makes it suitable for indoor installation. The purpose of the present invention is to provide a gas insulated transformer that has suitable low noise and a small floor space.

以下、この発明の実施例について5図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to five drawings.

第3図は、この発明の実施例を示す縦断面図であシ、変
圧器タンク10の上面壁10aの中央に上昇ガス管71
を鉛直方向に分岐させて複数個設け、該上昇ガス管11
の上端に」二部ヘッダー管12を水平方向にして接続す
る。変圧器タンク10の対向する側面壁10′b、I 
Llcの下端部から下降4− ガス管13.14をm直方向に分岐させて、上記上昇ガ
ス管11と同一の対称位置に複数個設けて、該下降ガス
管16.14の上端にそれぞれ下部ヘッダー管16.1
8を水平方向ICLで接続する。
FIG. 3 is a longitudinal sectional view showing an embodiment of the present invention, in which a rising gas pipe 71 is provided in the center of the upper wall 10a of the transformer tank 10.
A plurality of rising gas pipes 11 are provided by branching in the vertical direction.
A two-part header pipe 12 is connected horizontally to the upper end of the pipe. Opposing side walls 10'b, I of the transformer tank 10
A descending 4-gas pipe 13.14 is branched in the vertical direction from the lower end of the Llc, and a plurality of descending gas pipes 13.14 are provided at the same symmetrical positions as the above-mentioned ascending gas pipe 11. Header pipe 16.1
Connect 8 with horizontal ICL.

上記の上昇ガス管11および下降ガス管16゜14と変
圧器タンク10の上面壁10aおよびIlO面壁IDb
、IDcとの接続、ならびに上昇ガス管11と上部ヘッ
ダー管12との間、および下降ガス管13.14と下部
ヘッダー管16.18との間の接続は、何れも図示しな
いフランジによジ着脱自在となっている。
The above-mentioned ascending gas pipe 11 and descending gas pipe 16° 14, the top wall 10a of the transformer tank 10, and the IIO surface wall IDb
, IDc, and the connections between the ascending gas pipe 11 and the upper header pipe 12, and between the descending gas pipe 13.14 and the lower header pipe 16.18, are all connected using flanges (not shown). It is free.

変圧器タンク10の上面壁10aの上方には、上部ヘッ
ダー晋12の左右両側に複数個の自冷式放熱器80を対
向させて並列に配置して、該放熱器80の上部接続管8
Uaと下部接続管80bとを、それぞれ上部ヘッダー晋
12と下部ヘッダー晋16.18とに図示しない7ラン
ジを介して着脱自在に接続する。
Above the upper wall 10a of the transformer tank 10, a plurality of self-cooling type radiators 80 are arranged in parallel and facing each other on both the left and right sides of the upper header 12.
Ua and the lower connecting pipe 80b are removably connected to the upper header 12 and the lower header 16, 18, respectively, via seven flanges (not shown).

かくして、複数個の放熱器8Dが、変圧器タンク10の
上面壁10aの上方で、上部ヘッダー管12と下部ヘソ
グー管16.18とに支持されて配置されることになる
が、必要に応じて上面壁10aとの間に支持台を載1^
′してもよく、丑た、上昇ガス・を11との間に適宜の
II・1定部材を介在させて、該固定部材を放熱器80
と上昇ガス管11とに溶接して支持してもよい。
In this way, a plurality of radiators 8D are disposed above the top wall 10a of the transformer tank 10, supported by the upper header pipe 12 and the lower header pipe 16.18, but as necessary. Place a support stand between it and the top wall 10a 1^
Alternatively, an appropriate II.1 fixed member may be interposed between the rising gas and the radiator 80, and the fixed member may be connected to the radiator 80.
It may be supported by welding to the rising gas pipe 11.

遮蔽フード105は、前記容赦熱器80の左右両側およ
び前後筒4aの外4111面の下端部近傍1で垂下させ
て各放熱器の外11111面の周囲を包01イシて、放
熱器全体がg蔽フー)” 1 [J 5によって上方か
ら覆われた状態とする。この遮蔽フード1θ5を通気ダ
ク)106を介して変圧器室1υ0の隔壁101の換気
口106に接続する。
The shielding hood 105 hangs down near the lower end 1 on both the left and right sides of the above-mentioned radiator 80 and on the outer 4111 surface of the front and rear cylinders 4a, and wraps around the outer 11111 surface of each radiator, so that the entire radiator is covered with g. The shielding hood 1θ5 is covered from above by a shielding hood 1θ5. This shielding hood 1θ5 is connected to the ventilation port 106 of the partition wall 101 of the transformer room 1υ0 via a ventilation duct 106.

この実施例では、変圧器巻線20の高圧側ブッシング5
0および低圧4011ブッシング6Off:変圧器タン
ク10の対向する側面壁10b、10cにそれぞれ設け
て、該側面壁10:6.1[]cにそれぞれブスダクト
7[Jb、70cをJim 、117付け、放熱器80
を変圧器タンク10の上面壁10aK近接して配置して
いるが、変圧器室ILl[Jの天井高さに余裕がある場
合は、ブッシングso 、60およびブスダクト70′
b、70Cを変圧器タンク10の上面壁10aに取付け
て、放熱器80は該ガスダクトの上方に配置してもよい
In this embodiment, the high voltage side bushing 5 of the transformer winding 20
0 and low voltage 4011 bushings 6Off: are provided on the opposing side walls 10b and 10c of the transformer tank 10, respectively, and the bushings 7[Jb, 70c are attached to Jim, 117 on the side walls 10:6.1[]c, respectively, and heat dissipation is performed. vessel 80
are placed close to the top wall 10aK of the transformer tank 10, but if there is enough ceiling height in the transformer room ILl[J, bushings so, 60 and bus ducts 70'
b, 70C may be attached to the upper wall 10a of the transformer tank 10, and the radiator 80 may be placed above the gas duct.

上記のように放熱器80を配置すると、変圧器タンク1
0内のIV8縁ガス40は、巻線20および鉄心60か
ら発生した損失熱が、伝達されて矢印で示すように上昇
ガス管11内を」−昇して上部ヘッダー管12に至り、
上部ヘソグー管12から上部接続管80aを経て放熱器
80に導かれる。放熱器80の放熱面から熱を放散して
冷却された絶縁ガスは、下部接続管80bを経て下部ヘ
ッダー管16.18に入p1下降ガス管15.14内を
下降して変圧器タンク1υに戻る。
When the radiator 80 is arranged as described above, the transformer tank 1
In the IV8 edge gas 40 in the 0, the loss heat generated from the winding 20 and the iron core 60 is transferred and rises in the rising gas pipe 11 as shown by the arrow and reaches the upper header pipe 12.
The heat is led from the upper hollow pipe 12 to the radiator 80 via the upper connecting pipe 80a. The insulating gas cooled by dissipating heat from the heat radiating surface of the radiator 80 passes through the lower connecting pipe 80b, enters the lower header pipe 16.18, descends in the p1 descending gas pipe 15.14, and flows into the transformer tank 1υ. return.

このようにして絶縁ガスが循環するときの自然対流速度
は、放熱器80が変圧器タック10の上方に配置されて
いることによって冷却中心高さと発熱中心高さとの差が
従来の変圧器よシもldるかに大きくなっているため著
しく増加するから、巻線および鉄心の表面における絶縁
ガス11すの熱伝達7− 率は大幅に増大する。
The natural convection speed when the insulating gas circulates in this way is such that the difference between the height of the cooling center and the height of the heating center is similar to that of conventional transformers because the radiator 80 is placed above the transformer tack 10. The heat transfer rate of the insulating gas 11 on the surfaces of the windings and core increases significantly, since ld also increases significantly.

また、換気扇102によって遮蔽フード105に導入さ
れる変圧器室100内の空気は、遮蔽フード105が各
放熱器80の外側面の下端部近傍の周囲を包囲している
ため、矢印で示すように各放熱器80の下端を通って遮
蔽フード105に導入されることになり、各放熱器80
の放熱面の全部に導入空気を接触させることができる。
In addition, since the shielding hood 105 surrounds the vicinity of the lower end of the outer surface of each radiator 80, the air inside the transformer room 100 introduced into the shielding hood 105 by the ventilation fan 102 flows as shown by the arrow. Each heat sink 80 will be introduced into the shielding hood 105 through the lower end of each heat sink 80.
The introduced air can be brought into contact with all of the heat dissipation surfaces of the

このため放熱器80の空気1110における熱伝達率も
大幅に増大する。
Therefore, the heat transfer coefficient in the air 1110 of the radiator 80 also increases significantly.

上記実施例では、放熱器I′if/!縁ガスを自熱ガス
させる自冷式のものについて説明したが、自冷式に限ら
ず、第4121に示すよう(C下降ガス管16゜14に
ブロワ90を挿入して絶縁ガスを強制循環させる方式の
ものについても同様に適用することができる。
In the above embodiment, the heat sink I'if/! Although we have described a self-cooling type that turns the edge gas into self-heating gas, it is not limited to the self-cooling type. The same can be applied to other methods.

この発明は、上述したように、ガス絶縁変圧器の放熱器
を、変圧器タンクの上面壁の上方に配置し、各放熱器の
前後左右の外11111面の下端部を上方から吊架した
遮蔽フードで包囲して、該遮蔽〕−8− ドを変圧器室の換気口に連結する構成としている。
As described above, this invention provides a shield in which the radiators of a gas insulated transformer are arranged above the upper wall of the transformer tank, and the lower ends of the front, rear, left, and right outer surfaces of each radiator are suspended from above. It is surrounded by a hood, and the shield is connected to the ventilation opening of the transformer room.

したがって、この発明によれば、絶縁ガス側の熱伝達率
の増大と併せて空気側の熱伝達率も増大するから、風冷
式放熱器を用いる快でもなく、自冷式放熱器によって風
冷式の場合とほぼ同等の冷却性能が発揮され、室内設置
用として好適な低験音変圧器が得られるだけでなく、同
一容量の変圧器については従来よりも放熱器の放熱面積
または設置数を減少することができ、自冷式変圧器の定
格容量として風冷式と同等の過負荷を供給することもで
きるから、自冷可能容量の限度を従来よりも冒ぐするこ
とが可能となる。
Therefore, according to this invention, the heat transfer coefficient on the air side increases as well as the heat transfer coefficient on the insulating gas side. The cooling performance is almost the same as that of the conventional type, and it not only provides a low-noise transformer suitable for indoor installation, but also reduces the heat dissipation area or the number of radiators installed compared to conventional transformers of the same capacity. Since the rated capacity of the self-cooling type transformer can supply an overload equivalent to that of the wind-cooled type, it becomes possible to exceed the limit of the self-cooling capacity more than before.

また、この発明(Cよれば、放熱器の占める床面積が削
減され、変圧器全体の設置床面積が縮小するから、ビル
内や地下室等、天井高さの制限がない変圧器室であれば
、狭小な床面積の場所でも設置することができる効果が
ある。
In addition, according to this invention (C), the floor area occupied by the radiator is reduced, and the installation floor area of the entire transformer is reduced. This has the advantage that it can be installed even in places with small floor space.

この発明は、いままで説明したガス絶縁変圧器(て限ら
ず、ガス絶縁リアクトルに適用することができるほか、
油入変圧器や?UJ入りアクドルについても応用するこ
とができる。
This invention can be applied not only to the gas insulated transformers (not limited to) described above, but also to gas insulated reactors.
An oil-immersed transformer? It can also be applied to Akudor with UJ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の自冷式ガス絶縁変圧器と変圧器室とを
示す縦断面図、第2図はその平面図、第3図は、この発
明の実施例を示す縦断面図、第4図は、強制イ狛環式ガ
ス絶縁変圧器についての実施例を示す一部縦断面図であ
る。 10:変圧器タンク IUa:タンクの上面壁10b、
10c:タンクのイ111J而壁11:上昇ガス管  
12:」一部ヘツダー管13.14:下降ガス′r〒 16.18:上音ISヘッダー管 80:放熱器    100:変圧器室106:換気口
   105:遮蔽フード特許出願人  富士電機製造
株式会社 代理人 弁理士  森     哲  也弁理士  内
  藤  嘉  昭 弁理士  清  水      正 弁理士  梶  山  情  是 11−
FIG. 1 is a longitudinal sectional view showing a conventional self-cooling gas insulated transformer and a transformer room, FIG. 2 is a plan view thereof, and FIG. 3 is a longitudinal sectional view showing an embodiment of the present invention. FIG. 4 is a partial longitudinal cross-sectional view showing an embodiment of a forced isolation ring type gas insulated transformer. 10: Transformer tank IUa: Tank top wall 10b,
10c: Tank A111J and wall 11: Rising gas pipe
12: Partial header pipe 13. 14: Downward gas 'r〒 16. 18: Upper sound IS header pipe 80: Heat radiator 100: Transformer room 106: Ventilation opening 105: Shielding hood Patent applicant Fuji Electric Manufacturing Co., Ltd. Agent Patent Attorney Tetsuya Mori Patent Attorney Yoshiaki Uchifuji Shimizu Regular Patent Attorney Jo Kajiyama Kore 11-

Claims (1)

【特許請求の範囲】[Claims] 室内に設置するガス絶縁変圧器において、放熱器を変圧
器タンクの上面壁の上方に配置して、該放熱器を変圧器
タンクの上面壁から分岐した上昇ガス管と変圧器タンク
の側面壁から分岐した下降ガス管とにそれぞれ上部ヘッ
ダー管と下部ヘッダー管とを介して接続し、放熱器の外
側面の下端部まで垂下して放熱器の周囲を上方から包囲
する遮蔽フードを吊架し、該遮蔽フードを変圧器室外に
連通ずる換気口に連結したことを特徴とするガス絶縁変
圧器。
In a gas insulated transformer installed indoors, a radiator is placed above the top wall of the transformer tank, and the radiator is connected to the rising gas pipe branched from the top wall of the transformer tank and from the side wall of the transformer tank. A shielding hood is connected to the branched descending gas pipes via an upper header pipe and a lower header pipe, respectively, and hangs down to the lower end of the outer surface of the radiator to surround the radiator from above, A gas insulated transformer characterized in that the shielding hood is connected to a ventilation port communicating with the outside of the transformer room.
JP21429082A 1982-12-07 1982-12-07 Gas insulated transformer Granted JPS59104107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21429082A JPS59104107A (en) 1982-12-07 1982-12-07 Gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21429082A JPS59104107A (en) 1982-12-07 1982-12-07 Gas insulated transformer

Publications (2)

Publication Number Publication Date
JPS59104107A true JPS59104107A (en) 1984-06-15
JPS646527B2 JPS646527B2 (en) 1989-02-03

Family

ID=16653274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21429082A Granted JPS59104107A (en) 1982-12-07 1982-12-07 Gas insulated transformer

Country Status (1)

Country Link
JP (1) JPS59104107A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619092U (en) * 1992-08-03 1994-03-11 株式会社クボタ Syrup liquid level display for cup type beverage vending machines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241826A (en) * 1975-05-12 1977-03-31 Gec South Africa Pty Cooled transformer
JPS5696815A (en) * 1979-12-28 1981-08-05 Kansai Electric Power Co Inc:The Cooler for oil-immersed electric device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241826A (en) * 1975-05-12 1977-03-31 Gec South Africa Pty Cooled transformer
JPS5696815A (en) * 1979-12-28 1981-08-05 Kansai Electric Power Co Inc:The Cooler for oil-immersed electric device

Also Published As

Publication number Publication date
JPS646527B2 (en) 1989-02-03

Similar Documents

Publication Publication Date Title
KR840001976B1 (en) Electrical power apparatus
US7011576B2 (en) Cooling airflow distribution device
CN115023775A (en) Novel dry-type transformer
CN117006735A (en) Integrated air source heat pump
JPS59104107A (en) Gas insulated transformer
CN218602231U (en) Transformer cooling system
CN109787127A (en) A kind of distribution box of high efficiency and heat radiation
CN111403151B (en) Water circulation cooling dry-type transformer
US5374866A (en) Active cooling system for generator terminal box
JPS59104108A (en) Self cooled gas insulated transformer
JPS59104109A (en) Gas insulated transformer
CN218887934U (en) Heat dissipation device of power distribution network switch cabinet
WO2023132047A1 (en) Stationary inductor unit
CN211654512U (en) Air cooling structure of dry type transformer
CN220232889U (en) Novel isolation transformer
JP7509336B1 (en) Vehicle Transformer
JP2013214624A (en) Cooling device of electric device
CN215772219U (en) Semi-open type transformer substation structure
CN114974811A (en) Dry-type phase-shifting transformer
CN215001825U (en) Convection type radiation plate and heating system
CN219116205U (en) Smelting cooling tray
US2359174A (en) Electrical induction apparatus
CN215637643U (en) Automatically controlled box, air condensing units and air conditioner
CN212136158U (en) Transformer and data center
US2794625A (en) Fluid cooled apparatus with natural and forced cooling