JPS5910319A - Filter medium and its manufacture - Google Patents

Filter medium and its manufacture

Info

Publication number
JPS5910319A
JPS5910319A JP11863582A JP11863582A JPS5910319A JP S5910319 A JPS5910319 A JP S5910319A JP 11863582 A JP11863582 A JP 11863582A JP 11863582 A JP11863582 A JP 11863582A JP S5910319 A JPS5910319 A JP S5910319A
Authority
JP
Japan
Prior art keywords
fiber
fibers
web
diameter
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11863582A
Other languages
Japanese (ja)
Other versions
JPH0372323B2 (en
Inventor
Masaaki Miyake
正昭 三宅
Ikuhiko Fukumori
郁彦 福森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11863582A priority Critical patent/JPS5910319A/en
Priority to US06/483,253 priority patent/US4548628A/en
Priority to EP83103962A priority patent/EP0092819B1/en
Priority to DE8383103962T priority patent/DE3372923D1/en
Publication of JPS5910319A publication Critical patent/JPS5910319A/en
Publication of JPH0372323B2 publication Critical patent/JPH0372323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To obtain an air filtering medium having a long service life, high strength, and capable of thermal disposal, by using a fiber-laminated body made of ultrafine fibers of combustible synthetic fibers, and subjecting said body to jetting treatment of highly pressurized water and heat treatment. CONSTITUTION:A web made essentially of ultrafine combustible synthetic fibers having 0.1-1.5mu diam. each which are obtained by a melt blow system, is preferably used. A fiber-laminated body is obtained by forming >=1 sheets of the webs into one body. A packing rate of the fibers is 3-20%, and the ratio of an actually detected surface area SA per unit area to a logical surface area SB is in a range of 1>SB/SA>=0.7. Further, the number of single fibers to be laminated in the direction of the thickness of filter medium is required to be in a range of 40-1,000. Moreover, at least one-side surface is covered by fine rugged parts of nonuniform shape constituted of an average diam. of 0.005-2mm. and an average depth of 0.05-0.5mm.. The web is manufactured by interposing the fibers formed into net-shaped bodies into highly pressurized water and performing a jetting treatment and then performing a drying or a heat treatment at the temperature lower than its melting point.

Description

【発明の詳細な説明】 可燃性の極細繊維積層体よりなる沖過特性のすぐれた高
性能エアーフィルター用戸材ならびにその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-performance air filter door material with excellent air permeability properties made of a combustible ultrafine fiber laminate, and a method for manufacturing the same.

従来、原子力発電所や原子力研究所等の放射性物質を取
り扱う部場において、室内の放射性塵埃を含む空気な濾
過浄化して室外に放出するに際し使用される高性能エア
ーフィルターや・病院・精密機器組立て工場、半導体産
業等において、外部の空気を濾過清浄化してクリーンル
ーム内に取り入れるための高性能エアーフィルターは、
03ミクロン以下の極微細塵埃を高効率で捕集すること
が必要である。
Conventionally, high-performance air filters used in nuclear power plants, nuclear research institutes, and other workplaces that handle radioactive materials to filter and purify indoor air containing radioactive dust before releasing it outdoors, as well as in hospitals and precision equipment assembly. In factories, semiconductor industries, etc., high-performance air filters are used to filter and purify outside air and bring it into clean rooms.
It is necessary to collect extremely fine dust of 0.03 microns or less with high efficiency.

現在使用されている高性能エアーフィルター用汚材は微
細なガラス繊維を抄造した積層体でありガラス繊維以外
の繊維よりなる高性能エアーフィルター用汚材は皆無で
あった。
The dirt material for high-performance air filters currently in use is a laminate made of fine glass fibers, and there were no dirt materials for high-performance air filters made of fibers other than glass fibers.

しかし、このガラス繊維の抄造タイプ汚材は、ダスト捕
集量の向上をはかることが難かしく、その上、強力が小
さいため取扱い中、使用中に破壊しやすく、また、不燃
性であるため焼却廃棄ができず使用済フィルターの廃棄
が問題となっている。
However, it is difficult to improve the amount of dust collected with this glass fiber paper-based soiling material.Furthermore, it is not strong enough to be easily destroyed during handling or use, and is nonflammable, so it cannot be incinerated. Disposal of used filters has become a problem as they cannot be disposed of.

特に放射性塵埃を含む使用済フィルターは廃棄できない
ために保管されているのが現状であり、保管場所の確保
も問題となってきている。
In particular, used filters that contain radioactive dust cannot be disposed of, so they are currently being stored, and securing storage space is also becoming an issue.

そのため、取扱い中あるいは使用中にも破壊せず大きな
ダスト捕集量を有した長寿命、かつ、焼却可能な可燃性
高性能エアーフィルター用汚材の開発が切望されている
Therefore, there is a strong need for the development of a combustible, high-performance dirt material for air filters that does not break down during handling or use, has a large amount of dust that can be collected, has a long life, and can be incinerated.

ところで現行の高性能エアーフィルターは)通気抵抗が
50110II■420以下と云う極めて抵抗の少ない
状態で、0.3ミクロンの極微細粒子を99.97%以
上捕集しなければならないため、これまでは極細ガラス
繊維の抄造タイプでしかこれを達成し得なかったもので
ある。
By the way, current high-performance air filters must capture 99.97% or more of ultrafine particles of 0.3 microns in a state with extremely low ventilation resistance of 50110II■420 or less. This could only be achieved with a paper-made type of ultra-fine glass fiber.

本発明者らは、可燃性繊維によりががる性能、特性を有
する高性能エアーフィルター用汚材を開発すべく鋭意研
究を重ねた結果、可燃性合成繊維の特定繊維直径の範囲
であって、がっ、特定の構造においてのみ、現行の高性
能エアーフィルターの要求性能を満足し、さらに、長寿
命、高強力であって、焼却可能な高性能エアーフィルタ
ー用汚材の開発に成功したのである。
The present inventors have conducted intensive research to develop a high-performance air filter dirt material that has performance and characteristics that are compatible with flammable fibers, and have found that within a specific fiber diameter range of combustible synthetic fibers, We have succeeded in developing a dirt material for high-performance air filters that satisfies the performance requirements of current high-performance air filters only in a specific structure, has a long life, is highly strong, and can be incinerated. .

本発明は、単繊維直径が0.1〜1.5ミクロンの極細
可燃性合成繊維を主体とするウェブの単独もしくは複数
枚が重なり合って一体化された繊維積層物よりなる汚材
において、該汚材の繊維充填率が3〜20%、炉材の単
位面積当りの構成繊維の実測表面積SBと理論表面積S
Aの比が1〉も≧07、A 汚材の厚み方向の単繊維積層本数が40〜1000本で
あり、かつ、該汚材の少なくとも片面は、平均直径が0
.05〜2 mn %平均深さが005〜Q、5111
11の不均一形状の微小凹凸で全面が覆われていること
を特徴とする汚材、ならびに、単繊維直径が0.1〜1
5ミクロンの極細可燃性合成繊維を主体とするウェブの
単独もしくは複数枚を重ねて熱処理を施こすか、あるい
は熱処理を施こさない繊維積層体を移動させつつ、その
片面もしくは両面に、該繊維積層体に対して平行に円運
動もしくは往復運動している直径01〜0.5 mのノ
ズル群がら高圧水を噴射処理するに際して、該繊維積層
体とノズル群との間に網状体を介在せしめて高圧水を微
分散化して処理して、次いで、乾燥もしくは熱処理を施
こすこと友特徴とする汚材の製造方法である。
The present invention provides a soiling material made of a fiber laminate made by overlapping and integrating a single web or a plurality of webs mainly composed of ultrafine combustible synthetic fibers with a single fiber diameter of 0.1 to 1.5 microns. The fiber filling rate of the material is 3 to 20%, and the measured surface area SB and theoretical surface area S of the constituent fibers per unit area of the furnace material
The ratio of A is 1>≧07, A The number of laminated single fibers in the thickness direction of the soil material is 40 to 1000, and at least one side of the soil material has an average diameter of 0.
.. 05~2 mn % average depth 005~Q, 5111
A soiling material characterized in that the entire surface is covered with 11 microscopic irregularities of non-uniform shape, and a single fiber diameter of 0.1 to 1
Either a single web or a plurality of webs mainly made of ultra-fine combustible synthetic fibers of 5 microns are heat-treated, or the fiber laminate that is not heat-treated is moved and the fiber laminate is applied to one or both sides of the web. When spraying high-pressure water from a group of nozzles with a diameter of 01 to 0.5 m that are moving in a circular or reciprocating manner parallel to the body, a mesh body is interposed between the fiber laminate and the nozzle group to generate high pressure. This method of producing a soil material is characterized in that water is finely dispersed and then treated, followed by drying or heat treatment.

本発明においてウェブとは、短繊維のb造による不織布
1熔融紡糸した繊維を積層した長繊維不織布、カーディ
ングニードルノインチング等により形成されたウェブ等
を云うが、特に、メルトブロ一方式によるウェブが好ま
しい。これは)本発明の目的に合った極細長繊維を得や
すいばかりか、目付り厚み等が均一で、かつ、ピンホー
ルの発生しにくいウェブを得やすいためである。また、
ポリアミド系成分とポリエステル系成分の如き2成分よ
りなる海鳥繊維の一方を溶解除去して得た極細繊維より
なるウェブ、あるいは、剥離型複合紡糸法により得られ
る極細繊維よりなるウェブであってもよい。
In the present invention, the term "web" refers to a long-fiber nonwoven fabric formed by laminating melt-spun fibers, a nonwoven fabric formed by short fiber B construction, a web formed by carding needle no inching, etc., but in particular, a web formed by one-way melt blowing is used. preferable. This is because not only is it easy to obtain ultra-thin long fibers that meet the purpose of the present invention, but also it is easy to obtain a web that is uniform in area thickness, etc., and is less likely to have pinholes. Also,
It may be a web made of ultrafine fibers obtained by dissolving and removing one of seabird fibers made of two components such as a polyamide-based component and a polyester-based component, or a web made of ultrafine fibers obtained by a peel-type composite spinning method. .

かかるウェブを構成する繊維は単繊維直径がo、1〜1
5ミクロン、好ましくは、02〜l、 0ミクロンの範
囲による極細可燃性合成繊維が主体となっていることが
必要である。ここで本発明において可燃性合成繊維とし
て(ま、易燃焼性及び難燃性の合成繊維を云い、特に燃
焼させやすいものだけですく高温を付与すれば燃焼させ
得るようなものであってもよい。逆に燃焼しやすいもの
を用いる場合には難燃剤加工を施こしておくことが好ま
しい。
The fibers constituting such a web have a single fiber diameter of o, 1 to 1
It is necessary that the main fiber is ultra-fine combustible synthetic fiber with a diameter of 5 microns, preferably in the range of 0.2 to 0.0 microns. Here, in the present invention, the combustible synthetic fibers (well, easily combustible and flame-retardant synthetic fibers are used), and only those that are particularly easy to burn, and those that can be combusted by applying a high temperature may also be used. On the other hand, when using a material that is easily combustible, it is preferable to treat it with a flame retardant.

これは使用中における火災対策として有効であり、この
加工が本発明p材の性能を阻害するものではない。特に
この主体となる可燃性合成繊維としては、ポリエステル
系繊維、ポリアミド系繊維、ポリオレフィン系繊維・ポ
リアミド系繊維等の熱可塑性合成繊維が好ましく、その
内でもボIJ エステル系合成繊維が寸法安定性面より
最も好ましい。
This is effective as a fire prevention measure during use, and this processing does not impede the performance of the p-material of the present invention. In particular, thermoplastic synthetic fibers such as polyester fibers, polyamide fibers, polyolefin fibers, and polyamide fibers are preferred as the main combustible synthetic fibers, and among these, BoIJ ester synthetic fibers are preferred in terms of dimensional stability. Most preferred.

この主体となるべき可燃性合成繊維の単繊維直径が01
ミクロン未満であると繊維同志の密着が大きいために、
これにより構成された炉材となすべき繊維積層物の密度
が大きくなり過ぎ、要求される極微細粒子の捕集は確実
となるが、初期通気抵抗が増大するため好ましくない。
The single fiber diameter of the combustible synthetic fiber that should be the main body is 01
If it is less than a micron, the adhesion between the fibers is large, so
As a result, the density of the fiber laminate to be made into the furnace material becomes too high, and although the collection of the required ultrafine particles is ensured, the initial ventilation resistance increases, which is not preferable.

逆に、単繊維直径が15ミクロンを超えると、これより
なる繊維積層物の密度が小さくなりすぎ、極微細粒子を
高効率で捕集することが困難となる。本発明において、
主体となすべき可燃性合成繊維の特に好ましい単繊直径
は0.2〜1.0ミクロンの1i[のものである。
On the other hand, if the single fiber diameter exceeds 15 microns, the density of the fiber laminate made of the fibers becomes too small, making it difficult to collect ultrafine particles with high efficiency. In the present invention,
A particularly preferred single fiber diameter of the combustible synthetic fiber to be the main fiber is 1i [0.2 to 1.0 microns.

かかる単繊維直径が01〜15ミクロンの極細可燃性合
成繊維を主体とするウェブは一枚もしくは二枚以上が積
層され一体化して繊維積層物を形成している。
One or more webs mainly composed of ultrafine combustible synthetic fibers having a single fiber diameter of 01 to 15 microns are laminated and integrated to form a fiber laminate.

上記可燃性合成繊維を主体とした繊維積層物において、
構成繊維の全てを単繊維直径が0.1〜1.5ミクロン
の同種の可燃性合成繊維としてもよいが、異種の繊維を
混ぜてもよく、特に、主体トナル可燃性合成繊維の最大
単繊維直径の2〜10倍の単繊維直径を有する同種もし
くは、異種の繊維が30%以下、好ましくは、20%以
下混合されていることが好ましい。この太い繊維は炉材
の補強的役割を果すと共に、極めて細い単繊維同志が相
互に密着するのを防ぎ、通気抵抗の急激な上昇を阻止す
る上で有益である。
In the fiber laminate mainly composed of the above-mentioned combustible synthetic fibers,
All of the constituent fibers may be the same type of flammable synthetic fiber with a single fiber diameter of 0.1 to 1.5 microns, but different types of fibers may be mixed, especially the largest single fiber of the main combustible synthetic fiber. It is preferable that 30% or less, preferably 20% or less of fibers of the same type or different types having a single fiber diameter of 2 to 10 times the diameter are mixed. These thick fibers not only serve to reinforce the furnace material, but also prevent extremely thin single fibers from coming into close contact with each other, and are useful in preventing a sudden increase in ventilation resistance.

本発明において重要なことは、かかる繊維積層物が次の
項目を満足していることである。
What is important in the present invention is that the fiber laminate satisfies the following requirements.

まず第1に、’X100(ただし、ρは繊維のρ 真の密度、ρ′は繊維積層物の見掛密度である。)で表
わされる繊維充填率が3〜20%の範囲にあることであ
る。繊維充填率が3%未満であると極微細塵埃の捕集が
確実には行ない得す、本発明の高性能エアーフィルター
用戸材とはなり得ない。
First of all, the fiber filling factor expressed as 'X100 (where ρ is the true density of the fibers and ρ' is the apparent density of the fiber laminate) is in the range of 3 to 20%. be. If the fiber filling rate is less than 3%, extremely fine dust cannot be collected reliably, and the high-performance air filter door material of the present invention cannot be obtained.

また、繊維充填率が20%以上となると初期通気抵抗が
大きくなり、短時間に目詰りを起してp材寿命が短かく
なり実用に供せないものとなるので好ましくない。本発
明において最も好ましい繊維充填率は5〜15%のもの
である。
Furthermore, if the fiber filling rate is 20% or more, the initial ventilation resistance will increase, clogging will occur in a short time, and the life of the p-material will be shortened, making it unsuitable for practical use. The most preferred fiber filling rate in the present invention is 5 to 15%.

第2に、炉材の単位面積当りの構成繊維の実測囲にある
ことである。ここで実測表面積とはN2ガスの吸着量よ
り算出する方式の比表面積測定装置により測定した値で
あり、また、理論表面積とは単位面積の重量と構成繊維
の直径、デニールより算出した計算上の総表面である。
Second, it is within the actual measurement range of constituent fibers per unit area of the furnace material. Here, the actual surface area is the value measured using a specific surface area measuring device that calculates from the amount of N2 gas adsorbed, and the theoretical surface area is the value calculated from the weight of the unit area, the diameter of the constituent fibers, and the denier. Total surface.

この表面積比は繊維積層物を構成する繊維の集束程度、
密着程度を表わすものであり、この値が07以上、好ま
しくは0.8以上である必要がある。表面積比が0.7
未満の場合、繊維積層物を構成する繊維が相互に密着し
てより太い繊維が多数形成されているために微細塵埃の
捕集効率が著しく低下するので好ましくない。特に単繊
維直径が0.5ミクロン以下の極細繊維は凝集力が強い
ために相互に密着した集束状繊維となる可能性が強い。
This surface area ratio is the degree of convergence of the fibers that make up the fiber laminate,
It represents the degree of adhesion, and this value needs to be 07 or more, preferably 0.8 or more. Surface area ratio is 0.7
If it is less than 1, the fibers constituting the fiber laminate are in close contact with each other to form a large number of thicker fibers, which is not preferable because the efficiency of collecting fine dust is significantly reduced. In particular, ultrafine fibers with a single fiber diameter of 0.5 microns or less have a strong cohesive force, so there is a strong possibility that they will become bundled fibers in close contact with each other.

そのため、本発明では)極細繊維の密着した集束状繊維
を分散化し単繊維状もしくはそ11に近い状態にするこ
とにより表面積比を0.7以上にする。例えば、メルト
ブロ一方式により製造した極細繊維ウェブに高圧水を噴
射処理して得られる。また、この処理によって繊維同志
のからみがよくなる。
Therefore, in the present invention, the surface area ratio is made to be 0.7 or more by dispersing tightly bound bundles of ultrafine fibers and making them into a single fiber state or a state close to that of single fibers. For example, it can be obtained by spraying high-pressure water onto a microfiber web produced by a one-way melt blow process. This treatment also improves the intertwining of the fibers.

第3に、戸材厚み方向の単繊維積層本数が40〜100
0本の範囲にあることである。本数が40本未満である
ときは、戸材の密度が小さくなり過ぎて微細塵埃を高効
率で捕集することが困難となる。また、本数が1000
本以上となると、p材の密度が大きくなり過ぎて初期通
気抵抗が増大するため好ましくない。なお、ここで云う
繊維積層100×単m雑直住(ミクロン) きる数を云う。
Thirdly, the number of laminated single fibers in the thickness direction of the door material is 40 to 100.
It is within the range of 0. When the number is less than 40, the density of the door material becomes too small, making it difficult to collect fine dust with high efficiency. Also, the number is 1000
If it exceeds 1,000 ml, the density of the p-material becomes too large and the initial ventilation resistance increases, which is not preferable. Note that the term here refers to the number of fibers that can be stacked 100 x single meter (microns).

さらに、本発明の炉材は少なくともその片面が、平均直
径0.05〜211m\平均深さ005〜0.5 mの
不均一形状の微小凹凸で全面が覆われている。
Further, at least one side of the furnace material of the present invention is completely covered with uneven micro-irregularities having an average diameter of 0.05 to 211 m and an average depth of 005 to 0.5 m.

ここで云う凹凸は、その断面が真円とはかぎらず、異形
断面の凹凸も多゛く含まれており、また、深さも多段と
なっているために、一つの凹凸の平均直径とは、最大長
径と最小長径との算術平均で表わされるものを云う。こ
の平均直径は005〜2m好ましくは0.1〜1mであ
る。本発明では平均直径がこの範囲からはずれても直ち
に本発明炉材の効果、即わち、炉材表面積の著しい増大
をはかり、ダスト捕集能力を増して、炉材寿命を長くす
る効果を減するものではない。また、全ての凹凸がこの
範囲にある必要はなく、数%以下の範囲で0.05〜2
m以外の凹凸が含まれていてもよい。
The unevenness referred to here is not necessarily a perfect circle in cross section, but includes many irregularities with irregular cross sections, and has multiple depths, so the average diameter of one unevenness is: It is expressed as the arithmetic mean of the maximum major axis and the minimum major axis. This average diameter is between 0.05 and 2 m, preferably between 0.1 and 1 m. In the present invention, even if the average diameter deviates from this range, the effect of the furnace material of the present invention, that is, the effect of significantly increasing the surface area of the furnace material, increasing the dust collection ability, and extending the life of the furnace material, is immediately reduced. It's not something you do. In addition, it is not necessary that all the unevenness be within this range, but within the range of 0.05 to 2.
It is also possible to include irregularities other than m.

しかし、平均直径が2m以上のものが極めて多くなると
、炉材表面積の著しい減少をきたし本発明の目的を達成
しえないので好ましくない。また、平均直径が0,05
■以上のものが極めて多くなった場合にも同様の理由に
より好ましくない。
However, it is not preferable that the number of particles having an average diameter of 2 m or more becomes extremely large, since this results in a significant reduction in the surface area of the furnace material, making it impossible to achieve the object of the present invention. Also, the average diameter is 0.05
It is also undesirable for the same reason if the amount of the above items becomes extremely large.

また)凹凸の平均深さとは)最大深さと最小深さの算術
平均で表わされるものを云う。この平均深さは0.05
〜0.5 I11好ましくは0.1〜0.3 mである
。平均深さが0.5−以上になるとピンボール的な四部
が形成されるため捕集効率が低下するので好ましくない
。平均深さが0.05m以下であると、炉材表面積の増
大がはかれず、本発明目的を達成し得ないので好ましく
ない。
Furthermore, the average depth of unevenness is expressed as the arithmetic mean of the maximum depth and the minimum depth. This average depth is 0.05
-0.5 I11 preferably 0.1-0.3 m. If the average depth is 0.5- or more, pinball-like four parts are formed, which lowers the collection efficiency, which is not preferable. If the average depth is less than 0.05 m, the surface area of the furnace material cannot be increased and the object of the present invention cannot be achieved, which is not preferable.

なお、本発明において、微小凹凸の平均直径、平均深さ
の測定は、炉材表面をカーボン紙で軽くこすって、凸部
先端を着色し、倍率10倍の実体顕微鏡により線絡して
行なった。
In the present invention, the average diameter and average depth of minute irregularities were measured by lightly rubbing the surface of the furnace material with carbon paper, coloring the tips of the convex parts, and wire-wiring them using a stereomicroscope with a magnification of 10x. .

かかる構造、表面形状を有する本発明炉材の製造方法は
、単繊維直径が0.1〜1.5ミクロンの極細可燃性合
成繊維を主体とするウェブの単独もしくは複数枚を重ね
て熱処理を施こすか、あるいは熱処理を施こさない繊維
積層体を移動させつつ、その片面もしくは両面に、該繊
維積層1対して平行に円運動もしくは往復運動している
直l O,1〜05■のノズル群から高圧水を噴射処理
するに際して、該繊維積層体とノズル群との間に網状体
を介在せしめて高圧水を微分散化して処理して、次いで
、乾燥もしくは熱処理を施こすものである。
The method for manufacturing the furnace material of the present invention having such a structure and surface shape involves heat-treating a single web or a plurality of webs made of ultrafine combustible synthetic fibers with a single fiber diameter of 0.1 to 1.5 microns in a stacked manner. While moving a fiber laminate that has not been subjected to rubbing or heat treatment, a group of straight nozzles from 1 to 05 that are in circular or reciprocating motion parallel to the fiber laminate on one or both sides of the fiber laminate. When high-pressure water is sprayed from the fiber laminate, a mesh is interposed between the fiber laminate and the nozzle group to finely disperse the high-pressure water, followed by drying or heat treatment.

本発明において繊維積層物は、あらかじめ熱処理を施こ
しても施こさなくてもよい。熱処理しない場合には最終
工程で熱処理を施こせばよく、また1熱処理を施こす場
合には最終工程では乾燥を行なえばよい。ここで熱処理
は形態安定性等を目的として行なうものであり、120
℃以上であって繊維の融点以下の温度で行なうのが好ま
しい。
In the present invention, the fiber laminate may or may not be subjected to heat treatment in advance. If no heat treatment is required, heat treatment may be performed in the final step, and if one heat treatment is performed, drying may be performed in the final step. Here, the heat treatment is performed for the purpose of morphological stability, etc.
It is preferable to carry out the process at a temperature of .degree. C. or above and below the melting point of the fiber.

かかる繊維積層体は移動する金網上に乗せて搬送させつ
つ、バキュームゾーンでその表面に高圧水を噴射処理し
て繊維同志のからみを与える。この高圧水の噴射処理は
、直径が01〜0.5 wm s、好ましくは、0.1
〜0.3 trrm直径のノズルを多数配列したノズル
群から水圧2〜30 kg/cm2(ゲージ圧)の高圧
水で行なう。ノズル直径が0111II+以下であると
高圧水であっても繊維積層体に噴射する水の力が弱く繊
維同志のからみが充分に行なえない。
While the fiber laminate is conveyed on a moving wire mesh, its surface is sprayed with high-pressure water in a vacuum zone to entangle the fibers. This high-pressure water injection treatment has a diameter of 01-0.5 wm s, preferably 0.1
The process is carried out using high pressure water of 2 to 30 kg/cm2 (gauge pressure) from a nozzle group consisting of a large number of nozzles with a diameter of 0.3 trrm. If the nozzle diameter is 0111II+ or less, even if high-pressure water is used, the force of the water sprayed onto the fiber laminate will be weak and the fibers will not be entangled sufficiently.

そのため繊維充填率が本発明炉材の範囲に入らす1その
上、集束繊維の分散が不充分となり繊維表面積比も0.
7以上にはなしえない。
Therefore, the fiber filling rate falls within the range of the furnace material of the present invention.1 Furthermore, the dispersion of the bundled fibers is insufficient and the fiber surface area ratio is also 0.
It cannot be higher than 7.

また、ノズル直径が0.5 wa以上になると水の力が
強すぎて繊維積層体にピンホールを発生するおそれがあ
り、本発明の目的である高性能炉材とはなりえない。
Further, if the nozzle diameter is 0.5 wa or more, the force of the water is too strong and there is a risk of generating pinholes in the fiber laminate, and the material cannot be a high-performance furnace material, which is the object of the present invention.

繊維積層物に噴射処理する水圧が2 kg/cm”以下
の場合、水の力か弱すぎて繊維同志のからみが充分に行
なえず、繊維充填率)繊維表面積比が本発明の範囲に入
らない。また、水圧が30 kg/cm2以上の場合、
水の力が強すぎて繊維積層体にピンホールが発生するお
それがあり、高性能炉材となりえない場合があるので好
ましくない。
If the water pressure applied to the fiber laminate is less than 2 kg/cm, the force of the water is too weak to sufficiently entangle the fibers, and the fiber filling rate and fiber surface area ratio will not fall within the scope of the present invention. .Also, if the water pressure is 30 kg/cm2 or more,
This is not preferable because the force of the water is too strong and there is a risk that pinholes will occur in the fiber laminate, making it impossible to obtain a high-performance furnace material.

繊S積層体に高水圧を噴射処理するノズル群は移動して
いる繊維積層体に対して平行に円運動もしくは往復運動
している。この時の回転速度もしくは振巾速度は、通常
、100〜300回/分が好ましいが、これは繊維積層
体の移動速度との関係で適時選定すれ(ずよい。また、
円運動の直径往復運動の振巾は、ノズルの左右前後の配
列間隔より大きいことが望ましく、ノズル配列間隔が3
〜10叫の場合、円運動の直径、あるいは、往復運動の
振巾は5〜12+mnが好ましい。
The nozzle group that sprays high water pressure onto the fiber S laminate is in circular or reciprocating motion parallel to the moving fiber laminate. The rotational speed or shaking speed at this time is usually preferably 100 to 300 times/minute, but this should be selected appropriately in relation to the moving speed of the fiber laminate.
It is desirable that the amplitude of the diametric reciprocating motion of the circular motion is larger than the arrangement interval of the left and right front and rear nozzles, and the nozzle arrangement interval is 3.
In the case of ~10 mn, the diameter of the circular motion or the amplitude of the reciprocating motion is preferably 5 to 12+mn.

本発明炉材の製造方法において、最も重要なことは、繊
維積層体に高圧水を噴射処理するに際して、該繊維積層
体とノズル群との間に網状体を介在させておき、高圧水
を微分散化してから繊維積層体表面に噴射するのである
。この網状体はノズル群から分離し固定しておく。これ
により円運動もしくは往復運動するノズルから噴射され
る高圧水は網状体の構成金属線に衝突し微分散化するの
である。この網状体として、金網、合成樹脂網、合成繊
維モノフィラ網などがあるが、これらの内でも最も好ま
しいものは高圧水によっても変形しに<<、ヤング率と
寸法安定性等を有す直径0.1〜1mの金属線よりなる
50〜200メツンユの金網である。
In the method for manufacturing furnace materials of the present invention, the most important thing is that when high-pressure water is sprayed onto the fiber laminate, a net-like body is interposed between the fiber laminate and the nozzle group, and the high-pressure water is slightly sprayed. After being dispersed, it is sprayed onto the surface of the fiber laminate. This net-like body is separated from the nozzle group and fixed. As a result, the high-pressure water jetted from the circular or reciprocating nozzle collides with the metal wires that make up the net-like body and becomes finely dispersed. Examples of this net-like body include wire nets, synthetic resin nets, and synthetic fiber monofila nets, but among these, the most preferred one is a net with a diameter of 0, which does not deform even when exposed to high-pressure water, and has Young's modulus and dimensional stability. It is a wire mesh of 50 to 200 meters made of 1 to 1 meter metal wire.

網状体の位置は繊維積層物の表面から1〜3m上方であ
って、ノズル群より1〜5 cm 下方が好まし!ハ。
The position of the network is preferably 1 to 3 m above the surface of the fiber laminate and 1 to 5 cm below the nozzle group! Ha.

繊維積層体への微分散化した高圧水の噴射処理は、片面
もしくは両面に少なくとも1回以上行なうことが望まし
い。
It is desirable to spray finely dispersed high-pressure water onto the fiber laminate at least once on one or both sides.

なお、本発明において、かかる網状体により微分散化し
た高圧水を噴射処理する前に、繊維積層体の片面もしく
は両面に、それぞれ1回以上の高圧水処理、即わちノズ
ル群から噴射された微分散していない高圧水を直接繊維
積層体に噴射しておくことは、繊維積層体の集束繊維の
分散化をはかり、繊維同志のからみをよくして、次の微
分散高圧水の作用を助ける上で極め好ましいことである
In addition, in the present invention, before the high-pressure water finely dispersed by such a network is sprayed, one or both sides of the fiber laminate are treated with high-pressure water one or more times, that is, sprayed from a group of nozzles. Injecting high-pressure water that is not finely dispersed directly onto the fiber laminate will disperse the bundled fibers in the fiber laminate, improve the intertwining of the fibers, and facilitate the next action of the finely dispersed high-pressure water. This is highly desirable in terms of helping people.

この場合にもノズル群は円運動もしくは往復運動を行な
tp%しめて、繊維積層物への高圧水の噴射面積を増大
させておく。また、この時の高圧水の圧力は5〜30 
kg/cm2が好ましい。
In this case as well, the nozzle group performs a circular motion or a reciprocating motion to reduce tp% and increase the area of high-pressure water sprayed onto the fiber laminate. Also, the pressure of the high pressure water at this time is 5 to 30
kg/cm2 is preferred.

かくしてなる本発明1材は、繊維充填率が小さく、構成
繊維は分散されているため、通気抵抗の極めて小さい状
態で微細塵埃をほぼ完全に捕集することができる。更に
その表面は第1図並びに第2図に示すごとく微小凹凸に
よって全面が覆われているため、を過に有効な表面が増
大して、ダスト捕集量の増大と寿命の著しい向上がはか
れる。
Since the material of the present invention 1 has a small fiber filling rate and the constituent fibers are dispersed, it is possible to almost completely collect fine dust with extremely low ventilation resistance. Furthermore, since the entire surface is covered with minute irregularities as shown in FIGS. 1 and 2, the effective surface area is greatly increased, resulting in an increase in the amount of dust collected and a remarkable improvement in the life span.

さらに本発明沢材は極細可燃性合成繊維を主体としてい
るため、強力は大であり、取扱い中側用中において破損
することはなく、まだ使用済p材は焼却廃棄できるので
あり、従来から使用されているガラス繊維製高性能エア
ーフィルターの欠点、問題点を全て解決した画期的な高
性能エアーフィルターとなし得るのである。
Furthermore, since the present invention material is mainly made of ultra-fine combustible synthetic fibers, it is very strong and will not break during handling, and used P material can still be disposed of by incineration. This makes it possible to create a revolutionary high-performance air filter that solves all of the drawbacks and problems of conventional glass fiber high-performance air filters.

次に実施例を挙げて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例1 メルトプロー法により製造した単繊維直径が0.08ミ
クロン、01ミクロン、1ミクロン11,5ミクロン、
2ミクロンを主体とするポリエステル繊維ウェブ(目付
a o f/m2)を1枚〜5枚積層し、130℃定巾
でピンテンター処理を施こした。
Example 1 Single fiber diameters produced by melt blowing method were 0.08 micron, 01 micron, 1 micron, 11.5 micron,
One to five polyester fiber webs (fabric weight aof/m2) mainly having a diameter of 2 microns were laminated and subjected to pin tenter treatment at a constant width of 130°C.

これを1m/minの速度で移動している50メツシユ
の金網上に乗せて、移動させつつ、バキュームゾーンで
その上方40鶴の位置にあるノズル群からゲージ圧2〜
30 kg/an2の高圧水を噴射処理した。この時、
繊維積層物とノズル群の中間に直径隔で千鳥状に6列配
置し、直径81mで、250回40円運動をしている。
This is placed on a 50-mesh wire mesh moving at a speed of 1 m/min, and while it is being moved, a gauge pressure of 2 to
High pressure water of 30 kg/an2 was sprayed. At this time,
They are arranged in six rows in a staggered manner with diameter intervals between the fiber laminate and the nozzle group, and have a diameter of 81 m, making 40 circular movements 250 times.

積層物への高圧水の噴射処理は表裏各2回行ない、次い
で100℃で乾燥した。得られたF材の0.3ミクロン
粒径のステアリン酸粒子の捕集効率および通気抵抗を測
定し姫。
The laminate was sprayed with high-pressure water twice on each side, and then dried at 100°C. The collection efficiency and ventilation resistance of stearic acid particles with a particle size of 0.3 microns of the obtained F material were measured.

その結果を次表に示した。The results are shown in the table below.

なお、実験屋の前に記載した○×の記号で○は本発明p
材、×は杢発明外の涙材を示す。また、外観欄の微小凹
凸とは平均直径005〜2鵡、深さ0.05〜0.5鴫
の凹凸を云う。
In addition, in the ○× symbol written in front of the experimenter, ○ indicates the present invention p.
Material, × indicates tear material other than the heather invention. Further, the minute irregularities in the appearance column refer to irregularities with an average diameter of 0.05 to 2.0 mm and a depth of 0.05 to 0.5 mm.

本実施例の実験應60涙材と現行ガラス繊維製涙材との
物性比較を行なった結果を次に示した。
The results of a comparison of the physical properties of the experimental 60 lacrimal material of this example and the current glass fiber lacrimal material are shown below.

また、実験應6のF材の表面写真會命幸士キ曹→を第2
図に示した。
In addition, the surface photograph of F material in Experiment 6 was taken as the second
Shown in the figure.

実験& 6 tP材現行ガラス沖戸 材張強力(kf/1n)   3.25X2.551.
10X0.85破断伸度 (%)    30X、42
3X6耐水圧(強力保持率%)  100X100 4
0X40耐熱性(強力保持率%)  100X100 
100X100折目強力(強力保持率%)  130X
120  69X75破裂強さく ky/cm2)  
  2,81   0.3 a焼却残渣 (%)   
  0.07   95.150簡H20までの到達時
間@  410    200(注) 耐水 圧: 水中60分浸漬後の強力保持重態 熱性;
120°C60分処理後の強力保持率実施例カニ ロー
ルプレス(3K910nb2)後の強力保持率実施例2 単m維直径が0.5ミクロンのポリエステル繊維よりな
り、ウェブ目(’J’#(30r/m2+ 60r/m
2+100 ’/m” + 150 ’/m” + 2
0 ” /m2C’) 5種ノウニブな、メルトブロー
法により製造した。得られたウェブは目付が大きくなる
に従がって肉眼で観察し得る太いロープ状の集束状繊維
が多数混在し、表層部にムラの多いものとなった。これ
らのウェブをそれぞれ単独で実施fi11と同じ方法で
処理して涙材を得た。ただし、高圧水の噴射処理は、第
1回目をゲージ圧5 ky/cm2の直接水(金網をつ
けない状態)でウェブの表裏各1回処理し、次いで、第
2回目をゲージ圧5kf/crn2の分散水(金網をつ
けた状態)でウェブの表裏各1回処理した。得られたF
材は表面に微小凹凸が多数形成されていた。
Experiment & 6 tP material Current glass Okito material tensile strength (kf/1n) 3.25X2.551.
10X0.85 breaking elongation (%) 30X, 42
3X6 water pressure resistance (strong retention rate %) 100X100 4
0X40 heat resistance (strong retention rate %) 100X100
100X100 fold strength (strength retention rate%) 130X
120 69X75 bursting strength ky/cm2)
2,81 0.3 a Incineration residue (%)
0.07 95.150 Easy Time to reach H20 @ 410 200 (Note) Water resistance Pressure: Strong retention after 60 minutes immersion in water Heat resistance;
Example of strength retention after processing at 120°C for 60 minutes Example 2 of strength retention after crab roll press (3K910nb2) The web is made of polyester fibers with a single meter fiber diameter of 0.5 microns. /m2+ 60r/m
2+100'/m" + 150'/m" + 2
0 ''/m2C') 5 types were produced by a unique melt-blowing method.As the fabric weight increases, the obtained web contains a large number of thick rope-like bundled fibers that can be observed with the naked eye, and the surface layer part Each of these webs was treated individually in the same manner as in Example fi11 to obtain lachrymal material.However, the first high-pressure water jet treatment was performed at a gauge pressure of 5 ky/cm2. The front and back sides of the web were treated once each with direct water (without the wire mesh attached), and then the front and back sides of the web were treated a second time with dispersed water (with the wire mesh attached) at a gauge pressure of 5 kf/crn2. .obtained F
The material had many minute irregularities formed on its surface.

これら炉材の性能を示す。The performance of these furnace materials is shown below.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明沢材の概略断面図であり、図中1は沢材
表面の微小凹凸を示す。 第2図は本発明沢拐の表面の構造を示す顕微鏡写真であ
る。 出願人 旭化成工業株式会社 代理人 豊  1) 善  雄 千1図 帛2図 Iy+気
FIG. 1 is a schematic cross-sectional view of the swamp material of the present invention, and 1 in the figure indicates minute irregularities on the surface of the swamp material. FIG. 2 is a micrograph showing the structure of the surface of the present invention. Applicant Asahi Kasei Industries Co., Ltd. Agent Yutaka 1) Zen Yusen 1 Figure 2 Figure Iy+Ki

Claims (1)

【特許請求の範囲】 (り単繊維直径が0.1〜1.5ミクロンの極細可燃性
合成繊維を主体とするウェブの単独もしくけ複数枚が重
なり合って一体イピされた繊維積層物よりなる炉材にお
いて、該炉材の繊維充填率が3〜20%)炉材の単位面
積当りの構成繊維の実測表面積・   5B SBと理論表面積SAO比か1〉5≧07、炉材の厚み
方向の単繊維積層本数が40〜1000本であり、かつ
、該炉材の少なくとも片面は、平均直径が0.05〜2
m、平均深さが0.05〜0.5mの不均一形状の微小
凹凸で全面が覆われていることを特徴とする炉材。 (2)単繊維直径が01〜15ミクロンの極細可燃性合
成繊維を主体とするウェブは、メルトプロー法により得
られるポリエステル長繊維ウェブである特許請求の範囲
第1項記載の炉材。 (3)単繊維直径が0.1〜1.5ミクロンの極細可燃
性合成繊維を主体とする。ウェブの単独もしくは複数枚
を重ねて熱処理を施こすか、あるいは、熱処理を施こさ
ない繊維積層体を移動させつつ、その片面もしくは両面
に、該繊維積層体に対して平行に円運動もしくは往復運
動している直径o、 1〜0、5 mのノズル群から高
圧水な噴射処理するに際して、該繊維積層体とノズル群
との間に網状体を介在せしめて高圧水を微分散化して処
理し、次いで乾燥もしくは熱処理を施こすことを特徴と
する炉材の製造方法。 (4)単繊維直径が0.1〜1.5ミクロンの極細可燃
性合成繊維を主体とするウェブは)メルトブロー法によ
り得られるポリエステル長繊維ウェブである特許請求の
範囲第3項に記載の炉材の製造方法。
[Scope of Claims] (Constitutes a fiber laminate in which a single web or a plurality of webs are overlapped and integrally made of ultrafine combustible synthetic fibers with a single fiber diameter of 0.1 to 1.5 microns. In the furnace material, the fiber filling rate of the furnace material is 3 to 20%) The actual measured surface area of the constituent fibers per unit area of the furnace material is The number of laminated single fibers is 40 to 1000, and at least one side of the furnace material has an average diameter of 0.05 to 2.
m, a furnace material characterized in that the entire surface is covered with non-uniform micro-irregularities having an average depth of 0.05 to 0.5 m. (2) The furnace material according to claim 1, wherein the web mainly composed of ultrafine combustible synthetic fibers having a single fiber diameter of 01 to 15 microns is a polyester long fiber web obtained by a melt blowing method. (3) Mainly composed of ultrafine combustible synthetic fibers with a single fiber diameter of 0.1 to 1.5 microns. Apply heat treatment to a single or multiple webs, or move a fiber laminate that is not subjected to heat treatment, and perform circular or reciprocating motion on one or both sides parallel to the fiber laminate. When spraying high-pressure water from a nozzle group with a diameter o of 1 to 0.5 m, a mesh body is interposed between the fiber laminate and the nozzle group to finely disperse the high-pressure water. , followed by drying or heat treatment. (4) The web mainly composed of ultrafine combustible synthetic fibers with a single fiber diameter of 0.1 to 1.5 microns is a polyester long fiber web obtained by a melt blowing method. Method of manufacturing wood.
JP11863582A 1982-04-26 1982-07-09 Filter medium and its manufacture Granted JPS5910319A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11863582A JPS5910319A (en) 1982-07-09 1982-07-09 Filter medium and its manufacture
US06/483,253 US4548628A (en) 1982-04-26 1983-04-08 Filter medium and process for preparing same
EP83103962A EP0092819B1 (en) 1982-04-26 1983-04-22 Filter medium and process for preparing same
DE8383103962T DE3372923D1 (en) 1982-04-26 1983-04-22 Filter medium and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11863582A JPS5910319A (en) 1982-07-09 1982-07-09 Filter medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS5910319A true JPS5910319A (en) 1984-01-19
JPH0372323B2 JPH0372323B2 (en) 1991-11-18

Family

ID=14741409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11863582A Granted JPS5910319A (en) 1982-04-26 1982-07-09 Filter medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS5910319A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211027A (en) * 1985-03-15 1986-09-19 東レ株式会社 Electret nonwoven fabric
JPS6315789A (en) * 1986-07-07 1988-01-22 Nichiden Kagaku Kk Binder for thermal recording paper
JPH0196271A (en) * 1987-10-09 1989-04-14 Toyo Ink Mfg Co Ltd Heat-sensitive coloring ink composition
JPH01306282A (en) * 1988-06-03 1989-12-11 Mitsubishi Paper Mills Ltd Heat-sensitive recording sheet
JP2009509753A (en) * 2005-09-30 2009-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Agglomerated filter media and method
JP2011177629A (en) * 2010-02-26 2011-09-15 Nippon Muki Co Ltd Thermal bond nonwoven fabric filter medium and air filter using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427064A (en) * 1977-07-27 1979-03-01 Asahi Chemical Ind Nonwoven cloth like material and production
JPS5765311A (en) * 1980-10-08 1982-04-20 Asahi Chem Ind Co Ltd Filter material
JPS57118636A (en) * 1981-01-16 1982-07-23 Matsushita Electronics Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427064A (en) * 1977-07-27 1979-03-01 Asahi Chemical Ind Nonwoven cloth like material and production
JPS5765311A (en) * 1980-10-08 1982-04-20 Asahi Chem Ind Co Ltd Filter material
JPS57118636A (en) * 1981-01-16 1982-07-23 Matsushita Electronics Corp Manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211027A (en) * 1985-03-15 1986-09-19 東レ株式会社 Electret nonwoven fabric
JPH0354620B2 (en) * 1985-03-15 1991-08-20
JPS6315789A (en) * 1986-07-07 1988-01-22 Nichiden Kagaku Kk Binder for thermal recording paper
JPH0580356B2 (en) * 1986-07-07 1993-11-08 Nippon Starch Refining
JPH0196271A (en) * 1987-10-09 1989-04-14 Toyo Ink Mfg Co Ltd Heat-sensitive coloring ink composition
JPH01306282A (en) * 1988-06-03 1989-12-11 Mitsubishi Paper Mills Ltd Heat-sensitive recording sheet
JP2009509753A (en) * 2005-09-30 2009-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Agglomerated filter media and method
JP4785928B2 (en) * 2005-09-30 2011-10-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Agglomerated filter media and method
JP2011177629A (en) * 2010-02-26 2011-09-15 Nippon Muki Co Ltd Thermal bond nonwoven fabric filter medium and air filter using the same

Also Published As

Publication number Publication date
JPH0372323B2 (en) 1991-11-18

Similar Documents

Publication Publication Date Title
US6827764B2 (en) Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers
KR100494285B1 (en) Wipers Comprising Point Unbonded Webs
US5525397A (en) Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
DE69910660T2 (en) Dust filter bag for a vacuum cleaner or filter, and method for filtering a gas
US4548628A (en) Filter medium and process for preparing same
CN102264968B (en) Nonwoven web and filter media containing partially split multicomponent fibers
US5486411A (en) Electrically charged, consolidated non-woven webs
JP2004532098A (en) Composite filter and method for producing the same
WO2002042043A1 (en) Method and apparatus for producing high efficiency fibrous media and web media formed thereby
US5730923A (en) Post-treatment of non-woven webs
JPS5910319A (en) Filter medium and its manufacture
JP2002316010A (en) Charged filter and mask using the same
AU2019220520A2 (en) Filter medium
JP2004003065A (en) Conjugate fiber nonwoven fabric and composite nonwoven fabric
JPS58186412A (en) Filter medium
JPH073598A (en) Nonwoven fabrics and fabric lamination
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JPH11179121A (en) Substrate for filter and filter comprising substrate for filter
JPH08209521A (en) Production of filter having high collecting efficiency
JP3563483B2 (en) Air filter medium and method of manufacturing the same
JP3545857B2 (en) Insulating composite and manufacturing method thereof
CN211942355U (en) Composite non-woven fabric for wiping kitchen oil stains
JP2011005398A (en) Triboelectrified filter medium
JPS5910320A (en) Filter medium
JPH0913254A (en) Flame retardant composite fabric and its production