JPS59102891A - Preparation of silicon single crystal - Google Patents

Preparation of silicon single crystal

Info

Publication number
JPS59102891A
JPS59102891A JP21045782A JP21045782A JPS59102891A JP S59102891 A JPS59102891 A JP S59102891A JP 21045782 A JP21045782 A JP 21045782A JP 21045782 A JP21045782 A JP 21045782A JP S59102891 A JPS59102891 A JP S59102891A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
oxygen
molten zone
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21045782A
Other languages
Japanese (ja)
Inventor
Masahisa Endo
遠藤 正久
Masaki Sato
正樹 佐藤
Kunio Suzuki
鈴木 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP21045782A priority Critical patent/JPS59102891A/en
Publication of JPS59102891A publication Critical patent/JPS59102891A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To increase thermal stress resistance, and to improve a getter effect to the impurity metals in a single crystal, by dipping a jig made of high-purity quartz in the molten zone during the growth of single crystal, and doping oxygen to the melt at an arbitrary concentration. CONSTITUTION:A polycrystalline silicon rod 1 used as a raw material is made to contact with the seed crystal 4, and the contacting part is heated locally with a high-frequency heating coil 2 to form a molten zone. The rod 1 is lowered together with the seed crystal 4 to grow a single crystal having the same directions of crystal axes as the seed crystal 4 and form a thick columnar part 6. In this state, a jig made of high-purity quartz is inserted into the molten zone 5 and oxygen is doped in the melt at an arbitrary concentration. A crystal having high thermal stress resistance, and socalled intrisic getter effect comprising the capability of absorbing the metallic impurities in the wafer in the device process, can be prepared by this process.

Description

【発明の詳細な説明】 本発明はシリコン単結晶の製造方法に関するもので、特
に単結晶を使用する半導体素子製造工程に含まれる熱処
理工程においてI/ 17コンウエー八に生ずる熱応力
に強く、かつデバイスプロセス中の金膓不純物汚染をウ
ェーハ内部に吸収する。いわゆるイントリンシックゲッ
タリング効果を持ち得るシリコン単結晶を得ることを目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicon single crystal, which is particularly resistant to thermal stress generated in I/17 Conway 8 during a heat treatment process included in a semiconductor device manufacturing process using a single crystal, and which is suitable for devices. Absorb impurity contamination during the process into the wafer. The purpose is to obtain a silicon single crystal that can have a so-called intrinsic gettering effect.

シリフン結晶を使用した半導体孝子製造には。For semiconductor filtration manufacturing using silicone crystal.

酸化拡散工程として1000℃〜125(l程度の高温
下での熱処理が必要であるが、その際シリコンウェーハ
内に熱応力が発生し、熱応力が弾性限界を超えた場合転
位の発生と増殖が起り(スリップ欠陥ンνリフンウェー
ハは歪む。スリップ欠陥が多く発生し、かつ歪みの大き
いシリコンウェーハは半導体素子製造工程のホトIJソ
グラフィ一工程を困難にするばかりでなく、スリップ欠
陥による素子特性の劣化を招く原因となる。
The oxidation diffusion process requires heat treatment at a high temperature of about 1000°C to 125 liters, but at this time thermal stress is generated within the silicon wafer, and if the thermal stress exceeds the elastic limit, dislocations may occur and multiply. Silicon wafers with many slip defects and large distortions not only make the photo-IJ lithography step of the semiconductor device manufacturing process difficult, but also cause deterioration of device characteristics due to slip defects. It causes an invitation.

この現象はりリフンウエーへの大直径化にっれてi″″
r1′″ra著となってきている。
This phenomenon occurs as the diameter of the beam becomes larger.
It has become the author of r1'''ra.

また孝子の電気特性を左右する要素の一つとしてウェー
ハ表面の不純物の汚染が知られており。
Furthermore, contamination by impurities on the wafer surface is known to be one of the factors that influences the electrical characteristics of Takako.

何らかの方法で除去しなければならない。例えばウェー
ハの裏面に加工歪層を意図して付与し、高温の醜化拡散
工程に不純物をその歪層に固着させる方法などが使われ
ている。
It has to be removed somehow. For example, a method is used in which a strained layer is intentionally added to the back side of a wafer and impurities are fixed to the strained layer during a high-temperature deforming diffusion process.

一方、シリコン単結晶の製造法としては、チョクラルス
キー法(O2法)および浮遊帯溶融法(FZ法ンがよく
知られているが、O2法で育成されたシリコン単結晶は
一般VcFZ法により育成されたシリコン単結晶に比べ
熱応力に強いことが知られている(文献 8.M、 H
u et al、ジャーナルオブ アプライド フィジ
クス 46 (5)P、1869,1975)。
On the other hand, the Czochralski method (O2 method) and the floating zone fusion method (FZ method) are well known as methods for producing silicon single crystals, but silicon single crystals grown by the O2 method can be grown by the general VcFZ method. It is known that it is more resistant to thermal stress than grown silicon single crystals (Reference 8.M, H
u et al, Journal of Applied Physics 46 (5) P, 1869, 1975).

またイントリンシッグゲツタリング効果はFZ結晶には
見られず、O2結晶にて発現することが知られている。
Furthermore, it is known that the intransig gettering effect is not observed in FZ crystals, but is expressed in O2 crystals.

(文献T、Y、Tan、B!、E、Gardnsr。(Reference T, Y, Tan, B!, E, Gardnsr.

and W、に、Tioe、ジャーナル オヲ アプラ
イドフィシゲス レター 30 (4)P、175,1
977J。
and W, Ni, Tioe, Journal Owo Applied Physics Letters 30 (4) P, 175, 1
977J.

これはC2法の単結晶製造工程において、酸素が石英ル
ツボの溶解によシ20 ppma  程シリコン単結晶
中にドープされているのに反し、FZ法で育成されたi
/ Qコン単結晶中にはその製造法から酸素濃度は0.
lppma以下であることのためと考えられている。
This is because in the single crystal production process using the C2 method, oxygen is doped into the silicon single crystal at a concentration of about 20 ppma to prevent dissolution in the quartz crucible.
/ Due to the manufacturing method, the oxygen concentration in the Qcon single crystal is 0.
This is thought to be due to the fact that it is less than lppma.

第1図は従来のFZ法によるシリコン単結晶製造におけ
る溶融帯附近の斜視図である。原料の多結晶シリコン棒
1が上方より徐々に下降し、高周波加熱フィル2に近接
するとともにす11コン棒は局部的に発熱溶融するが、
加熱コイル2の中央を通過して下降するにつれ冷却固化
し単結晶3が成長する。周囲はアルゴンガスのみが充満
しているため、育成された単結晶には酸素がドープされ
ることはなく、単結晶中の酸素濃度は0.1ppma以
下という低濃度に保たれる。この結果FZ法により育成
された単結晶は熱応力に剥くかつイントリンリッグゲツ
タリング効果がないという難点があった◎ このためFZtP、におけるリリコン単結晶育成中に酸
素を必要量だけドープする試みがなされている。これは
単結晶育成時に雰囲気中に機織の酸素あるいは水蒸気を
導入して、必要量の酸素を該結晶中にドープしようとす
るものであるが、溶融帯表面に酸化膜を生じ結晶が多結
晶化して目的を達成することはできなかった。
FIG. 1 is a perspective view of the vicinity of a molten zone in silicon single crystal manufacturing by the conventional FZ method. As the raw material polycrystalline silicon rod 1 gradually descends from above and approaches the high-frequency heating filter 2, the rod 11 locally heats up and melts.
As it passes through the center of the heating coil 2 and descends, it is cooled and solidified, and a single crystal 3 grows. Since the surrounding area is filled only with argon gas, the grown single crystal is not doped with oxygen, and the oxygen concentration in the single crystal is maintained at a low concentration of 0.1 ppma or less. As a result, single crystals grown by the FZ method had the disadvantages of peeling due to thermal stress and no intrarin rig gettering effect. For this reason, attempts were made to dope the necessary amount of oxygen during the growth of Lyricon single crystals in FZtP. being done. This method involves introducing weaving oxygen or water vapor into the atmosphere during single crystal growth to dope the necessary amount of oxygen into the crystal, but this creates an oxide film on the surface of the molten zone and causes the crystal to become polycrystalline. I was unable to achieve my goal.

本発明者らはこの点について検討の結果、簡単な方法で
単結晶中に任意濃度の酸素をドープできる方法を見出し
た。すなわち、この発明は浮遊帯溶融法によるシリコン
単結晶の製造において、高純度石英製の治具を溶融帯中
に浸漬保持ニア、酸素を任意濃度にドープした単結晶を
得ることを特徴とするシリコン単結晶の製造方法に関す
るものである。
As a result of studies on this point, the present inventors have found a simple method for doping oxygen at an arbitrary concentration into a single crystal. That is, the present invention is characterized in that in the production of silicon single crystals by the floating zone melting method, a jig made of high-purity quartz is immersed and held in a molten zone to obtain a silicon single crystal doped with oxygen to a desired concentration. This invention relates to a method for producing a single crystal.

以下本発明を#!2図に基づいて詳細に説明する。#This invention below! This will be explained in detail based on FIG.

第2図(イ)K示すようVC,原料の多結晶1/ II
コン棒1を上方より下降させ高周波加熱コイル2に近づ
ける。同時に下方より種結晶4を上昇させ高周波加熱コ
イル2の中央で多結晶シリコン棒1と接触させる。両者
は加熱コイルにより接触部を中心として局部的に加熱さ
れ溶融して溶融帯5を生ずる。
Figure 2 (a) As shown in K, VC, raw material polycrystalline 1/II
The connecting rod 1 is lowered from above and brought close to the high frequency heating coil 2. At the same time, the seed crystal 4 is raised from below and brought into contact with the polycrystalline silicon rod 1 at the center of the high frequency heating coil 2. Both are locally heated and melted by a heating coil, centering on the contact portion, to form a molten zone 5.

次に多結晶シリコンs1と種結晶4を一体として下降さ
せると溶融帯5は次第に多結晶シリコン棒の上部に移動
し、加熱コイル2を通過した初めの溶融帯部分は冷却固
化して種結晶と同じ方位の結晶軸をもつ単結晶が育成さ
れる。この育成され比重結晶は第2図−)に示すように
、初めは細い結晶棒であるが次第に太さを増し所定の的
径に達して直胴部6f生ずる。本発明ではこの時点で側
方より高純度石英製の治具を溶融帯5に近づけ、該溶融
帯の中に円周方向に向って一足の深さに浸漬保持すると
1石英製の治具は表面から溶融しりすコン俗融帯中に溶
けこむため育成された単結晶中に酸素がドープされるよ
うになる。
Next, when the polycrystalline silicon s1 and the seed crystal 4 are lowered as one, the molten zone 5 gradually moves to the upper part of the polycrystalline silicon rod, and the first molten zone portion that passed through the heating coil 2 is cooled and solidified to form the seed crystal. Single crystals with crystal axes in the same orientation are grown. As shown in FIG. 2-), this grown specific gravity crystal is initially a thin crystal rod, but gradually increases in thickness and reaches a predetermined target diameter, forming a straight body portion 6f. In the present invention, at this point, a high-purity quartz jig is brought closer to the molten zone 5 from the side and immersed in the molten zone to a depth of one foot in the circumferential direction. Oxygen is doped into the grown single crystal as it melts into the molten silicon melt zone from the surface.

この場合石英製の治具を浸漬保持する方向は中心方向で
あってもよい。
In this case, the direction in which the quartz jig is immersed and held may be toward the center.

単結晶中にドープされた酸素濃度は接触率(石英製の治
具と溶融液との接触面積を育成され建率結晶の断面積で
除し念もの)に旧線的に比例するので1石英製の治具の
浸漬する面積を制御すれば単結晶育成中に全長にわたり
一足濃度の酸素を均一=、ドープすることができる。
The concentration of oxygen doped into a single crystal is linearly proportional to the contact ratio (the contact area between the quartz jig and the melt divided by the cross-sectional area of the grown crystal). By controlling the immersion area of the manufactured jig, it is possible to uniformly dope the entire length with oxygen at a uniform concentration during single crystal growth.

前記石英製の治具の不純物濃度は金属元素の総量で20
 ppmaJa下であることが必要で、それ以上では単
結晶中に酸素以外の不純物を混入してその品質を劣化さ
せることになる。
The impurity concentration of the quartz jig is 20 in terms of the total amount of metal elements.
It is necessary that the temperature is below ppmaJa, and if it exceeds this, impurities other than oxygen will be mixed into the single crystal and its quality will deteriorate.

石英製の治具の形としては棒状のはか[&状。The shape of the quartz jig is a rod-like shape.

リング状、有刺状等をえらぶこともできる。You can also choose a ring shape, barbed shape, etc.

酸素ドープ量の調節はこのほかに溶融帯表面よりの81
0.の蒸発量を変えるか、または多結晶原料棒の下方へ
の送り速度を変えても可餓である。
In addition to this, the amount of oxygen doped can be adjusted by
0. It is also possible to change the amount of evaporation of the polycrystalline raw material or to change the downward feeding rate of the polycrystalline raw material rod.

本発明によるIM造方法により育成されたシリコン単結
晶から切り出されたウェーハは、OZ法で育成されたシ
リコン単結晶から切シ出されたウェーハと同様な熱処理
工程を持つ半尋体素子工程中の熱応力に充分強く何らそ
れ以上の熱応力に対する緩和策は必要とせず、かつ半導
体素子の電気的緒特性にも何ら影響を与えないことが証
明されている。
A wafer cut from a silicon single crystal grown by the IM manufacturing method according to the present invention undergoes the same heat treatment process as a wafer cut from a silicon single crystal grown by the OZ method. It has been proven that it is sufficiently resistant to thermal stress, does not require any further mitigation measures against thermal stress, and has no effect on the electrical characteristics of semiconductor devices.

さらに酸素ドープ量の増大によル単結晶中の不純物の金
属に対するゲヅタリング効果も増大した。
Furthermore, as the amount of oxygen doped increased, the gestering effect of impurities on the metal in the single crystal also increased.

また溶融帯中に浸漬する石英製の治具をより高純度な合
成石英C金部不純物でl ppma以下)を用いること
により、従来不安定とされ次ゲッタリング効果は安定し
た◎ 次に本発明の実施例を示す。
In addition, by using a quartz jig immersed in the molten zone with a higher purity synthetic quartz C metal impurity (less than 1 ppma), the gettering effect, which was conventionally unstable, was stabilized ◎ Next, the present invention An example is shown below.

実施例 53±1fiの無転位シリコン単結晶をFZ法によシア
ルボンガスの中で成長させた。成長速度を4■/ mi
nとし、単結晶が太さを増し所足の直径に達して直胴部
を生じた時に直径3III++の石英丸棒を溶融帯中に
浸漬保持すると1石英丸棒は一部溶解して成長する単結
晶の中に酸素をF−プすることができた。この育成され
たシリフン単結晶棒の酸素濃度を赤外線吸収法により測
足した結果を第3図に示す。図よシ明らかなように酸素
濃度は接触率[13線的に比例して20 ppmaまで
増加させることができた0
Example 5 A dislocation-free silicon single crystal of 3±1 fi was grown in sialbone gas by the FZ method. Increase the growth rate to 4■/mi
n, and when the single crystal increases in thickness and reaches the required diameter to form a straight body, if a quartz round rod with a diameter of 3III++ is immersed and held in the molten zone, 1 quartz round rod will partially melt and grow. Oxygen could be incorporated into a single crystal. The oxygen concentration of the grown Sirifun single crystal rod was measured by infrared absorption method, and the results are shown in FIG. As is clear from the figure, the oxygen concentration could be linearly increased up to 20 ppma by increasing the contact rate [13].

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のFZ法における溶融帯附近の斜神図、第
2図((1,(alは本発明のF’Z法における溶融帯
附近の斜視図、第3図は実施例による接触率と酸素濃度
との関係を示す。 1・・・多結晶シリコン棒 2・・・高周波加熱コイル 8・・・単結晶シリコン棒 4・・・種結晶 5・・・浴融帯 6・・・直胴部 7・・・石英製の治具 特許出願人 信越半導体株式会社 牝触モ
Figure 1 is a perspective view of the vicinity of the molten zone in the conventional FZ method, Figure 2 is a perspective view of the vicinity of the molten zone in the F'Z method of the present invention, and Figure 3 is a perspective view of the vicinity of the molten zone in the F'Z method of the present invention. The relationship between the rate and oxygen concentration is shown below. 1... Polycrystalline silicon rod 2... High frequency heating coil 8... Single crystal silicon rod 4... Seed crystal 5... Bath melting zone 6... Body part 7: Quartz jig patent applicant Shin-Etsu Semiconductor Co., Ltd.

Claims (1)

【特許請求の範囲】 1、浮遊帯浴融法によるシリコン単結晶のIA造におい
て、高純度石英製の治具を溶融帯中に浸漬保持し、酸素
を任意濃度にドープした単結晶を得ることを特徴とする
シリコン単結晶の製造方法。 2、浮遊帯溶融法によるりリコン単結晶の製造において
、溶融帯が冷却固化して初めて直胴部を住する時点で、
高純度石英製の治具を溶融帯の中に浸漬保持することを
特徴とする特許請求の範囲第一項記載の製造方法。
[Claims] 1. In IA production of silicon single crystals by floating zone bath melting method, a jig made of high purity quartz is immersed and held in the melting zone to obtain a single crystal doped with oxygen to a desired concentration. A method for producing a silicon single crystal characterized by: 2. In the production of silicon single crystal by the floating zone melting method, at the point when the molten zone cools and solidifies and forms the straight body for the first time,
The manufacturing method according to claim 1, characterized in that a jig made of high-purity quartz is immersed and held in the molten zone.
JP21045782A 1982-11-30 1982-11-30 Preparation of silicon single crystal Pending JPS59102891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21045782A JPS59102891A (en) 1982-11-30 1982-11-30 Preparation of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21045782A JPS59102891A (en) 1982-11-30 1982-11-30 Preparation of silicon single crystal

Publications (1)

Publication Number Publication Date
JPS59102891A true JPS59102891A (en) 1984-06-14

Family

ID=16589647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21045782A Pending JPS59102891A (en) 1982-11-30 1982-11-30 Preparation of silicon single crystal

Country Status (1)

Country Link
JP (1) JPS59102891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197118A (en) * 1989-01-26 1990-08-03 Kyushu Electron Metal Co Ltd Crystal growth device
JPH03177388A (en) * 1989-11-24 1991-08-01 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Method and device for manufacture of silicate ingot of high oxygen content by zone tensile process devoid of crucible
WO2007093082A1 (en) * 2006-02-16 2007-08-23 Yonggang Jin A process of producing silicon wafer employing float method and apparatus thereof
JP2014114173A (en) * 2012-12-06 2014-06-26 Shin Etsu Handotai Co Ltd Method for producing single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125190A (en) * 1978-03-24 1979-09-28 Sony Corp Crystal growing mehtod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125190A (en) * 1978-03-24 1979-09-28 Sony Corp Crystal growing mehtod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197118A (en) * 1989-01-26 1990-08-03 Kyushu Electron Metal Co Ltd Crystal growth device
JPH03177388A (en) * 1989-11-24 1991-08-01 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Method and device for manufacture of silicate ingot of high oxygen content by zone tensile process devoid of crucible
WO2007093082A1 (en) * 2006-02-16 2007-08-23 Yonggang Jin A process of producing silicon wafer employing float method and apparatus thereof
JP2014114173A (en) * 2012-12-06 2014-06-26 Shin Etsu Handotai Co Ltd Method for producing single crystal

Similar Documents

Publication Publication Date Title
US4382838A (en) Novel silicon crystals and process for their preparation
US6702892B2 (en) Production device for high-quality silicon single crystals
EP2857562B1 (en) Sic single-crystal ingot and production method for same
EP1498517A1 (en) Method for producing silicon single crystal and, silicon single crystal and silicon wafer
US6056931A (en) Silicon wafer for hydrogen heat treatment and method for manufacturing the same
JPS59102891A (en) Preparation of silicon single crystal
CA1166556A (en) Minimization of strain in single crystals
WO2023051693A1 (en) Nitrogen dopant feeding apparatus and method, and system for manufacturing nitrogen-doped monocrystalline silicon rod
JPH07267776A (en) Growth method of single crystal
JPH02192500A (en) Production of compound semiconductor single crystal
US3093520A (en) Semiconductor dendritic crystals
JPH0543382A (en) Production of silicon single crystal
KR101902629B1 (en) Method for forming monocrystalline silicon ingot and wafers
KR101865467B1 (en) Method for forming monocrystalline silicon ingot and wafer
JPH07277875A (en) Method for growing crystal
CA1237641A (en) Method of controlled, uniform doping of floating zone silicon
JPH0474320B2 (en)
JP2004269335A (en) Production method for single crystal
JP3498330B2 (en) Single crystal growth equipment
JPH08290995A (en) Silicon single crystal and its production
ITMI20011120A1 (en) SILICON WAFERS HAVING CONTROLLED DISTRIBUTION OF DEFECTS, METHODS OF PREPARING THEMSELVES, AND CZOCHRALSKI EXTRACTORS FOR THE FACTORY
JPS6344720B2 (en)
JPH03193698A (en) Silicon single crystal and its production
JPH085760B2 (en) Method for producing Hgl-xo Cdxo Te crystal ingot
JP2000313699A (en) PRODUCTION OF SEMIINSULATING InP SINGLE CRYSTAL