JPS5910247A - Ebullition type cooling apparatus for semiconductor - Google Patents

Ebullition type cooling apparatus for semiconductor

Info

Publication number
JPS5910247A
JPS5910247A JP12021482A JP12021482A JPS5910247A JP S5910247 A JPS5910247 A JP S5910247A JP 12021482 A JP12021482 A JP 12021482A JP 12021482 A JP12021482 A JP 12021482A JP S5910247 A JPS5910247 A JP S5910247A
Authority
JP
Japan
Prior art keywords
semiconductor
cooling fins
cooling
sealed container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12021482A
Other languages
Japanese (ja)
Other versions
JPS636147B2 (en
Inventor
Haruo Tetsuno
鉄野 治雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12021482A priority Critical patent/JPS5910247A/en
Publication of JPS5910247A publication Critical patent/JPS5910247A/en
Publication of JPS636147B2 publication Critical patent/JPS636147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To enable the easy alteration of a heat transfer area corresponding to the quantity of heat of a semiconductor, by forming at least one side plate to be projecting in a convex shape inward. CONSTITUTION:The drum 10a of a hermetically-sealed vessel 10 is made to have a length required for fitting the necessary number of cooling fins 1d thereon at prescribed intervals. Side plates 10b and 10c are formed so that their sections are shaped in convexes projecting inward of the vessel 10, and the outer peripheral parts thereof are welded to the end parts of the drum 10a or to the places near the end parts thereof, respectively. The distance between the opposed convex parts is determined so that the unobstructed capacity of the hermetically- sealed vessel 10 is sufficient for the size of a semiconductor 2 and the necessary quantity of a refrigerant 3 to be packed therein and is as small as possible. By lengthening the drum 10a, the number of the cooling fins 1s to be fitted can be increased, the heat transfer area of the cooling fins can be increased corresponding to an increase in the quantity of heat of the semiconductor, and thereby the cooling capability of the apparatus can be increased.

Description

【発明の詳細な説明】 本発明は、半導体沸騰冷却装置、すなわち、凝縮性冷却
媒体の液相と気相との間の相変化を利用して、半導体を
冷却する半導体沸騰冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor evaporative cooling device, that is, a semiconductor evaporative cooling device that cools a semiconductor by utilizing a phase change between a liquid phase and a gas phase of a condensable cooling medium. be.

従来の半導体沸騰冷却装置の構成の一例を示すと添付図
面第1図のとおりであって、図において、符号/は密封
容器であって、その内部には半導体コ及び凝縮性冷却媒
体3を収納している。また、密封容器lは胴laとこの
胴/aの両端を閉塞する側板/b及びICとから構成さ
れ、胴/aの外面には多数の冷却フィン/dが固着さh
ている。
An example of the configuration of a conventional semiconductor evaporative cooling device is shown in the attached drawing, FIG. are doing. The sealed container l is composed of a body la, a side plate /b that closes both ends of the body /a, and an IC, and a large number of cooling fins /d are fixed to the outer surface of the body /a.
ing.

一方の側板、例えば、側板/bにはプッシンググが所要
数設けられており、このプッシンググと半導体コとは導
体!によって電気的に接続されている。
One side plate, for example, side plate /b, is provided with a required number of pushers, and the pushers and the semiconductor are conductors! electrically connected by.

また、密封容器l内には、半導体2を十分浸漬するとと
もに、密封容器lの上部には空間を設けるよう圧して、
所定量の液相冷媒3aを充填し、上部空間には、冷媒3
の気相冷媒3bが充満するように、あらかじめ密封容器
/を非凝縮性物質が入らないように真空脱気して冷媒3
を充填するのが好ましい。
In addition, the semiconductor 2 is sufficiently immersed in the sealed container l, and pressure is applied to provide a space above the sealed container l.
A predetermined amount of liquid phase refrigerant 3a is filled, and the upper space is filled with the refrigerant 3a.
In order to fill the refrigerant 3b with the gaseous phase refrigerant 3b, the sealed container is vacuum degassed in advance to prevent non-condensable substances from entering.
It is preferable to fill it with

従来装置はこのように構成されるが、次にその作用につ
いて述べる。
The conventional device is constructed as described above, and its operation will be described next.

まず、発熱体である半導体コが通電によって発熱し、冷
媒3に対して相対温度が高くなると、半導体すなわら発
熱体コに接触している液相冷媒I沸騰し液相より気相に
相変換して気相冷媒、?bと上 る半導体コは冷却される。一方、相変換してヂした気相
冷媒3bは、その密度差のために、液相冷媒中を上昇し
て密封容器lの上部空間に到達I7、密封容器壁面に接
触する。密封容器/の外壁には、冷却フィン/dが固着
されており、従って、空気の自然対流又は強制風冷等の
手段によって、λ次冷却さハており、その結果、密封容
器/の壁面に接触した気相冷媒、?bは潜熱を放出1〜
て凝縮し液化して液相冷媒3aとなり、その重力作用に
より滴下して、再び発熱体である半導体λの冷却に当た
る。
First, when the semiconductor, which is a heating element, generates heat by electricity and its relative temperature with respect to the refrigerant 3 becomes high, the liquid phase refrigerant I that is in contact with the semiconductor, that is, the heating element, boils and changes from the liquid phase to the gas phase. Convert to gas phase refrigerant,? b and the rising semiconductor layer are cooled. On the other hand, the phase-converted gas phase refrigerant 3b rises in the liquid phase refrigerant due to the difference in density, reaches the upper space of the sealed container I7, and comes into contact with the wall surface of the sealed container. Cooling fins/d are fixed to the outer wall of the sealed container/, so that λ-th order cooling is performed by means such as natural convection of air or forced air cooling, and as a result, the wall surface of the sealed container/ Gas phase refrigerant in contact? b releases latent heat 1~
The refrigerant is condensed and liquefied to become a liquid phase refrigerant 3a, which drips due to its gravitational action and cools the semiconductor λ, which is a heating element, again.

また、液相冷媒、?aは、発熱体−の発熱に伴って温度
上昇して密度差を生に、従って、対流によって、発熱体
である半導体−から密封容器−の壁面に熱伝達する。
Also, liquid phase refrigerant,? The temperature of a increases with the heat generation of the heating element, creating a density difference, and therefore, heat is transferred from the semiconductor, which is the heating element, to the wall surface of the sealed container by convection.

以上のように、冷媒3の液相と気相との間の相変化と共
に、液相冷媒3a自体の対流によって、発熱体コで発生
した熱を効率よく密封容器/の壁面に熱伝達し、従って
、高い冷却性能が得られる。
As described above, along with the phase change between the liquid phase and the gas phase of the refrigerant 3, the heat generated in the heating element is efficiently transferred to the wall surface of the sealed container/by the convection of the liquid phase refrigerant 3a itself. Therefore, high cooling performance can be obtained.

また、密封容器lには胴/aの外周に冷却フィン/dが
固着されており、例えば、胴/aが円筒状のものであれ
ば、冷却フィン/dは中央部に縁を折り曲げた穴を設け
、円筒状の胴に順次圧入しながら挿入し、更に挿入後胴
/aと冷却フィン/dとをろう付は等の方法によって固
着して製作する。従って、密封容器lの壁面に熱伝達さ
れた熱は、密封容器/の胴/aに固着された冷却フィン
/dを介して、空中に効果的に放散される。
In addition, cooling fins /d are fixed to the outer periphery of the body /a in the sealed container l. For example, if the body /a is cylindrical, the cooling fins /d are formed by holes in the center with bent edges. The cooling fins /a and the cooling fins /d are fixed to each other by brazing or the like after insertion, and the cooling fins /d are bonded together by brazing or other methods. Therefore, the heat transferred to the wall surface of the sealed container l is effectively dissipated into the air via the cooling fins /d fixed to the body /a of the sealed container /.

なお、半導体ユは、許容温度(/2左〜/so”G)を
越えると熱破壊を起こすために、冷却媒体3は常時所定
の温度以下となるように、冷却フイ//dの伝熱面積が
計算し決定される。
In addition, since the semiconductor module will cause thermal breakdown if the allowable temperature (/2 left ~ /so"G) is exceeded, the heat transfer of the cooling pipe //d should be carried out so that the cooling medium 3 is always below a predetermined temperature. The area is calculated and determined.

しかるに、第1図に示す従来装置においては、冷却され
る半導体の定格が増加すると、それにつわて発熱量も多
くなり、従って、冷却フィン/dの伝達面積を増加させ
なければならない。そのための一手段として、冷却フィ
ン/dの間隔を小さくすることにより、冷却フィン/d
の設置枚数を多くして伝熱面積を増加させることが考え
らねる。
However, in the conventional device shown in FIG. 1, as the rating of the semiconductor to be cooled increases, the amount of heat generated also increases, and therefore the transmission area of the cooling fins /d must be increased. As a means to achieve this, by reducing the interval between the cooling fins/d,
It is unthinkable to increase the heat transfer area by increasing the number of panels installed.

しかしながら密封容器lの2次冷却を空気によって冷却
する方式のものにあっては、フィン間隔を所定値以下に
することは、空気の流通を悪くすることになり、従って
、伝熱面積をたとえ増加しても、熱伝達量が増加しない
ことになり、その結果、また、考えらねる他の手段とし
ては、冷却フィン/dを大きくして(円板のものでは外
径寸法を大s < t、’t >冷却747761枚当
りの伝熱面積を増大することがあるが、この方法におい
ても、密封容器lの胴/aより冷却フィン/dの外周部
棟での距離が太き(なるために、冷却フィン内の熱伝達
時間が増し、冷却フィン効率が低下する。
However, if the secondary cooling of the sealed container l is performed using air, reducing the fin spacing to less than a predetermined value will impair air circulation, and therefore, even if the heat transfer area is increased, Even if the cooling fins/d are made larger, the amount of heat transfer will not increase.As a result, another unthinkable measure is to increase the outer diameter of the cooling fins/d (in the case of disk type, increase the outer diameter s < t). ,'t > Cooling 74776The heat transfer area per sheet may be increased, but even in this method, the distance at the outer ridge of the cooling fin/d is wider than the body/a of the sealed container l (because In addition, the heat transfer time within the cooling fin increases and the cooling fin efficiency decreases.

従って、冷却フィンを大きくするにもおのずと限外が生
ずる。捷だ、冷却フィン/dは、厚さ0、 A1−21
位のアルミニウム板で製作する場合があり、この場合に
は、冷却フィン/dの大きさが大きくなると、例えば、
車両塔載用のようK、耐振性を必要とする装置にあって
は、冷却フィンld自体が振動するので、この点からも
、あまり大きくすることはできない。
Therefore, there is a natural limit to increasing the size of the cooling fins. Cooling fin/d has a thickness of 0, A1-21
In some cases, the size of the cooling fin/d increases, for example,
In a device that requires vibration resistance, such as a device mounted on a vehicle tower, the cooling fins ld themselves vibrate, so from this point of view as well, the cooling fins cannot be made very large.

更に、半導体装置の定格が異なるごとに冷却フィンの大
きさを変えるとすると、冷却フィンの種類が増加し、効
率のよい生産性が望めないことになる。このように、冷
却フィンを大きくすることにも種々の障害がある。
Furthermore, if the size of the cooling fins is changed depending on the rating of the semiconductor device, the number of types of cooling fins will increase, and efficient productivity cannot be expected. As described above, there are various obstacles to increasing the size of the cooling fins.

更にまた、冷却フィンの伝熱面積を増加する他の手段と
して、密封容器lの胴/aの長さを、第1図の一点鎖線
によって示すように、長くして冷却フィン/dの枚数を
増加する方法も考えらハる。
Furthermore, as another means of increasing the heat transfer area of the cooling fins, the length of the body /a of the sealed container l is increased as shown by the dashed line in FIG. 1, and the number of cooling fins /d is increased. I can't think of ways to increase it.

しかしながら、この方法は、冷却フィン/dの大きさを
変えずに枚数を変化させるものであるから、冷却フィン
の種類は少なくてすみ、生産効率が向上するという利点
はある。しかしながら、この方法による場合には、密封
容器/の内容積が増加するので、内部に充填する高価な
冷却媒体Jの量が多くなって不経済であるだけでなく、
半導体沸騰冷却装置全体の重量が大幅に増加するという
欠点を持っている。
However, since this method changes the number of cooling fins/d without changing its size, it has the advantage of requiring fewer types of cooling fins and improving production efficiency. However, when using this method, the internal volume of the sealed container increases, so the amount of expensive cooling medium J to be filled inside increases, which is not only uneconomical, but also
This has the disadvantage that the weight of the entire semiconductor evaporative cooling device increases significantly.

以上のよう罠、第1図に示すような従来装置においては
、冷却すべき半導体の発熱量が増加した場合には、それ
に対応して冷却フィンの伝熱面積を増加させることは困
難であるという欠点を有していた。
As described above, in the conventional device shown in Figure 1, when the amount of heat generated by the semiconductor to be cooled increases, it is difficult to increase the heat transfer area of the cooling fins accordingly. It had drawbacks.

本発明け、このような従来装置における欠点を改善12
、伝熱面積の増減を、被冷却物である半導体の発熱量に
対応して、容易に変更し得るように構成された半導体沸
騰冷却装置を提供することを、その目的とするものであ
る。
The present invention improves these shortcomings in conventional devices12.
It is an object of the present invention to provide a semiconductor evaporative cooling device configured so that the increase or decrease in heat transfer area can be easily changed in accordance with the amount of heat generated by a semiconductor, which is an object to be cooled.

本発明は、この目的を達成するために、少なくとも、一
方の側板が内方に向かって凸状に突出して形成されてい
ることを特徴とするものである。
In order to achieve this object, the present invention is characterized in that at least one side plate is formed to protrude inwardly.

以下、本発明による半導体沸騰冷却装置をその一実施例
を示す添付図面第一図に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor evaporative cooling device according to the present invention will be described below with reference to FIG. 1 of the attached drawings showing one embodiment thereof.

図において、密封容器/θの胴lOaは所要数の冷却フ
ィン/dがM定間隔をもって装着されるに必要な長さに
構成され、またその側板10b 。
In the figure, the body lOa of the sealed container /θ is configured to have a length necessary to mount the required number of cooling fins /d at regular intervals M, and its side plate 10b.

IOCは、その断面が凸状に成形されるとともKその凸
部が密封容器10の内方に向かうよう&’して外周部を
胴/θaの端部又は端部近傍に溶接等によって接合され
ている。そして、側板10bの凸部と側板/θCの凸部
との対向寸法は、胴/θa、側板lθb、/θCによっ
て構成される密封容器10の内容積が、その内部に収納
される半導体−の大きさや冷媒体3の必要充填量を満足
するに十分であって、かつ、できるだけ小さくなるよう
に、決定される。
The IOC is formed to have a convex cross section, and its outer circumference is joined by welding or the like to the end of the body/θa or near the end so that the convex portion faces inward of the sealed container 10. has been done. The opposing dimension between the convex portion of the side plate 10b and the convex portion of the side plate /θC is such that the inner volume of the sealed container 10 constituted by the body /θa, the side plates lθb, and /θC is the size of the semiconductor to be stored therein. The size is determined to be sufficient to satisfy the required filling amount of the refrigerant 3 and to be as small as possible.

本発明装置は、以上のように構成されているので、胴/
θaを長くすることにより冷却フィン/dの装着枚数を
増加することができ、従って、半導体の発熱量増加に対
応して、冷却フィンの伝熱面積を増加させることが可能
となり、冷却能力の増大化を図ることができる。
Since the device of the present invention is configured as described above, the barrel/
By lengthening θa, it is possible to increase the number of cooling fins/d installed, and therefore, it is possible to increase the heat transfer area of the cooling fins in response to the increase in heat generation of semiconductors, increasing cooling capacity. It is possible to aim for

また、側板/θb、lOcが内方に向かって凸状に形成
されており、側板の外周部は胴10aの端部又は端部近
傍が接合されているために、冷却媒体3の液相部分及び
気相部分が胴10&の端部近傍にまで接触しており、従
って、冷却媒体3の熱が胴lθa及び側板10b 、1
0cを介して、冷却フィン/dに効率良く熱伝達される
。その結果、胴10a端部近傍に配設されている冷却フ
ィン/dからも、外気に有効に熱放散が行なわれる。
In addition, the side plates /θb and lOc are formed inwardly in a convex shape, and the outer peripheral portion of the side plate is joined to the end or the vicinity of the end of the body 10a, so that the liquid phase portion of the cooling medium 3 and the gas phase portion are in contact with the vicinity of the ends of the shell 10 &, therefore, the heat of the cooling medium 3 is transferred to the shell lθa and the side plates 10b, 1
Heat is efficiently transferred to the cooling fins/d via 0c. As a result, heat is effectively radiated to the outside air also from the cooling fins/d disposed near the end of the body 10a.

更に、側板10b 、IOCは凸形状となっていること
から、密封容器/θの内圧に対しても、耐圧強度が増加
するので、側板10b、10cの材料板厚を薄くするこ
とができ、製作コストが低減するとともに重量軽減が図
れるという利点も生ずる。
Furthermore, since the side plates 10b and IOC have a convex shape, the pressure resistance increases against the internal pressure of the sealed container /θ, so the material thickness of the side plates 10b and 10c can be made thinner, making it easier to manufacture. There are also advantages in that costs are reduced and weight can be reduced.

また、冷却フィン/dの枚数が増加しても、胴lθa、
側板lθb、10Cで囲まれている密封容器/θの内容
積は、従来装置に比べて、さほど大六くならないために
、高価な冷却媒体3の充填量もほとんど増加せず、従っ
て、経済的であるという特徴も有している。
Moreover, even if the number of cooling fins /d increases, the cylinder lθa,
Since the internal volume of the sealed container/θ surrounded by the side plates lθb and 10C is not so large compared to the conventional device, the filling amount of the expensive cooling medium 3 is hardly increased, and therefore, it is economical. It also has the characteristic of being

更に又、本発明装置においては、半導体−0発熱量に応
じて、冷却フィン/dの枚数を増加させればよいから、
冷却フィンの大きさを変える必要がなく、冷却フィンの
種類が少なくできることになり、従って、生産性の向上
にもつながる。
Furthermore, in the device of the present invention, the number of cooling fins/d may be increased according to the semiconductor-0 heat generation amount.
There is no need to change the size of the cooling fins, and the number of types of cooling fins can be reduced, leading to improved productivity.

以上のよう釦、本発明装置は、簡単な構成でもって、半
導体の発熱量増加に対応して冷却能力を増加することが
容易に可能であり、従って、極めて実用性の高い半導体
沸騰冷却装置が得られるという効果を有している。
As described above, the device of the present invention has a simple configuration and can easily increase the cooling capacity in response to the increase in heat generation of semiconductors.Therefore, the device of the present invention can easily increase the cooling capacity in response to the increase in the amount of heat generated by semiconductors. It has the effect of being obtained.

なお、上記実施例においては、胴10aを円筒形のもの
について説明したが、特に円筒形に限るものではなく、
角形又は多角形の筒状のものでもよく、また、側板/θ
b及びIOCの両方共凸形状としているが、必ずしも両
方にする必要はなく、必要に応じていずれか一方の側板
のみを凸形状にすることも何ら差し支えないし、更に、
側板の凸形状も、第2図に示す台形状に限らず、台形状
以外、例えば、球面等種々の形状、更には、それらの組
合せが考えられる。要は上記本発明の主旨に沿ったもの
であれば、いかなる形状にすることも可能であり、1だ
その効果においても伺ら上記実施例と異なるものではな
い。
In addition, in the above embodiment, the case where the body 10a is cylindrical is explained, but it is not limited to the cylindrical shape.
It may be square or polygonal cylindrical, and the side plate /θ
b and IOC both have a convex shape, but it is not necessary to make both of them, and if necessary, there is no problem in making only one of the side plates convex, and further,
The convex shape of the side plate is not limited to the trapezoidal shape shown in FIG. 2, but also various shapes other than the trapezoidal shape, such as a spherical surface, or combinations thereof. In short, any shape can be used as long as it complies with the gist of the present invention, and even its effects are not different from those of the embodiments described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体沸騰冷却装置の一例の構成を示す
縦断面説明図、第2図は本発明による半導体沸騰冷却装
置の一実施例の構成を示す縦断面説明図である。 t、1o−−密封容器、la、lOa・・胴、lb、/
c、10−o、10c・−側板、/d−−冷却フィン、
コ・・半導体(発熱体)、3・・冷却媒体(冷媒)、3
a・・液相冷媒、3b・・気相冷媒、ダ・・ブッシング
、5・・導体。 なお、各図中 同一符号は同−又は相当部分を示す。 代理人  葛  野  信  − ]C yf−)2図 h 手続補正書(自発) 特許庁長官殿 j、事件の表示    特願昭5クー/、:40コ/4
を号2、発明の名称 半導体沸騰冷却装置 3、補正をする者 事件との関係   特許出願人 代表者片由仁へ部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)  明細書第5ページ第16〜lワ行「冷却フィ
ン内の熱伝達時間が増し、」を「冷却フィン内の温度差
が大きくなって、」と補正する。 (2)  同書第5ページ第19行「限外」を「限界と
補正する。
FIG. 1 is an explanatory longitudinal sectional view showing the configuration of an example of a conventional semiconductor evaporative cooling device, and FIG. 2 is an explanatory longitudinal sectional view showing the configuration of an embodiment of the semiconductor evaporative cooling device according to the present invention. t, 1o-- sealed container, la, lOa... body, lb, /
c, 10-o, 10c・-side plate, /d--cooling fin,
- Semiconductor (heating element), 3 - Cooling medium (refrigerant), 3
a...liquid phase refrigerant, 3b...vapor phase refrigerant, da...bushing, 5...conductor. Note that the same reference numerals in each figure indicate the same or equivalent parts. Agent Makoto Kuzuno - ]C yf-) 2 Figure h Procedural amendment (voluntary) Commissioner of the Japan Patent Office J, Indication of the case Patent application 1975 Ku/,: 40/4
No. 2, Name of the invention: Semiconductor evaporative cooling device 3, Relationship with the person making the amendment: Patent applicant's representative Kata Yuhito Department 4, Attorney 5, Column 6 for detailed explanation of the invention in the specification subject to amendment , Details of the correction (1) On page 5 of the specification, lines 16 to 1, "The heat transfer time within the cooling fins increases" is corrected to "The temperature difference within the cooling fins increases." (2) In the same book, page 5, line 19, ``limit'' is corrected to ``limit.''

Claims (1)

【特許請求の範囲】[Claims] 胴と上記胴の両端を閉塞するように胴に接合されている
側板とから成る密封容器の内部に冷却すべき半導体と上
記半導体・を浸漬している冷却媒体とを収納し、上記密
封容器の胴外周壁圧冷却フィンを固着して上記半導体で
発生した熱を上記冷却フィンから放熱させるように構成
されている半導体沸騰冷却装置において、少くとも一方
の側板が内方に向かって凸状に突出して形成されている
ことを特徴とする半導体沸騰冷却装置。
A semiconductor to be cooled and a cooling medium in which the semiconductor is immersed are stored in a sealed container consisting of a shell and a side plate joined to the shell so as to close both ends of the shell, and the sealed container is In a semiconductor boiling cooling device configured to fix heat cooling fins on the outer peripheral wall of the body so as to radiate heat generated in the semiconductor from the cooling fins, at least one side plate projects inward in a convex shape. A semiconductor boiling cooling device characterized in that it is formed by:
JP12021482A 1982-07-09 1982-07-09 Ebullition type cooling apparatus for semiconductor Granted JPS5910247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12021482A JPS5910247A (en) 1982-07-09 1982-07-09 Ebullition type cooling apparatus for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12021482A JPS5910247A (en) 1982-07-09 1982-07-09 Ebullition type cooling apparatus for semiconductor

Publications (2)

Publication Number Publication Date
JPS5910247A true JPS5910247A (en) 1984-01-19
JPS636147B2 JPS636147B2 (en) 1988-02-08

Family

ID=14780712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12021482A Granted JPS5910247A (en) 1982-07-09 1982-07-09 Ebullition type cooling apparatus for semiconductor

Country Status (1)

Country Link
JP (1) JPS5910247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058469A1 (en) * 2017-09-21 2019-03-28 日本電気株式会社 Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058469A1 (en) * 2017-09-21 2019-03-28 日本電気株式会社 Electronic device
JPWO2019058469A1 (en) * 2017-09-21 2020-11-12 日本電気株式会社 Electronic device

Also Published As

Publication number Publication date
JPS636147B2 (en) 1988-02-08

Similar Documents

Publication Publication Date Title
JP3451737B2 (en) Boiling cooling device
JPH08340189A (en) Boiling cooling device
JPH0563954B2 (en)
JPS5910247A (en) Ebullition type cooling apparatus for semiconductor
JPH07220936A (en) Transformer cooling structure with looped heat pipe
FI75664B (en) DUBBELSPIRALVAERMEOEVERFOERARE.
JP3654323B2 (en) Boiling cooler
JPS636146B2 (en)
JPS5947809B2 (en) Electric heating device for heating
JP3001386B2 (en) Heat exchange equipment
JPH0897338A (en) Cooler for power semiconductor device
JPS61165591A (en) Electrical insulation type heat pipe
JP3384066B2 (en) Boiling cooling device
JP2562180B2 (en) Boiling cooling type semiconductor device
JP3355726B2 (en) Boiling cooling device
JP2004349652A (en) Boiling cooler
SU1502919A1 (en) Heat exchanger
CN117831906B (en) Enclosed transformer with hot rod and design method thereof
JPH04196154A (en) Semiconductor cooling device
JPS6120778Y2 (en)
JPH08186208A (en) Boiling cooling device
JPS5847640B2 (en) Regenerative heat exchange device
JPS61110883A (en) Heat pipe
JPS59154713A (en) Capacity increasing wire
JPS5941307B2 (en) Boiling cooling device for semiconductor devices