JPS59103216A - Electric contact - Google Patents

Electric contact

Info

Publication number
JPS59103216A
JPS59103216A JP21342983A JP21342983A JPS59103216A JP S59103216 A JPS59103216 A JP S59103216A JP 21342983 A JP21342983 A JP 21342983A JP 21342983 A JP21342983 A JP 21342983A JP S59103216 A JPS59103216 A JP S59103216A
Authority
JP
Japan
Prior art keywords
layer
contact
deposited
cap layer
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21342983A
Other languages
Japanese (ja)
Inventor
ト−マス・メイリオン・ジヤクソン
ルドルフ・オ−ガスト・ハ−バ−ト・ハイネツケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Standard Electric Corp
Original Assignee
International Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Standard Electric Corp filed Critical International Standard Electric Corp
Publication of JPS59103216A publication Critical patent/JPS59103216A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • H01H11/045Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion with the help of an intermediate layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Contacts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、スイッチ、リレーおよびコネクタに使用さ
れるような電気接点に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION This invention relates to electrical contacts such as those used in switches, relays and connectors.

〔発明の技術的背景〕[Technical background of the invention]

摩耗および劣化を最小にするために電気接点はしばしば
貴金属で作られる。リレーでは、例えば非常に多数の信
頼性のあるスイッチング動作が確実に保証されなければ
ならない場合には金および、或は銀の接点が設けられる
。近年貴金属の価格の急激な上昇によって接点の製造業
者はそれに代るもつと安価な材料を検討することを考慮
しなければならなくなった。しかしながら、そのような
材料は一般に信頼性および特性を低下させる欠点がある
Electrical contacts are often made of precious metals to minimize wear and deterioration. In relays, gold and/or silver contacts are provided, for example, if a reliable switching operation of a large number must be reliably guaranteed. The rapid rise in the price of precious metals in recent years has forced contact manufacturers to consider alternative, less expensive materials. However, such materials generally have drawbacks that reduce reliability and properties.

〔発明の概要〕[Summary of the invention]

この発明の目的は、これらの欠点を最小にし、或は克服
することである。
The aim of the invention is to minimize or overcome these disadvantages.

この発明によれば、導電性の基体部分と、この基体部分
上に耐着された冶金反応性障壁層と、遷移金属の窒化物
、炭化物または珪化物から成る保護キャップ層とを具備
している電気接点が提供される。
The invention comprises an electrically conductive substrate portion, a metallurgically reactive barrier layer deposited on the substrate portion, and a protective cap layer consisting of a nitride, carbide or silicide of a transition metal. Electrical contacts are provided.

典型的には接点は窒化チタニウム或は窒化ジルコニウム
で覆われたチタニウム或はジルコニウムの障壁層を備え
ている。用途によっては非常に薄い貴金属の接点層が接
触抵抗をさらに低下させるためにキャップ層上に設けら
れてもよい。
Typically, the contacts include a titanium or zirconium barrier layer covered with titanium nitride or zirconium nitride. In some applications, a very thin noble metal contact layer may be provided on the cap layer to further reduce contact resistance.

この発明の装置は通常の貴金属接点よシ著しく価格を節
減することを可能にする安定な接点材料を提供する。例
えば金とチタニウムのバルクの価格比は略々500:1
である。さらに改善された拡散障壁特性を提供すること
によって、所要の材料の厚さが結果的に減少する。特に
これは薄膜中のピンホールの存在がもはや有害でなくな
るので貴金属の表面薄膜の厚さを著しく減少させること
を可能にする。
The device of this invention provides a stable contact material which allows for significant cost savings over conventional precious metal contacts. For example, the bulk price ratio of gold and titanium is approximately 500:1.
It is. By providing further improved diffusion barrier properties, the required material thickness is consequently reduced. In particular, this makes it possible to significantly reduce the thickness of the noble metal surface film, since the presence of pinholes in the film is no longer harmful.

例えば鍍金或はスミ4ツタリングのような任意の耐着処
理によって成長した薄膜の完全性は基体表面の詳細な微
細構造に臨界的に依存している。これはLSI回路のメ
タライゼイションにおいてよく知られた問題の範囲であ
る。すなわち1ミクロン以下の寸法でも鋭いステップは
耐着中の薄膜の成長を妨害してマイクロクラックの成長
を発生させ、それは薄膜の厚さ全体に伝播する。そのよ
うな鋭いステップは全ての接点基体についての共通の特
徴である。この場合、情況は表面不純物および酸化物の
包含によってさらに悪化される。それ故これらの基体上
の被覆は数マイクロメータの厚さで使用されなければ高
密度のマイクロクラックを有する。これらのマイクロク
ラックは金属および腐蝕性ガスの両者に対して一般に使
用される不活性の障壁材料において非常に速い拡散位置
にある。例えば、ニッケルは銅をペースとする金属の基
体と相互作用をしない。金と同様に銅はそのような欠陥
に沿って容易に拡散できる。
The integrity of thin films grown by any anti-adhesion process, such as plating or smearing, is critically dependent on the detailed microstructure of the substrate surface. This is a well-known problem area in metallization of LSI circuits. That is, sharp steps, even those with dimensions of less than 1 micron, disturb the growth of the thin film during adhesion and cause the growth of microcracks that propagate throughout the thickness of the thin film. Such sharp steps are a common feature for all contact substrates. In this case, the situation is further aggravated by the inclusion of surface impurities and oxides. Coatings on these substrates therefore have a high density of microcracks unless used at a thickness of several micrometers. These microcracks are at the site of very fast diffusion in commonly used inert barrier materials for both metals and corrosive gases. For example, nickel does not interact with copper-based metal substrates. Copper, like gold, can easily diffuse along such defects.

本発明者は情況がTi−TiN或はZr−ZrNの何れ
かの二重層とは全く異なることを発見した。TiとZr
は共に銅と金属間化合物を形成し、そのような化合物は
高エネルギ位置、すなわちマイクロクラックおよび粒子
界面(grain boundary)に優先的に形成
される。これは層中の拡散定数を著しく低下させ、それ
らの位置を実効的に閉塞する(plug)。この効果は
また腐蝕反応におけるエネルギ利得を減少させる。
The inventors have discovered that the situation is quite different with either Ti-TiN or Zr-ZrN bilayers. Ti and Zr
together form intermetallic compounds with copper, and such compounds are preferentially formed at high energy locations, ie, microcracks and grain boundaries. This significantly reduces the diffusion constant in the layer and effectively plugs those locations. This effect also reduces the energy gain in the corrosion reaction.

さらにチタニウムおよびジルコニウム金属は傑出した腐
蝕抵抗性を有している。これは非常に安定な薄い酸化層
の形成によるものであシ、それはさらに窒化物のキャッ
プ層を通って侵入する表面のマイクロクラックに栓をす
る作用を助けている。
Furthermore, titanium and zirconium metals have outstanding corrosion resistance. This is due to the formation of a very stable thin oxide layer, which further aids in plugging surface microcracks penetrating through the nitride cap layer.

〔発明の実施例〕[Embodiments of the invention]

添付図面を参照に実施例を説明する。リレーの接点を構
成している図示の接点は基体部分11を備え、その上に
設けられた障壁層12は保護キャップ層13を備えてい
る。典型的には基体部分11はリン青銅スプリング、例
えばリレー接点スプリングよシ成る。
Embodiments will be described with reference to the accompanying drawings. The illustrated contact constituting the contact of the relay comprises a base portion 11 , on which a barrier layer 12 is provided with a protective cap layer 13 . Typically, the base portion 11 comprises a phosphor bronze spring, such as a relay contact spring.

障壁層12は高融点の、硬い遷移金属の金属学的に活性
な冶金反応層よシ成る。この層はチタニウム、ジルコニ
ウム或はそれらの混合物から成ることが好ましい。
Barrier layer 12 consists of a metallurgically active metallurgically reactive layer of a high melting point, hard transition metal. Preferably, this layer consists of titanium, zirconium or a mixture thereof.

障壁層12は遷移金属の窒化物、炭化物或は珪化物よシ
成る導電性で耐熱性の保護キャップ層13によって保護
されており、この層13は障壁層12に使用されだのと
同じ金属が使用されることが好ましい。このキャップ層
13の効果は表面を化学的および電気的に安定にし、そ
の後に設ける貴金属層と冶金反応を行うことを阻止する
ことである。
Barrier layer 12 is protected by a conductive, heat-resistant protective cap layer 13 made of a transition metal nitride, carbide or silicide, which layer 13 is made of the same metal used for barrier layer 12. Preferably used. The effect of this cap layer 13 is to make the surface chemically and electrically stable and to prevent metallurgical reactions with subsequent noble metal layers.

用途によってはキャップ層13は薄い、例えば0.2ミ
クロンの金または金合金の表面貴金属層14で被覆して
もよい。この表面層はピンホールのない層を設けること
が必要とされないので通常の接点で設けられる被覆に比
較してずっと薄いものである。
Depending on the application, the cap layer 13 may be coated with a thin, eg 0.2 micron surface noble metal layer 14 of gold or a gold alloy. This surface layer is much thinner than the coating provided on conventional contacts since it is not necessary to provide a pinhole-free layer.

接点はマグネトロンスパッタリングによって形成される
ことが好ましいが、もちろん他の真空技術も使用できる
。マグネトロンスパッタリングは非常に高い耐着速度が
得られ、しかも基体の温度を接点スプリングの劣化を避
けるように充分に低く保持する特徴がある。
The contacts are preferably formed by magnetron sputtering, although other vacuum techniques can of course be used. Magnetron sputtering is characterized by very high deposition rates and by keeping the temperature of the substrate sufficiently low to avoid contact spring deterioration.

チタニウムまたはジルコニウムのターゲットを使用する
ことによって金属薄膜からその窒化物への円滑な転移が
スパッタリング中にガスの組成を純粋のアルゴンガスか
ら窒素とアルゴンの混合ガスに単に変更するだけで実行
できる。
By using titanium or zirconium targets, a smooth transition from a thin metal film to its nitride can be achieved by simply changing the gas composition from pure argon gas to a mixture of nitrogen and argon during sputtering.

これは最大の耐着速度を与え、境界の欠陥を確実に無く
すことができる。
This provides maximum adhesion speed and ensures the absence of boundary defects.

好ましい実施態様において接点は基体部分として典型的
には厚さが0.25〜0.5圏のリン青銅が使用され、
その上に典型的には厚さが0.2〜2ミクロンのチタニ
ウム金属の層が附着され(スパッタリングによる)、そ
の層は典型的には0.05〜0.5ミクロンの厚さの窒
化チタニウムの最終層を備えている(スパッタリングに
よる)。
In a preferred embodiment, the contact uses phosphor bronze as the base portion, typically having a thickness in the range of 0.25 to 0.5 mm;
Thereon a layer of titanium metal, typically 0.2-2 microns thick, is deposited (by sputtering), which layer is typically 0.05-0.5 microns thick titanium nitride. (by sputtering).

代表的な接点製造工程においては、リン青銅の条帯がC
VC6,01型マグネトロンスパツタリング装置中に装
荷され、背圧が2X10  )ルに減圧され、純粋な酸
素が10 トルの圧力まで導入される。次いでDCプラ
ズマで10分間衝撃して耐着前の接点区域表面が清浄に
される。清浄化の後、放電は停止され、圧力は5X10
  )ル以下に低下された。次いでアルゴンガスが2×
10−5トルの圧力まで導入された。2分間のチタニウ
ムターゲットのスパッタリングによる清浄化の後、所望
の厚さのチタニウム薄膜が附着されるまで接点はスノぞ
ツタターゲットに露出される。
In a typical contact manufacturing process, the phosphor bronze strip is
It is loaded into a VC6,01 type magnetron sputtering apparatus, the back pressure is reduced to 2×10 Torr, and pure oxygen is introduced to a pressure of 10 Torr. The contact area surfaces are then cleaned by bombarding with DC plasma for 10 minutes prior to adhesion. After cleaning, the discharge is stopped and the pressure is 5X10
) has been lowered to below le. Then argon gas was
Pressures up to 10-5 Torr were introduced. After 2 minutes of sputter cleaning of the titanium target, the contacts are exposed to a slatted target until the desired thickness of titanium film is deposited.

典型的なスパッタ条件は電流1〜10アンペア、400
■の直流ターゲットバイアス、900vの高周波基体バ
イアスであり、毎分1000乃至3000オングストロ
ーム■の耐着速度が与えられる。容器中へのアルゴンの
流入割合はその後減少され、一方窒素ガスを徐々に導入
することによって全体の圧力が2×10 トルに保持さ
れる。転移は略々1分の間に亘って円滑に行われなけれ
ばならない。それから反応スパッタリングにより毎分約
200Xの速度で窒化チタニウムが附着された。アルゴ
ンと窒素の補充速度およびターグットスノやツタ電流に
応じてTiとTiNの両者の耐着速度は3倍まで変化で
きる。
Typical sputtering conditions are current 1-10 amps, 400
(2) DC target bias, 900 V high frequency substrate bias, and a deposition rate (2) of 1000 to 3000 angstroms per minute. The rate of argon inflow into the vessel is then reduced, while the overall pressure is maintained at 2×10 Torr by gradually introducing nitrogen gas. The transfer must occur smoothly over a period of approximately 1 minute. Titanium nitride was then deposited by reactive sputtering at a rate of about 200X per minute. Depending on the argon and nitrogen replenishment rates and the tertiary snow and ivy currents, the deposition rates for both Ti and TiN can vary up to three times.

冶金反応性金属薄膜中の活性拡散位置の上述6 の74
ツシペイシヨン(すなわち、クラックに栓をするゾラギ
ング)は最終の接点の接触抵抗には殆んど或は全く影響
を与えない。それはこれらの位置は電流路に並列である
からである。主表面はキャップ窒化物層によって保護さ
れたままであり、境界の安定度のために耐着中実行され
る。
6-74 of active diffusion locations in metallurgically reactive metal thin films
Tensioning (ie, crack plugging) has little or no effect on the contact resistance of the final contact. This is because these locations are parallel to the current path. The main surface remains protected by the cap nitride layer, which is carried out during adhesion for boundary stability.

窒化層は1000℃を超える温度の酸素を含む環境を除
けば腐蝕に対して非常に高い抵抗力を有する。しかしな
がら通常の温度においては形成されるであろうサブオキ
サイドの高い電導性のために無視できるか或は非常に小
さいものである。例えばTiOでさえも比抵抗は100
マイクロオームセンチに過ぎない。
Nitride layers have very high resistance to corrosion except in oxygen-containing environments at temperatures above 1000°C. However, at normal temperatures it is negligible or very small due to the high conductivity of the suboxides that may be formed. For example, even TiO has a specific resistance of 100
It's just a microohm centimeter.

化学的不活性、耐摩耗抵抗、低摩擦係数および良好な電
気伝導度の組合せによって、TiNおよびZrN層は当
然非常に良好な接点材料であり、抵抗の安定であること
が最も重要でちる場合に金に代る魅力のある材料である
。典励的には10gの接点圧力で測定されたスパッタに
より附着されたTiN層間の接触抵抗の値は50乃至9
0mΩの範囲であった。
Due to the combination of chemical inertness, abrasion resistance, low coefficient of friction and good electrical conductivity, TiN and ZrN layers are naturally very good contact materials when stability of resistance is of paramount importance. It is an attractive material that can replace gold. Typically, the value of the contact resistance between sputter-deposited TiN layers measured at a contact pressure of 10 g is between 50 and 9.
It was in the range of 0 mΩ.

代シにTi−TiN或はZr−Z−rN系は例えば非常
に薄い全被覆およびその他の材料の使用に対して理想的
な障壁系と見做される。金被覆は連続する(孔がない)
必要はなく、水銀で濡らされたリレーにおける水銀の作
用に成る意味で比較されることができる。金の被覆は同
じスパッタ耐着装置でターゲットを交換するだけで適用
できる。それ故、典型的な被覆工程ではTi0.5μm
Alternatively, Ti--TiN or Zr--Z-rN systems are considered ideal barrier systems, for example for the use of very thin overcoats and other materials. Gold coating is continuous (no pores)
It need not be compared in the sense that it amounts to the action of mercury in a mercury-soaked relay. Gold coatings can be applied using the same sputter protection equipment by simply changing targets. Therefore, in a typical coating process, Ti0.5 μm
.

TiN 0.2μmの被着工程が含まれる。追加の0.
2μmの金層のために重要なことはチタニウムに富んだ
表面にするために仕上げの際にN2を減少させることで
ある。
Includes a TiN 0.2 μm deposition step. Additional 0.
For the 2 μm gold layer, it is important to reduce the N2 during finishing to obtain a titanium-rich surface.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明接点の1実施例の断面図である。 11・・・基体部分、12・・・障壁層、13・・・キ
ャップ層、14・・・貴金属層。
The figure is a sectional view of one embodiment of the contact of the present invention. DESCRIPTION OF SYMBOLS 11... Base part, 12... Barrier layer, 13... Cap layer, 14... Noble metal layer.

Claims (9)

【特許請求の範囲】[Claims] (1)導電性の基体部分と、この基体部分上に耐着され
た冶金反応性障壁層と、遷移金属の金化物、炭化物また
は珪化物から成る保護キャップ層とを具備していること
を特徴とする電気接点0
(1) It is characterized by comprising an electrically conductive substrate portion, a metallurgically reactive barrier layer deposited on the substrate portion, and a protective cap layer consisting of a goldide, carbide or silicide of a transition metal. Electrical contact 0
(2)障壁層がチタニウム、ジルコニウム或はそれらの
混合物よシ成る特許請求の範囲第1項記載の接点。
2. A contact according to claim 1, wherein the barrier layer is made of titanium, zirconium or a mixture thereof.
(3)保護キャップ層がチタニウムまた(−′、ジルコ
ニウムの窒化物よ如成る特許請求の範囲第1項または第
2項記載の接点。
(3) A contact according to claim 1 or claim 2, wherein the protective cap layer is a nitride of titanium or (-', zirconium).
(4)前記各層が真空スフ4’ツタリングにより形成さ
れた層である特許請求の範囲第1項乃至第3項の何れか
記載の接点。
(4) The contact according to any one of claims 1 to 3, wherein each of the layers is a layer formed by vacuum suction 4' tuttering.
(5)貴金属の表面被覆を備えている特許請求の範囲第
1項乃至第4項の何れか記載の接点。
(5) The contact according to any one of claims 1 to 4, which is provided with a noble metal surface coating.
(6)導電性の基体上に金属学的反応性障壁層を耐着さ
せ、この障壁層上に遷移金属の窒化物、炭化物または珪
化物から成る導電性のキャップ層を耐着させることを特
徴とする電気接点の製造方法。
(6) A metallurgically reactive barrier layer is deposited on a conductive substrate, and a conductive cap layer made of a nitride, carbide or silicide of a transition metal is deposited on the barrier layer. A method of manufacturing an electrical contact.
(7)前記各層は真空スパッタリングにより耐着される
特許請求の範囲第6項記載の方法。
(7) The method of claim 6, wherein each layer is deposited by vacuum sputtering.
(8)  前記キャップ層はガス状窒素の存在において
金属ターグットからのスパッタリングによって形成され
る特許請求の範囲第7項記載の方法。
8. The method of claim 7, wherein the cap layer is formed by sputtering from a metal target in the presence of gaseous nitrogen.
(9)前記キャップ層は貴金属の比較的薄い層によって
被覆される特許請求の範囲第6項乃至第8項の何れか記
載の方法。
9. A method according to any one of claims 6 to 8, wherein the cap layer is coated with a relatively thin layer of noble metal.
JP21342983A 1982-11-17 1983-11-15 Electric contact Pending JPS59103216A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8232781 1982-11-17
GB08232781A GB2130795B (en) 1982-11-17 1982-11-17 Electrical contacts

Publications (1)

Publication Number Publication Date
JPS59103216A true JPS59103216A (en) 1984-06-14

Family

ID=10534319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21342983A Pending JPS59103216A (en) 1982-11-17 1983-11-15 Electric contact

Country Status (3)

Country Link
JP (1) JPS59103216A (en)
AU (1) AU2134683A (en)
GB (1) GB2130795B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262313A (en) * 1984-06-07 1985-12-25 古河電気工業株式会社 Electric contact material
JPS61214312A (en) * 1985-03-14 1986-09-24 ヴエー・ツエー・ヘレウス・ゲゼルシヤフト・ミツト・ベシユレンクター・ハフツング Composite body for electric contact member and making thereof
CN105231604A (en) * 2014-05-27 2016-01-13 中色金银贸易中心有限公司 Gold jewelry

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2831791C2 (en) * 1978-07-19 1982-09-09 Gkss - Forschungszentrum Geesthacht Gmbh, 2000 Hamburg Component made of metallic material with a surface at risk of being charged and use therefor
DE3428951A1 (en) * 1984-08-06 1986-02-13 Leybold-Heraeus GmbH, 5000 Köln WITH A COATING LAYER FROM GOLD OR A GOLD-CONTAINING MATERIAL-COVERED DECORATIVE USED ITEM AND METHOD FOR THE PRODUCTION THEREOF
FR2574997B1 (en) * 1984-12-14 1987-03-06 Traitement Surface Mecanique NEW ELECTRICAL CONTACTS
DE3503105A1 (en) * 1985-01-30 1986-07-31 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR COATING MACHINE PARTS AND TOOLS WITH CARBIDE MATERIAL AND MACHINE PARTS AND TOOLS PRODUCED BY THE METHOD
JPS644841Y2 (en) * 1985-03-19 1989-02-07
US4783248A (en) * 1987-02-10 1988-11-08 Siemens Aktiengesellschaft Method for the production of a titanium/titanium nitride double layer
EP0310668B1 (en) * 1987-04-23 1995-04-19 Sumitomo Electric Industries Limited Ceramic-coated electric connection terminal
GB8827541D0 (en) * 1988-11-25 1988-12-29 Atomic Energy Authority Uk Multilayer coatings
CH685120A5 (en) * 1989-02-17 1995-03-31 Preci Coat Sa Method of depositing at least a thickness of at least one decorative material, a device for the implementation of this method and decorative object thus produced.
US5409762A (en) * 1989-05-10 1995-04-25 The Furukawa Electric Company, Ltd. Electric contact materials, production methods thereof and electric contacts used these
US5597064A (en) * 1989-05-10 1997-01-28 The Furukawa Electric Co., Ltd. Electric contact materials, production methods thereof and electric contacts used these
TW360716B (en) * 1993-02-19 1999-06-11 Citizen Watch Co Ltd Golden decorative part and process for producing the same
ES2167187B2 (en) * 1999-12-14 2003-05-16 Power Controls Iberica Sl PERFECTING TO INCREASE THE LIFE OF ELECTROMAGNETIC RELAYS.
DE10138204B4 (en) 2001-08-03 2004-04-22 Ami Doduco Gmbh Electric contact
DE102004011648A1 (en) 2004-03-10 2005-09-29 Roche Diagnostics Gmbh Test element analysis system with hard-coated contact surfaces
DE102005043484B4 (en) * 2005-09-13 2007-09-20 Abb Technology Ag Vacuum interrupter chamber
CN107196093A (en) * 2017-07-11 2017-09-22 北京合力电气传动控制技术有限责任公司 Pressure contact connector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164115A (en) * 1982-03-08 1983-09-29 ダブリユ−・エツチ・ブラデイ・カンパニ− Switch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439570A (en) * 1942-11-10 1948-04-13 Mallory & Co Inc P R Electric contact
GB846808A (en) * 1958-07-11 1960-08-31 Westinghouse Electric Corp Improvements in or relating to brazing processes
GB1124822A (en) * 1964-08-15 1968-08-21 Hitachi Ltd Automobile electrical contacts for use in distributors and contact breakers for internal combustion engines
US3359623A (en) * 1965-05-13 1967-12-26 Talon Inc Method for making refractory metal contacts having integral welding surfaces thereon
GB1228498A (en) * 1968-01-02 1971-04-15
DE1802932B2 (en) * 1968-10-14 1974-11-14 W.C. Heraeus Gmbh, 6450 Hanau Method for producing an electrical switch contact
JPS5688209A (en) * 1979-12-21 1981-07-17 Tokyo Shibaura Electric Co Electric contactor
GB2092383B (en) * 1981-01-30 1984-10-31 Standard Telephones Cables Ltd Electrical contacts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164115A (en) * 1982-03-08 1983-09-29 ダブリユ−・エツチ・ブラデイ・カンパニ− Switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262313A (en) * 1984-06-07 1985-12-25 古河電気工業株式会社 Electric contact material
JPS61214312A (en) * 1985-03-14 1986-09-24 ヴエー・ツエー・ヘレウス・ゲゼルシヤフト・ミツト・ベシユレンクター・ハフツング Composite body for electric contact member and making thereof
CN105231604A (en) * 2014-05-27 2016-01-13 中色金银贸易中心有限公司 Gold jewelry

Also Published As

Publication number Publication date
GB2130795B (en) 1986-07-16
AU2134683A (en) 1984-05-24
GB2130795A (en) 1984-06-06

Similar Documents

Publication Publication Date Title
JPS59103216A (en) Electric contact
US5766379A (en) Passivated copper conductive layers for microelectronic applications and methods of manufacturing same
US4851895A (en) Metallization for integrated devices
US20060068227A1 (en) Ag-based reflection film and method for preparing the same
US4319264A (en) Nickel-gold-nickel conductors for solid state devices
JP2009538986A (en) Rotating sputter target
JP4918231B2 (en) Method for producing Ag alloy film
US4004080A (en) Metal coating for video discs
JPH05267299A (en) Semiconductor device
US3564565A (en) Process for adherently applying boron nitride to copper and article of manufacture
JPH06236855A (en) Heat-resistant ohmic electrode on semiconductor diamond layer and manufacture thereof
JPH04351968A (en) Probe
JPS61172754A (en) Thermal head
JPH04354144A (en) Electrode
JPS63185052A (en) Tantalum metal thin film circuit
JPH08188869A (en) Method of forming thin metallic film of semiconductor element and production of gas sensor
EP0612085A2 (en) Encapsulated contact material and process for producing the same
JPS60212847A (en) Diamond parts
FR2529022A1 (en) Electrical contact - using a thin layer of material with a high mechanical resistance to prevent oxidation
JP3154253B2 (en) Encapsulated contact material and its manufacturing method
JPS6326485B2 (en)
EP1148148A1 (en) Laminate structure and production method therefor
JPH04237912A (en) Sealed contact
JPH07220788A (en) Ic socket use terminal and manufacture thereof
JPH0140511B2 (en)