JPS59102419A - Material for filtration and its manufacture - Google Patents

Material for filtration and its manufacture

Info

Publication number
JPS59102419A
JPS59102419A JP21223482A JP21223482A JPS59102419A JP S59102419 A JPS59102419 A JP S59102419A JP 21223482 A JP21223482 A JP 21223482A JP 21223482 A JP21223482 A JP 21223482A JP S59102419 A JPS59102419 A JP S59102419A
Authority
JP
Japan
Prior art keywords
pore size
average pore
layer
polymerization product
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21223482A
Other languages
Japanese (ja)
Other versions
JPH037414B2 (en
Inventor
Takashi Kamiya
貴志 神谷
Susumu Takada
進 高田
Shoichi Wakabayashi
若林 章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP21223482A priority Critical patent/JPS59102419A/en
Publication of JPS59102419A publication Critical patent/JPS59102419A/en
Publication of JPH037414B2 publication Critical patent/JPH037414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To manufacture a filtering material having excellent semipermeability and pressure resistance, by processing one side surface of a porous ceramic layer for reducing its pore size before forming a layer of organic plasma-polymerization product on the processed surface. CONSTITUTION:The pores of 0.1-10mu average pore size of one side surface of a porous ceramic layer composed of sintered body consisting essentially of alumina, etc. is converted into pores of <=0.1mu average pore size by processing the surface by baking ultrafine powdered alumina, etc. Next, a dense and uniform layer of organic polymerization product having approximately <=20mu pore size is formed on said surface, by functioning the ceramics as a supporting body, by bringing a plasma of inert gas such as Ar and a gaseous organic compound such as 4-vinylpyridine into contact with the surface of this ceramic layer, for the purpose of obtaining a filtering material especially suitable for reverse osmosis and ultrafiltration, etc.

Description

【発明の詳細な説明】 本発明は、逆浸透用、限外濾過用として好適な新規濾過
用材料とその製造方法に関するものである。さらに詳し
くいえば、本発明は多孔質セラミックス層の表面に、有
機化合物のプラズマ重合生成物層を積層した構造を有す
る新規な濾過用材料及びそれを工業的に製造するための
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel filtration material suitable for reverse osmosis and ultrafiltration, and a method for producing the same. More specifically, the present invention relates to a novel filtration material having a structure in which a plasma polymerization product layer of an organic compound is laminated on the surface of a porous ceramic layer, and a method for industrially manufacturing the same. .

これまで、逆浸透用や限外濾過用のp過材としては、素
焼板のような無機r過材、酢酸セルロース、ポリアクリ
ロニトリル、ポリベンズイミダゾーノペポリアεドのよ
うな有機濾過材が知られている。しかしながら、無機p
過材はオングストロームオーダーの微細孔をもつものを
薄膜状に形成させることが困難なため、その用途が制限
されるのを免れないし、また、有機瀘過材は耐熱性、耐
久性が劣る上に、微生物が付着しやすく、これを除去す
るのに多大の労力を必要とするなどの欠点を有している
Until now, the filtration materials for reverse osmosis and ultrafiltration have been inorganic filtration materials such as clay plates, and organic filtration materials such as cellulose acetate, polyacrylonitrile, and polybenzimidazonopepolia. Are known. However, inorganic p
Filter materials have micropores on the order of angstroms and are difficult to form into a thin film, so their uses are inevitably limited, and organic filter materials have poor heat resistance and durability. However, it has disadvantages such as easy attachment of microorganisms and the need for a great deal of effort to remove them.

さらに、孔径1〜10μ程度の多孔質セラミックスの板
体又は管体の表面に、Zr0I4. ZrOCl2゜T
hC14,Fe013 、、 PbOHCl2. UO
20HO1,A1013のような無機化合物や、アミン
酸、ポリビニルピリジン、ポリグルタミン酸、ポリアク
リル酸、ポリメタクリル酸、ポリスチレンスルホン酸の
ような有機高分子化合物のコロイド状膜を施した、いわ
ゆるダイナミック膜が、かん水の淡水化用、工業廃水の
浄化用のp過材として好適であることが知られている。
Furthermore, Zr0I4. ZrOCl2゜T
hC14, Fe013, PbOHCl2. UO
So-called dynamic membranes are coated with colloidal membranes of inorganic compounds such as 20HO1 and A1013, and organic polymeric compounds such as amino acid, polyvinylpyridine, polyglutamic acid, polyacrylic acid, polymethacrylic acid, and polystyrene sulfonic acid. It is known to be suitable as a p filter material for desalination of brine water and purification of industrial wastewater.

しかしながら、このダイナミック膜は、その支持体であ
る多孔質セラミックスとその表面に施されたコロイド状
膜との結合が十分でな(、耐用性に問題がある上に、安
定なpH範囲が4〜10と狭いため強酸性、強アルカリ
性条件下では使用できないという欠点がある。
However, this dynamic membrane does not have sufficient bonding between the porous ceramic support and the colloidal membrane applied to its surface (there are problems with durability, and the stable pH range is 4 to 4). 10, which has the disadvantage that it cannot be used under strongly acidic or strongly alkaline conditions.

他方、プラズマ重合により形成された半透膜を濾過膜と
して利用することも知られ、これは厚さが均一、ポンホ
ールがない、圧密化を生じない、膜の製造と保存が乾燥
状態でなされるため取り扱いやすい、膜厚を薄(しつる
ので透過流量が多いなどp過膜として優れた特性を有し
ている。しかし、膜の特性を十分に発揮させるには、基
材の選択を適切に行わなければならない。この種のもの
としては、例えばメンブランフィルタ−(ミリポア社製
ハリポアーVS)や多孔性ガラスを支持体とし、その表
面にプラズマ重合生成物層を設けた濾過用材料などが提
案されている。しかしながら、前者は強度的に難点があ
る上に、長時間、高圧下で使用すると支持体が圧縮化す
るし、また後者は支持体部分が物質輸送の抵抗となるた
め透過水量が少なく非能率的になるという欠点がある。
On the other hand, it is also known to use semipermeable membranes formed by plasma polymerization as filtration membranes, which have uniform thickness, no holes, no compaction, and the membranes are manufactured and stored in dry conditions. It has excellent characteristics as a p-transparent membrane, such as being easy to handle and having a thin membrane (thin), which allows for a large permeation flow rate. As examples of this type of material, there have been proposed membrane filters (Harrypore VS manufactured by Millipore) and filtration materials that use porous glass as a support and provide a plasma polymerization product layer on the surface. However, the former has disadvantages in terms of strength, and the support becomes compressed when used under high pressure for a long time, and the latter has a small amount of permeated water because the support acts as resistance to mass transport. It has the disadvantage of being inefficient.

これらの欠点を克服するには、適当な支持体材料を選ぶ
ことが必要であり、このようなものとして多孔質セラミ
ックスが挙げられるが、これは通常0.1μ以上という
比較的大きい孔径を有するため、その表面にプラズマ重
合により半透膜を形成することができないという問題を
生じる。
To overcome these drawbacks, it is necessary to choose an appropriate support material, such as porous ceramics, which have relatively large pore sizes, usually 0.1μ or more. , a problem arises in that a semipermeable membrane cannot be formed on the surface by plasma polymerization.

本発明者らは、このような事情の下で、多孔質セラミッ
クスを支持体とし、その表面にプラズマ重合生成物層を
設けた構造の濾過用材料を実現すべく鋭意研究を重ねた
結果、多孔質セラミックス支持体の一方の面のみを特殊
加工により平均孔径0.1μ以下とし、ここにプラズマ
重合生成物層全積層することにより、その目的を達成し
うろことを見出し、この知見に基づいて本発明をなすに
至った。
Under these circumstances, the inventors of the present invention have conducted extensive research to create a filtration material with a structure in which porous ceramics is used as a support and a plasma polymerization product layer is provided on the surface. By special processing only one side of the high-quality ceramic support to make the average pore diameter less than 0.1μ, and by laminating the entire plasma polymerization product layer thereon, we discovered that this purpose could be achieved.Based on this knowledge, we developed this book. He came up with an invention.

すなわち、本発明は、一方の面の側孔の平均孔径が0.
1〜10μであり、他方の面の細孔の平均孔径がo、i
μ以下である非対称型多孔質セラミックス層の小孔径側
の面に、プラズマ重合生成物層を20μ以下の厚さに積
層して成る濾過用材料を提供するものである。
That is, in the present invention, the average pore diameter of the side holes on one side is 0.
1 to 10μ, and the average pore diameter of the pores on the other side is o, i
A filtration material is provided in which a plasma polymerization product layer is laminated to a thickness of 20 μm or less on the small pore diameter side surface of an asymmetric porous ceramic layer having a thickness of 20 μm or less.

本発明の濾過用材料において支持体として用いられる多
孔質セラミックスは、従来のダイナミック膜の支持体と
して用いられている多孔質セラミックスの中から任意に
選ぶことができる。このようなものとしては、例えばア
ルミナ、酸化鉄、酸化チタン、酸化マグネシウム、シリ
カなどを主成分とする焼結体を挙げることができろ。こ
れらの焼結体は、通常0.1〜10μの範囲の孔径の細
孔を有しているので、そのままでは表面にプラズマ重合
生物層を形成させることができない。したがって、プラ
ズマ重合を行うに先立って、その表面に加工を施こして
孔径0.005〜0.1μの範囲に細孔の孔径な狭める
必要がある。この方ロエは、例えば超微細なアルミナ粉
を多孔質セラミックスの表面に焼き着けるか、あるいは
アルミナやシリカなどの化学的に安定な物質をスパッタ
リング法やC,V、:O,法によりセラミックスの表面
に付着させ孔径を縮小させることによって行うことがで
きる。
The porous ceramic used as a support in the filtration material of the present invention can be arbitrarily selected from porous ceramics used as supports of conventional dynamic membranes. Examples of such materials include sintered bodies containing alumina, iron oxide, titanium oxide, magnesium oxide, silica, and the like as main components. Since these sintered bodies usually have pores with a pore diameter in the range of 0.1 to 10 μm, it is not possible to form a plasma polymerized biological layer on the surface of the sintered bodies as they are. Therefore, prior to plasma polymerization, it is necessary to process the surface to narrow the pore diameter to a range of 0.005 to 0.1 μm. In this method, Roe, for example, bakes ultrafine alumina powder onto the surface of porous ceramics, or applies chemically stable substances such as alumina or silica to the surface of ceramics using sputtering or C, V, :O, methods. This can be done by attaching and reducing the pore size.

本発明で用いる支持体の形状は版状、管状、円筒状など
任意に選ぶことかでき、その厚さは通常2〜10mmの
範囲内で選ばれる。
The shape of the support used in the present invention can be arbitrarily selected, such as plate-like, tubular, or cylindrical, and its thickness is usually selected within the range of 2 to 10 mm.

この支持体上に、有機プラズマ重合生成物層を形成させ
るには、プラズマ反応装置内の反応帯域にこの支持体を
置き、真空下において、その表面でプラズマ発生帯域か
ら(る不活性ガスのプラズマとガス状有機化合物とを接
触させることによって行われる。
To form an organic plasma polymerization product layer on this support, the support is placed in a reaction zone in a plasma reactor, and a plasma of inert gas (from the plasma generation zone) is applied to its surface under vacuum. and a gaseous organic compound.

この際に用いる不活性ガスとしては、例えばアルゴン、
ネオン、ヘリウムのような希ガス類、水素、窒素のよう
な単体ガス、−e化炭素、アンモニアのような不活性化
合物ガスなどがある。
Examples of the inert gas used at this time include argon,
Examples include rare gases such as neon and helium, simple gases such as hydrogen and nitrogen, and inert compound gases such as -e carbon and ammonia.

また、ガス状有機化合物としては、例えば4−ビニルビ
リジン、エチレン、フロピレン、ブチレン、アクリル酸
、メタクリル酸、アクリル酸メチ。
Examples of gaseous organic compounds include 4-vinylpyridine, ethylene, phlopylene, butylene, acrylic acid, methacrylic acid, and methacrylic acid.

ノベメタクリル醒メチル、アクリロニトリル、塩化ビニ
ルなどの重合性有機化合物のほか、ピリジン、ピコリン
、ベンゼン、ナフタリン、ブタン、ヘキサン、シクロヘ
キサンなどの非重合性有機化合物を用いることができる
。これらは単独で用いてもよいし、また2種以上混合し
て用いてもよい。
In addition to polymerizable organic compounds such as methyl nobemethacrylate, acrylonitrile, and vinyl chloride, non-polymerizable organic compounds such as pyridine, picoline, benzene, naphthalene, butane, hexane, and cyclohexane can be used. These may be used alone or in combination of two or more.

本発明のp適用材料を製造するためのが適な実施態様に
おいては、プラズマ反応装置内に所定の多孔質セラミッ
クス支持体を置き、高真空に引きながら表面に付着して
いる不純物を除去したのち、不活性ガスを0.1〜0.
2Torrで導入し、電極間に13.56MHzの高周
波電圧を10〜100Wの範囲で印加する。次いでガス
状有機化合物を導入し、30分ないし10時間反応させ
、支持体表面に20μ以下の厚さのち密な重合体層を形
成させる。
In a preferred embodiment for producing the p-applicable material of the present invention, a predetermined porous ceramic support is placed in a plasma reactor, and impurities adhering to the surface are removed while applying a high vacuum. , inert gas at 0.1-0.
A high frequency voltage of 13.56 MHz is applied between the electrodes in a range of 10 to 100 W. A gaseous organic compound is then introduced and reacted for 30 minutes to 10 hours to form a dense polymer layer with a thickness of 20 μm or less on the surface of the support.

この際、ガス状有機化合物は、乾燥、蒸留及び脱気して
用いるのが好ましく・。
At this time, the gaseous organic compound is preferably used after being dried, distilled, and degassed.

このようにして得られる有機プラズマ重合生成物層は、
支持体の多孔質セラミックス層と強固な結合をしている
ので、長期間にわたって使用しても、剥離するようなこ
とはない。
The organic plasma polymerization product layer obtained in this way is
Since it is strongly bonded to the porous ceramic layer of the support, it will not peel off even after long-term use.

本発明のp適用材料は、多孔質セラミックス層の片面の
みに有機プラズマ重合生成物層を設けたものでよいが、
所望ならば両面に設げることもできる。この有機プラズ
マ重合生成物は、均一な厚さヲ有し、実質的にピンホー
ルがなく、セラミックス支持体層を圧密化することもな
いので、本発明のp適用材料は優れた半透性を有し、プ
ラズマ重合により適度に架橋しているため、例えば10
0に9/ al又はそれ以上の圧力に対しても耐えるこ
とができる上に、耐熱性や耐薬品性も極めて良好である
The p-applied material of the present invention may be one in which an organic plasma polymerization product layer is provided on only one side of the porous ceramic layer, but
They can also be provided on both sides if desired. Because the organic plasma polymerization product has a uniform thickness, is virtually free of pinholes, and does not compact the ceramic support layer, the p-applied material of the present invention exhibits excellent semipermeability. and is moderately crosslinked by plasma polymerization, for example, 10
It can withstand pressures of 0 to 9/al or more, and has extremely good heat resistance and chemical resistance.

したがって、本発明のp適用材料は、逆浸透用、限外ろ
適用として特に好適である。
Therefore, the p-applied material of the present invention is particularly suitable for reverse osmosis and ultrafiltration applications.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 表面の細孔の径が0.08μ以下であり、裏面の平均細
孔の径が0.3μ程度である多孔質アルミナ板を、ベル
型プラズマ反応装置内の反応帯域に表面を上にして載置
し、ベル内を0.0ITorr以下の減圧にする。次い
でベル内の容器に入れた4−ビニルピリジンの中へ窒素
ガスを吹き込んでガスを発生させ、圧力I Torr 
、 13.56Hz、50Wの条件下でプラズマ重合さ
せた。このようにして、約20分後に支持体上に厚さ1
.5μの半透膜が形成された。
Example A porous alumina plate with a pore diameter of 0.08μ or less on the surface and an average pore diameter of about 0.3μ on the back was placed face up in a reaction zone in a bell-shaped plasma reactor. Place it on the bell and reduce the pressure inside the bell to 0.0 ITorr or less. Next, nitrogen gas was blown into the 4-vinylpyridine contained in the container in the bell to generate gas, and the pressure was increased to I Torr.
, 13.56 Hz, 50 W conditions for plasma polymerization. In this way, after about 20 minutes, a thickness of 1
.. A 5μ semipermeable membrane was formed.

このものは透析膜として、市販品とほとんど変らない能
力を示した。
As a dialysis membrane, this product showed almost the same performance as commercially available products.

特許出願人  東京電気化学工業株式会社代理人 阿 
形  明
Patent applicant Tokyo Denki Kagaku Kogyo Co., Ltd. Agent A
Shape Akira

Claims (1)

【特許請求の範囲】 1一方の面の細孔の平均孔径が0.1〜10μであり、
他方の面の細孔の平均孔径が0.1μ以下である非対称
型多孔質セラミックス層の小孔径側の面に、プラズマ重
合生成物層を20μ以下の厚さに積層して成る濾過用材
料。 2 平均孔径0.1〜10μの多孔質セラミックス層の
一方の面を加工して平均孔径0.1以下の細孔とし、そ
の面において、不活性ガスのプラズマとガス状有機化合
物とを接触させ、前記表面に有機化合物の重合生成物層
を形成させることを特徴とするろ適用材料の製造方法。
[Claims] 1. The average pore diameter of the pores on one side is 0.1 to 10μ,
A filtration material comprising a plasma polymerization product layer laminated to a thickness of 20μ or less on the small pore diameter side of an asymmetric porous ceramic layer whose other surface has an average pore diameter of 0.1μ or less. 2. Processing one side of a porous ceramic layer with an average pore size of 0.1 to 10μ to create pores with an average pore size of 0.1 or less, and bringing an inert gas plasma into contact with a gaseous organic compound on that side. . A method for producing a material for filter application, comprising forming a layer of a polymerization product of an organic compound on the surface.
JP21223482A 1982-12-03 1982-12-03 Material for filtration and its manufacture Granted JPS59102419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21223482A JPS59102419A (en) 1982-12-03 1982-12-03 Material for filtration and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21223482A JPS59102419A (en) 1982-12-03 1982-12-03 Material for filtration and its manufacture

Publications (2)

Publication Number Publication Date
JPS59102419A true JPS59102419A (en) 1984-06-13
JPH037414B2 JPH037414B2 (en) 1991-02-01

Family

ID=16619177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21223482A Granted JPS59102419A (en) 1982-12-03 1982-12-03 Material for filtration and its manufacture

Country Status (1)

Country Link
JP (1) JPS59102419A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523068A1 (en) * 1985-04-25 1987-01-08 Altenburger Electronic Gmbh Process for producing a filter having pores of a predetermined and roughly equal microsize
US5196380A (en) * 1991-06-06 1993-03-23 Arizona Board Of Reagents Reactive membrane for filtration and purification of gases of impurities
US5635148A (en) * 1991-06-06 1997-06-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Reactive membrane for filtration and purification of gases of impurities and method utilizing the same
US5829139A (en) * 1995-05-03 1998-11-03 Pall Corporation Method for forming a reactive medium
US7465692B1 (en) 2000-03-16 2008-12-16 Pall Corporation Reactive media, methods of use and assemblies for purifying
WO2012169507A1 (en) * 2011-06-10 2012-12-13 富士フイルム株式会社 Plasma polymerizable composition, plasma polymerized film using same, structure, and surface modification method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523068A1 (en) * 1985-04-25 1987-01-08 Altenburger Electronic Gmbh Process for producing a filter having pores of a predetermined and roughly equal microsize
US5196380A (en) * 1991-06-06 1993-03-23 Arizona Board Of Reagents Reactive membrane for filtration and purification of gases of impurities
US5635148A (en) * 1991-06-06 1997-06-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Reactive membrane for filtration and purification of gases of impurities and method utilizing the same
US5637544A (en) * 1991-06-06 1997-06-10 Arizona Board Of Regents On Behalf Of The University Of Arizona Reactive membrane for filtration and purification of gases of impurities and method utilizing the same
US5829139A (en) * 1995-05-03 1998-11-03 Pall Corporation Method for forming a reactive medium
US6066591A (en) * 1995-05-03 2000-05-23 Pall Corporation Reactive medium for purifying fluids
US7465692B1 (en) 2000-03-16 2008-12-16 Pall Corporation Reactive media, methods of use and assemblies for purifying
WO2012169507A1 (en) * 2011-06-10 2012-12-13 富士フイルム株式会社 Plasma polymerizable composition, plasma polymerized film using same, structure, and surface modification method

Also Published As

Publication number Publication date
JPH037414B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
US3775308A (en) Method for preparation of composite semipermeable membrane
WO1993023154A1 (en) Inorganic membrane for microfiltration, and a process for production of such an inorganic membrane
JPS6399246A (en) Filmy raw material
JPH0457372B2 (en)
JPS59102419A (en) Material for filtration and its manufacture
US5045357A (en) Process for preparing a membranous gas separator
US4199448A (en) Reverse osmosis membrane of high urea rejection properties
JPS58166018A (en) Continuous manufacture of polymethyl pentene film
JPS6355973B2 (en)
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JPS61209005A (en) Separation membrane and its preparation
JPH09313903A (en) Zeolite separation membrane manufacture
JP3356776B2 (en) Adhesion method of fluoropolymer film to the object
JP2521883B2 (en) Manufacturing method of plasma-treated carbon dioxide separation membrane
JPH08257302A (en) Production of zsm-5 type zeolite membrane and liquid mixture separation membrane
JPS5962324A (en) Filter medium and its manufacture
CN1068973A (en) Modified micro-pore film is used for film distillation and related film process
JP2003071258A (en) Porous base plate
JPS586208A (en) Production of gas permselective composite membrane
JPS5840102A (en) Separation of mixed liquid
JPS59206008A (en) Novel filter medium and its manufacture
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS61141914A (en) Gas separation membrane
JPS62210008A (en) Production of liquid separation membrane exhibiting permselectivity to ethanol
JPH06182167A (en) Fluorine-containing polyimide-based gas separation membrane and method of mixture gas separation/ concentration using said membrane