JPS589974A - Surface treatment by ion - Google Patents

Surface treatment by ion

Info

Publication number
JPS589974A
JPS589974A JP10709281A JP10709281A JPS589974A JP S589974 A JPS589974 A JP S589974A JP 10709281 A JP10709281 A JP 10709281A JP 10709281 A JP10709281 A JP 10709281A JP S589974 A JPS589974 A JP S589974A
Authority
JP
Japan
Prior art keywords
gas
surface treatment
ion
treated
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10709281A
Other languages
Japanese (ja)
Other versions
JPS6121308B2 (en
Inventor
Shizuka Yamaguchi
静 山口
Naotatsu Asahi
朝日 直達
Kazuyoshi Terakado
一佳 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10709281A priority Critical patent/JPS589974A/en
Publication of JPS589974A publication Critical patent/JPS589974A/en
Publication of JPS6121308B2 publication Critical patent/JPS6121308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Abstract

PURPOSE:To make the distribution of a treating gas in a furnace body uniform and to treat the surface of a work to be treated uniformly with ion by changing the positions of gas ejection holes in the stage of introducing said gas into the furnace. CONSTITUTION:In the surface treatment of metallic mateial by ion, a rotary moving mechanism 15 is connected to a gas ejection port 7 provided in a furnace body 1, and said port is moved intermittently or continuously and vertically. Then, the supply source for gases can cover roughly the entire part in the horizontal direction, and the gases are distributed uniformly. The distributions are improved in the vertical direction as well. It is therefore possible to form uniform glow discharge on each piece of the work to be treated. The ion surface treatment by which uniform hollow cathode discharge is formed and a hollow cathode effect is generated is made possible.

Description

【発明の詳細な説明】 本発明は導伝性部材のグロー放電処理法に係り、特に材
料の温度を高くして表面処理を行う際、被処理品表面で
の表面処理に関与するガス体の分布を(被処理品の設置
位置に関係なく)均一にして、被処理品に均一な放電状
態を保持し、むらの少ない処理層を得ることができるイ
オン表面処理法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glow discharge treatment method for conductive members, and in particular, when performing surface treatment by increasing the temperature of the material, the present invention relates to a glow discharge treatment method for conductive members, and in particular, when performing surface treatment by increasing the temperature of the material, the present invention relates to a glow discharge treatment method for conductive members. The present invention relates to an ion surface treatment method and apparatus that can make the distribution uniform (regardless of the installation position of the article to be treated), maintain a uniform discharge state on the article to be treated, and obtain a treated layer with less unevenness.

金属材料の表面処理技術の1種であるグロー放電表面処
理法が近年脚光を浴びてきている。その代表例がイオン
窒化処理である。イオン窒化処理法は少なくとも10−
4−’forr以下に減圧されている減圧容器゛(以下
炉体と記すことがある)に処理に必要なガス体を導入し
、被処理品が陰極となるように電極を設け、(炉体を陰
極とすることもある)これに外部の直流電源から電圧を
印加して、グロー放電を発生させて表面硬化処理を行う
ものである。第1図はイオン窒化処理装置の概要を示し
たものである。一般には被処理品2が陰極となり、炉体
1が陽極となっている。炉体1は処理中の加熱により各
種の機器や部品(気密用バッキング等)が過熱されるの
を防ぐために水冷構造になっている。イオン窒化処理で
は真空装置9で炉体内を少なくとも1O−1TOrr以
下に減圧しながら、水素ガスと窒素ガス或いはアンモニ
アガスなどの処理ガス6を導入して1〜10’l’or
rの範囲の所定の圧力に保持し、直流電源から300〜
1500Vの電圧を印加してグロー放電を発生させて窒
化処理を行っている。なお第1図において、3は直流電
源、4は陽極端子、5は一極端子、7はガス噴出口、8
は真空装置9が接続されたガス排気口、10は真空計端
子、11は光高温計、12は制御盤である。このイオン
窒化処理法では、被処理品の加熱はグロー放電エネルギ
ーによっているので、外部からの熱源を必要としない。
Glow discharge surface treatment, which is a type of surface treatment technology for metal materials, has been attracting attention in recent years. A typical example is ion nitriding. The ion nitriding method is at least 10-
A gas body necessary for processing is introduced into a reduced pressure vessel (hereinafter sometimes referred to as the furnace body) whose pressure is reduced to 4-'forr or less, an electrode is installed so that the product to be treated becomes a cathode, and the (furnace body) (sometimes used as a cathode) A voltage is applied to this from an external DC power source to generate glow discharge and perform surface hardening treatment. FIG. 1 shows an outline of the ion nitriding apparatus. Generally, the workpiece 2 serves as a cathode, and the furnace body 1 serves as an anode. The furnace body 1 has a water-cooled structure to prevent various devices and parts (such as an airtight backing) from being overheated due to heating during processing. In the ion nitriding process, while reducing the pressure inside the furnace to at least 10-1 TOrr or less using a vacuum device 9, a processing gas 6 such as hydrogen gas and nitrogen gas or ammonia gas is introduced to reduce the pressure from 1 to 10'l'or.
Maintain a predetermined pressure in the range of 300~
The nitriding process is performed by applying a voltage of 1500 V to generate glow discharge. In Fig. 1, 3 is a DC power supply, 4 is an anode terminal, 5 is a single pole terminal, 7 is a gas outlet, and 8 is a
1 is a gas exhaust port to which a vacuum device 9 is connected, 10 is a vacuum gauge terminal, 11 is an optical pyrometer, and 12 is a control panel. In this ion nitriding method, the object to be treated is heated by glow discharge energy, so an external heat source is not required.

1つまり、グロー放電を発生している表面が加熱源とな
るので、被処理品の温度は体積に対する表面積の割合に
よって変化する。すなわち、同一形状で比較的単純な形
状の被処理品では、全体がほぼ均一な温度になり、均一
な処理ができるが、複雑な形状、特に体積に対する表面
積が異なる部品では、同一処理品でも場所により温度が
異なり、それに伴ない拡散原子の濃度、深さが大きく変
動し、均一な処理ができない。また、処理温度が高温域
で行われる浸炭あるいは浸硼処理等は700〜1200
°Cの温度範囲で行われる。このような処理に際し、高
温域までの昇温あるいは保持をグロー放電エネルギーの
みで行うと熱効率が悪く、多くのエネルギーを要する。
1. In other words, since the surface on which glow discharge is occurring serves as a heating source, the temperature of the object to be processed changes depending on the ratio of surface area to volume. In other words, if the parts to be processed have the same and relatively simple shape, the temperature will be almost uniform throughout and uniform processing will be possible, but if the parts have a complex shape, especially parts with different surface areas relative to volume, even if the same part is processed, the temperature will be uniform. The temperature varies depending on the temperature, and the concentration and depth of the diffused atoms vary greatly, making uniform processing impossible. In addition, carburizing or borizing treatment, etc., which is performed at a high temperature range, has a temperature of 700 to 1200
It is carried out in the temperature range of °C. In such a treatment, if the temperature is raised to a high temperature range or maintained using only glow discharge energy, the thermal efficiency is poor and a large amount of energy is required.

一方、被処理品の用途に応じてその表面全体に同一機能
の表面処理を施こすのではなく、同−被処理品内で複数
の処理を要することがある。
On the other hand, depending on the intended use of the article to be treated, it may be necessary to perform a plurality of treatments on the same article, rather than applying a surface treatment with the same function to the entire surface of the article.

このような事から、前述の処理を行う場合、一般的には
被処理品の加熱及びその処理温度の保持のための熱源と
して、グラファイトまたはモリブデンヒータ等の発熱体
を装備し、それに電源(交流電源)を加え、′電圧を印
加して加熱してその輻射熱を併用することもある。一方
、被処理品である陰極とは別に、被処理品近傍に補助電
極を設けてこの電極を陰極とし、被処理品を陽極とする
ことにより補助電極近傍の被処理品面の温度を制御する
処理法も行われている。しかし、これらの方法では、グ
ロー放電用電源の他に発熱体用の電源を必要とする等装
置が複雑であった。そこで本発明者は、被処理品の外周
すなわち減圧容器の内周に、被処理品を陰極とする電極
とは別に、被処理品から離れた位置に一定間隙を保った
複数個の陰極を設置し、イオン処理中にガスの圧力、間
隙及び電源出力等を制御することによって、この陰極に
もグロー放電を発生させてホロー陰極放電を生じさせ、
高温度に加熱あるいは保持することができることを明ら
かにした。このような処理は、第2図に示すように従来
の第1図の装置内にホロー陰極放電を形成させるホロー
陰極治具を目的に応じて設置させることにより行える。
For this reason, when performing the above-mentioned processing, a heating element such as a graphite or molybdenum heater is generally equipped as a heat source for heating the product to be processed and maintaining the processing temperature, and a power source (AC In some cases, the radiant heat is also used by applying a voltage (power supply) and heating. On the other hand, in addition to the cathode that is the workpiece, an auxiliary electrode is provided near the workpiece, and this electrode serves as the cathode, and the workpiece serves as the anode to control the temperature of the surface of the workpiece near the auxiliary electrode. Treatment methods are also being used. However, these methods require a complicated device, such as requiring a power source for the heating element in addition to the glow discharge power source. Therefore, the present inventor installed a plurality of cathodes at a distance from the object with a certain gap between them, in addition to an electrode with the object to be processed as a cathode, around the outer circumference of the object to be processed, that is, the inner periphery of the vacuum container. By controlling the gas pressure, gap, power output, etc. during the ion treatment, glow discharge is also generated at this cathode, resulting in a hollow cathode discharge.
It has been revealed that it can be heated or held at high temperatures. Such processing can be carried out by installing a hollow cathode jig for forming a hollow cathode discharge in the conventional apparatus shown in FIG. 1, as shown in FIG. 2, depending on the purpose.

これ等の処理では、いずれもグロー放電のプラズマガス
圧力を制御することが重要となる。第1図及び第2図に
示される従来のイオン窒化装置でのガス圧力の制御は、
バリアプルリークノ(ルプの調節、或いは真空計で計測
し、これで電磁パルプ等の開閉で行っていた。
In all of these treatments, it is important to control the plasma gas pressure of glow discharge. Gas pressure control in the conventional ion nitriding apparatus shown in FIGS. 1 and 2 is as follows:
Barrier pull leakage was measured by adjusting the loop or using a vacuum gauge, and using this to open and close electromagnetic pulp, etc.

またガス噴出口は炉体上部の一部分の位置に固定されて
設置されていたため、小さなチャンノ(−での処理の場
合にはガスの流れも握み易く、グロー放電も比較的均一
に行われるため余り問題にされない。しかし、大きなチ
ャンノく−の場合で特に数種のガス体を混合して導入す
る際、特に、場所によるガス体の組成の変動を生′子る
ことカニある。最近、装置が大型化する傾向にあり製品
の処理量に応じてチャンノ(−を積み重ねる方法など力
;とられたり、搬送桟積を伴なった連続処理、例えば浸
炭鳩入れ装置などが出現している。処理用ガスの均一な
分布を得る方法としては、攪拌用ファンカ;主に用いら
れるが、イオン処理のガス圧力は0.1〜10 Tor
r’であるため、電動ファンの回転でこのガスを動かす
ことは非常に困難である。ここで、処理用ガスの強制攪
拌を行なわない時の流れを説明する。第2図に示す炉の
上部のガス導入口5から処理用ガスを導入し炉体511
.の排気口4から排気する従来の装置の場合には、炉内
上部と下部ではガスの分布状態が大きく異なる。特に下
部或いは導入口の反対側でのガス組成は導入時の組成と
異ってくる。排気口を下部に設けた場合も同様に炉内の
径方向のガス分布のばらつきを生じる。またガス導入口
が炉体の横に設置された場合には、炉内上部のガスが希
薄となり、局部的にガス圧が低下し、炉内全域にわたっ
て均一なガス圧の分布が得られないこともある。被処理
品温度は、ガスの組成や圧力によって変化するので、目
的とした組成と圧力である正常゛な被処理品表面部分で
設定した値と比べて、組成の変化或いは圧力の変化した
被処理品表面では、変動するととになる。その結果表面
に形成される生成層もガス組成と圧力の変動に伴い大き
く影響を受け、生成化合物層の組成や生成量に変化を及
はし各処理位置において安定な処理ができない欠点があ
った。
In addition, since the gas outlet was fixedly installed in a part of the upper part of the furnace body, the gas flow was easy to control when processing with a small channel (-), and the glow discharge was also relatively uniform. This is not much of a problem.However, in the case of large channels, especially when several types of gases are mixed and introduced, the composition of the gases may vary depending on the location.Recently, equipment There is a tendency for carburizing machines to become larger, and depending on the amount of product to be processed, methods such as piling up containers are being used, and continuous processing that involves transport and stacking, such as carburizing pigeon-loading equipment, has emerged. As a method for obtaining uniform distribution of gas, a stirring fan is mainly used, but the gas pressure for ion treatment is 0.1 to 10 Torr.
r', it is very difficult to move this gas by rotating an electric fan. Here, the flow when the processing gas is not forcibly stirred will be explained. Processing gas is introduced into the furnace body 511 from the gas inlet 5 at the top of the furnace shown in FIG.
.. In the case of a conventional device that exhausts air from the exhaust port 4 of the furnace, the distribution state of gas differs greatly between the upper and lower parts of the furnace. In particular, the gas composition at the bottom or on the opposite side of the inlet is different from the composition at the time of introduction. Similarly, when the exhaust port is provided at the bottom, variations in gas distribution occur in the radial direction within the furnace. Additionally, if the gas inlet is installed next to the furnace body, the gas in the upper part of the furnace becomes diluted, causing local gas pressure to drop and making it impossible to obtain a uniform gas pressure distribution throughout the furnace. There is also. The temperature of the workpiece changes depending on the gas composition and pressure, so if the workpiece temperature has changed in composition or pressure compared to the value set for a normal workpiece surface, which is the target composition and pressure. On the surface of the product, if it fluctuates, it becomes . As a result, the generated layer formed on the surface is also greatly affected by fluctuations in gas composition and pressure, which changes the composition and amount of the generated compound layer, making it impossible to perform stable processing at each processing position. .

本発明の目的は、処理用ガスの炉体内での分布を均一に
し、被処理品の設置位置に関係なく被処理品に均一な表
面処理層を与えることができるイオン表面処理法及び装
置を提供するにある。
An object of the present invention is to provide an ion surface treatment method and apparatus that can uniformly distribute processing gas within a furnace body and provide a uniform surface treatment layer to a workpiece regardless of the installation position of the workpiece. There is something to do.

本発明のさらに他の目的は、ホロー陰極効果を用いて処
理を行うに際し、処理用ガスの炉内分布状態を均一にす
ることにより、被処理品の設置位置に関係なく安定なホ
ロー陰極放電が形成され均一な処理が行いえるイオン表
面処理法及び装置を提供するものである。
Still another object of the present invention is to uniformly distribute the processing gas in the furnace when processing using the hollow cathode effect, thereby achieving stable hollow cathode discharge regardless of the installation position of the product to be processed. The purpose of the present invention is to provide an ion surface treatment method and apparatus that can form and uniformly process the ion surface.

本発明は減圧容器内の被処理品にグロー放電を発生させ
、表面処理を行う材料の表面処理で炉内に処理用ガスを
導入するに際して、そのガスの噴出する孔の位置を間欠
的あるいは連続的に変化させることにより前記目的を達
成させたものである。
The present invention generates a glow discharge in a workpiece in a reduced pressure container, and when introducing a processing gas into a furnace for surface treatment of a material to be surface treated, the position of the hole through which the gas is ejected is adjusted intermittently or continuously. The above objective was achieved by changing the

以下、本発明の一例をホロー陰極放電を用いる処理につ
いて説明する。
Hereinafter, an example of the present invention will be described with respect to a process using hollow cathode discharge.

一般に表面から原子を拡散させて、或いは表面に被覆し
で表面の潤滑作用、耐食性、耐疲労性等の機能を持たせ
る場合、被処理材に悪影響を及ぼすことなく機能を持た
せるにはその拡散或いは吸着させる原子の深さ及び厚さ
等に適切な値がある。
In general, when atoms are diffused from the surface or coated on the surface to provide functions such as surface lubrication, corrosion resistance, and fatigue resistance, the diffusion is necessary to provide the functions without adversely affecting the material to be treated. Alternatively, there are appropriate values for the depth and thickness of the atoms to be adsorbed.

ここで浸炭の場合の例を示すと次のようである。An example of carburizing is shown below.

第3図はグロー中での炭素系のガス分圧とある一定温度
で一定時間処理した場合の表面付近に拡散した炭素濃度
を模型的に示したものである。その絶対値は用いる被処
理材の化学組成、処理温度及び処理時間等によって決ま
る。すなわち、表面から拡散する炭素濃度はグロー中の
炭素系のガスの濃度によって大きく変動する。したがっ
て、均一な処理では炭素系のガス濃度をある範囲に制御
する必要がある。この傾向は他の処理についても同様で
ある。次にガス組成が一定としても処理温度が重要な役
割を演する。ここで鉄鋼材料の表面硬化を例にとると、
窒素で表面硬化を行う場合は、一般に400〜700°
Cの範囲である。炭素を用いる浸炭処理での表面硬化で
は700〜1100’Cであり、硼素では800〜12
00°Cになる。また、硫黄を用いた浸硫処理による表
面潤滑では150〜600°Cである。
FIG. 3 schematically shows the partial pressure of carbon-based gas in the glow and the concentration of carbon diffused near the surface when treated at a certain temperature for a certain period of time. The absolute value is determined by the chemical composition of the material to be treated, the treatment temperature, the treatment time, etc. That is, the concentration of carbon diffused from the surface varies greatly depending on the concentration of carbon-based gas in the glow. Therefore, for uniform treatment, it is necessary to control the carbon-based gas concentration within a certain range. This tendency is the same for other processes as well. Next, even if the gas composition is constant, the processing temperature plays an important role. Taking surface hardening of steel materials as an example,
When surface hardening with nitrogen, the temperature is generally 400 to 700°.
It is in the range of C. Surface hardening by carburizing using carbon is 700-1100'C, and boron is 800-120'C.
It becomes 00°C. In addition, the surface lubrication temperature by sulfurization treatment using sulfur is 150 to 600°C.

一方、TIC等を被覆する場合は800〜11000C
の範囲がよい。以上のように拡散させる原子、被処理材
により適切なガスの組成或いは分圧と処理温度と処理時
間がある。ここで温度についてホロー陰極効果を用いる
場合について述べる。被処理品と補助電極及び補助陰極
間の、ガスの電離密度は被処理品表面から補助電極まで
の距離あるいは補助陰極内の間隙及びガス組成が一定に
決められた場合、それに応じた最適条件のガス圧力の設
定が重要な因子である。例えば、ここで間隙とガス組成
を一定としてガス圧力を変化させた場合は第4図のよう
になる。この例では水素ガス、アルゴンガス、窒素ガス
及びメタンガスの組成とした。
On the other hand, when coating TIC etc., the temperature is 800~11000C.
A range of is good. As described above, there is an appropriate gas composition or partial pressure, treatment temperature, and treatment time depending on the atoms to be diffused and the material to be treated. Here, we will discuss the case where the hollow cathode effect is used for temperature. The ionization density of the gas between the object to be processed and the auxiliary electrode and auxiliary cathode is determined by the optimum conditions when the distance from the surface of the object to be processed to the auxiliary electrode, the gap within the auxiliary cathode, and the gas composition are fixed. Setting the gas pressure is an important factor. For example, if the gap and gas composition are kept constant and the gas pressure is varied, the result will be as shown in FIG. 4. In this example, the composition was hydrogen gas, argon gas, nitrogen gas, and methane gas.

ガス圧力2.5’[’Orrでは1040°Cと最高温
度を示し、それよりも高い場合あるいは低い場合でも低
下している。したがってガス圧力の変化は処理温度に影
響する。
At a gas pressure of 2.5'['Orr, the maximum temperature is 1040°C, and the temperature decreases even when the temperature is higher or lower than that. Changes in gas pressure therefore affect processing temperature.

そこで本発明では、ガスの分布状態を均一になるような
ガス導入法について注目した。炉内に導入された処理用
ガスの拡散は、真空排気装置の吸引により生じる流れ、
炉内温度の対流による流れ及び重力により影響を受ける
。従来のガス導入法は炉体内の固定された噴出口がガス
供給源であるため、ガス圧力及び数種のガスを導入した
場合のある種のガス分圧が変動を生じている。本発明の
イオン表面処理装置の一例を第5図及び第6図に示す。
Therefore, in the present invention, attention has been focused on a gas introduction method that makes the gas distribution state uniform. Diffusion of the processing gas introduced into the furnace is caused by the flow caused by the suction of the vacuum evacuation device,
It is affected by the convection flow and gravity of the furnace temperature. In the conventional gas introduction method, a fixed jet nozzle in the furnace body is the gas supply source, so that the gas pressure and the partial pressure of certain gases when several types of gases are introduced fluctuate. An example of the ion surface treatment apparatus of the present invention is shown in FIGS. 5 and 6.

第5図では、炉体1の上部蓋13から炉体内部に設けら
れた単数のガス噴出ロアは制御盤を介して処理ガスに接
続されている。このガス噴出ロアには単数あるいは複数
個のガスを噴出する孔7aを有している。その孔7aの
位置は時間の経過とともに変化させるために、ガス噴出
ロアには回転運動機構15が接続されて間欠的あるいは
連続的に運動する構造となっている。また図ではガス噴
出ロアが水平面となっており孔7aも水平に分布するよ
うになっているが、目的により垂直方向に任意の長さの
範囲内に長くすることで垂直方向に孔7aを分布させて
もよい。第6図は第5図に示され単数のガス噴出ロアを
炉体1の上部蓋13から炉体内部に複数個設けた例を示
したものである。それらの複数個のガス噴出口に7は第
5図と同様に単数あるいは複数個の回転運動機構15が
接続されている。これらの効果は、ガスの供給源が水平
方向のほぼ全面を補うことができるので、ガスの分布状
態が均一となる。垂直方向についても、従来法に比較し
て大幅に改善することができる。よシ効果的に行うには
炉体内の任意の位置に新たなガス噴出ロアを複数個設け
てガスの供給源である孔7aを炉体内に分布させか、或
いはガス噴出ロアを回転運動を行うとともに、炉体内を
上下に昇降運動させることでガスの噴出する孔7aが広
い範囲で分布した状態となり、目的を達成することがで
きる。これらのガスを噴出する孔7aは、炉体内部に向
けて開口されているが、必要に応じて外部及び上下部の
方向に向けて開口することも効果的である。
In FIG. 5, a single gas ejection lower provided inside the furnace body from the upper lid 13 of the furnace body 1 is connected to the processing gas via a control panel. This gas ejection lower has one or more holes 7a for ejecting gas. In order to change the position of the hole 7a over time, a rotational movement mechanism 15 is connected to the gas ejection lower and is configured to move intermittently or continuously. In addition, in the figure, the gas ejection lower is a horizontal plane, and the holes 7a are also distributed horizontally, but depending on the purpose, the holes 7a can be distributed vertically by extending the length within an arbitrary length range. You may let them. FIG. 6 shows an example in which a plurality of the single gas ejection lowers shown in FIG. 5 are provided inside the furnace body from the upper lid 13 of the furnace body 1. One or more rotational movement mechanisms 15 are connected to the plurality of gas ejection ports 7 as in FIG. 5. These effects are such that the gas supply source can cover almost the entire surface in the horizontal direction, so that the gas distribution becomes uniform. The vertical direction can also be significantly improved compared to the conventional method. In order to do this more effectively, a plurality of new gas ejection lowers may be provided at arbitrary positions within the furnace body, and the holes 7a serving as gas supply sources may be distributed within the furnace body, or the gas ejection lowers may be rotated. At the same time, by vertically moving up and down inside the furnace body, the holes 7a from which gas is ejected are distributed over a wide range, and the purpose can be achieved. The holes 7a for ejecting these gases are opened toward the inside of the furnace body, but it is also effective to open toward the outside and the upper and lower directions as necessary.

なお、本発明においてガス噴出ロアは回転運動機構15
により回転運動を行ってガスの噴出する孔7aの位装置
が間欠的あるいは連続的に変化するようになっているが
、同様な効果を得る方法として、炉内に複数個の固定さ
れたガス噴出口を設け、このガス噴出口に導入するガス
を外部に設けた制御盤により順次変化させることでも可
能である。
In addition, in the present invention, the gas ejection lower is the rotational movement mechanism 15.
The position of the gas ejecting holes 7a is changed intermittently or continuously by rotating the furnace. It is also possible to provide an outlet and sequentially change the gas introduced into the gas outlet using an external control panel.

本発明の方法により、炉内に処理用ガスが均一に供給さ
れて、炉内の各位置においてガス圧力及び各処理用ガス
の分布状態が良好となってホロー陰極放電を用いる場合
でも炉内の各位置においてグローが均一に発生し、被処
理品の表面の反応も均一に行われる。
By the method of the present invention, the processing gas is uniformly supplied into the furnace, and the gas pressure and the distribution state of each processing gas are improved at each position in the furnace. Glow is generated uniformly at each position, and the reaction on the surface of the object to be treated is also uniform.

〔実施例1〕 第2図の従来法と第5図の本発明法によシ、イオン表面
処理装置の炉体内部に設定した被処理品にホロー陰極効
果を生じさせて、イオン浸炭処理を行った。装置は炉内
寸法が直径9001111%高さ1200112Iであ
り、本発明法の処理ではガス導入口に毎分50回の水平
な回転運動を与えた。
[Example 1] Using the conventional method shown in Fig. 2 and the method of the present invention shown in Fig. 5, a hollow cathode effect was created in the workpiece set inside the furnace body of an ion surface treatment apparatus, and ion carburization treatment was performed. went. The furnace interior dimensions of the apparatus were 9001111% in diameter and 12001121 in height, and in the process of the present invention, horizontal rotational motion was applied to the gas inlet at a rate of 50 times per minute.

被処理品は、JIS規格5NC420のニッケルクロム
鋼の試験片で、その大きさは20m角、高さ50 mn
f 90ケ使用した。ホロー陰極治具はグラファイト族
で内径41.5 wm、肉厚5■、高さ70咽を用い、
被処理品をその中心に配置した。
The item to be treated is a JIS standard 5NC420 nickel chromium steel test piece, the size of which is 20 m square and 50 mm high.
f 90 pieces were used. The hollow cathode jig is made of graphite and has an inner diameter of 41.5 wm, a wall thickness of 5 cm, and a height of 70 mm.
The item to be processed was placed in the center.

処理は減圧容器1内をl Q−2Torr以下に減圧し
、その状態で水素ガスを導入して400〜800Vの直
疏電圧を印加して被処理品とホロー陰極治具間にホロー
陰極放電を生じさせ、1040°Cで5m 保持後、窒
素ガス、メタンガス及びアルゴンガスをガス圧力2.5
’l’orrになるように導入して、104 (fCに
おいて39m1nの浸炭処理を行った。
In the process, the pressure inside the vacuum container 1 is reduced to 1 Q-2 Torr or less, hydrogen gas is introduced in that state, and a direct voltage of 400 to 800 V is applied to create a hollow cathode discharge between the product to be processed and the hollow cathode jig. After heating and holding at 1040°C for 5 m, nitrogen gas, methane gas and argon gas were introduced at a gas pressure of 2.5 m.
Carburizing treatment of 39 m1n was carried out at 104 (fC).

処理後、被処理品を急冷処理してその断面の硬さ分布及
び表面から50μm研摩した面の表面炭素量により、炭
素の拡散状態を観察した。
After the treatment, the article to be treated was rapidly cooled, and the state of carbon diffusion was observed based on the hardness distribution of its cross section and the amount of surface carbon on the surface polished by 50 μm from the surface.

第6図は断面硬さ分布を示したものである。図において
、曲線a、a’は本発明による処理後の硬さ分布の上限
及び下限の範囲を示し、b、b/は従来法で処理した後
の硬さ分布の上限及び下限の範囲を示す。図で明らかな
ように、本発明法によれば硬さ分布の上限及び下限の範
囲がせまく、有効硬化深さく1(V550以上)で見る
と0.75〜0.91mである。一方、従来法ではその
範囲は広く0.2〜1.2鵡に及んでいる。そこで、こ
れらの表面炭素量(wt%)を測定した結果、本発明法
では1.23〜1.31 %であるのに対し、従来法で
は0.46〜1.45%であった。以上のように、硬さ
゛分布(有効硬化深さ)及び表面炭素量に影響を及ぼす
因子としては、処理温度と炉内雰囲気中の炭素濃度が考
えられる。つまり従来法では導入した処理用ガスが均一
な分布状態とならないために、ホロー陰極放電が不安定
となったり、各種のガス密度が変化していてイオン化ガ
ス密度が変動するために、処理温度が変動してばらつく
。この場合、処理温度が低くなった部分ではスーティン
グを生じてしまい、それ以後の浸炭現象の進行が阻止さ
れる。また処理温度が高くなった場合は、その温度にお
けるオーステナイト中への炭素固溶限度まで固溶される
ために、高い表面炭素濃度になるとともに、炭素の拡散
速度も早くなって図に示すような結果になった。しかし
、本発明法によればガス分布及びガス密度が改良される
ので、目的とする適正なガス圧力において一定な温度に
保持されているので炭素固溶限度及び炭素の拡散速度が
均一になってばらつきの少ない処理ができた。
FIG. 6 shows the cross-sectional hardness distribution. In the figure, curves a and a' indicate the upper and lower limit ranges of the hardness distribution after treatment according to the present invention, and curves b and b/ indicate the upper and lower limit ranges of the hardness distribution after treatment using the conventional method. . As is clear from the figure, according to the method of the present invention, the range of the upper and lower limits of the hardness distribution is narrow, and is 0.75 to 0.91 m in terms of effective hardening depth 1 (V550 or more). On the other hand, in the conventional method, the range is wide ranging from 0.2 to 1.2 parrots. Therefore, as a result of measuring the surface carbon content (wt%), it was 1.23 to 1.31% in the method of the present invention, while it was 0.46 to 1.45% in the conventional method. As described above, the processing temperature and the carbon concentration in the furnace atmosphere are considered to be factors that affect the hardness distribution (effective hardening depth) and the amount of surface carbon. In other words, in the conventional method, the introduced processing gas is not uniformly distributed, making the hollow cathode discharge unstable, and the ionized gas density fluctuating due to changes in the density of various gases, resulting in the processing temperature It fluctuates and varies. In this case, sooting occurs in the portion where the treatment temperature is low, and subsequent progress of the carburization phenomenon is inhibited. In addition, when the treatment temperature increases, carbon is dissolved in austenite up to its solid solubility limit at that temperature, resulting in a high surface carbon concentration and a faster carbon diffusion rate, as shown in the figure. That's the result. However, according to the method of the present invention, the gas distribution and gas density are improved, so the carbon solid solubility limit and the carbon diffusion rate become uniform because the target gas pressure is maintained at a constant temperature. Processing with little variation was possible.

以上説明した通り、本発明法によれば、処理用ガスの炉
内分布状態を均一にでき、各被処理品に均一なグロー放
電を形成させることができる。また被処理品とホロー陰
極治具の間隙あるいは輻射加熱用に設けられたホロー陰
i治具間の設置位置に関係なく均一なホロー陰極放電が
形成され、ホロー陰極効果を生じるイオン表面処理法及
び装置が提供されたつ
As explained above, according to the method of the present invention, the distribution state of the processing gas in the furnace can be made uniform, and a uniform glow discharge can be formed on each workpiece. In addition, a uniform hollow cathode discharge is formed regardless of the gap between the processed product and the hollow cathode jig or the installation position between the hollow cathode jig provided for radiant heating, and an ionic surface treatment method that produces a hollow cathode effect. equipment provided

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一般のグロー放電処理装置の構成を示す系統
歯、第2図はグロー放電処理装置の縦断面図、第3図は
ガス圧力と温度との関係を示す線図、第4図はCH4分
圧と有効硬化深さ及び表面炭素量との関係を示す線図、
第5図、第6図は本発明のグロー放電処理方法が実施さ
れる装置の縦断面図、第7図は本発明と従来法によるイ
オン浸炭処理の実施例の結果を示す比較図である。 1・・・炉体、2・・・被処理品、3・・・直流電源、
4・・・陽極端子、5・・・陰極端子、9・・・真空装
置、7・・・ガス噴出口、7a・・・ガス噴出孔、15
・・・回転運動駆動〕1 べΩゝ 賃予′ め1閃 め2図 茅3目 茅4 固 θ   /234   5 力゛ス圧力  <TIとト 2 8!;凹 第10
Fig. 1 is a system diagram showing the configuration of a general glow discharge treatment device, Fig. 2 is a vertical cross-sectional view of the glow discharge treatment device, Fig. 3 is a diagram showing the relationship between gas pressure and temperature, and Fig. 4 is a diagram showing the relationship between CH4 partial pressure, effective hardening depth and surface carbon content,
5 and 6 are longitudinal sectional views of an apparatus in which the glow discharge treatment method of the present invention is carried out, and FIG. 7 is a comparison diagram showing the results of an example of ion carburizing treatment according to the present invention and a conventional method. 1...Furnace body, 2...Workpiece, 3...DC power supply,
4... Anode terminal, 5... Cathode terminal, 9... Vacuum device, 7... Gas outlet, 7a... Gas outlet, 15
...Rotary motion drive] 1 base Ωゝrent pre'me 1 flash 2 figure 3 eyes 4 solid θ /234 5 force pressure <TI and to 2 8! ; concave 10th

Claims (1)

【特許請求の範囲】 1、減圧容器内において被処理品である陰極に接続され
た金属材料と、その金属材料に対向させて配置させた陽
極との間に高−圧を印加してグロー放電を発生させ、被
処理品表面あるいは全体を物理的又は化学的変化を与え
る材料のイオン表面処理法において、炉内へのガスの噴
出口を間欠的あるいは連続的にその位置を変化させるこ
とを特徴とするイオン表面処理法。 2、減圧容器内において被処理品である陰極に接続さ瓦
た金属材料と、その陰極に接続されてボロー陰極放電を
形成してホロー陰極効果により被処理品表面あるいは全
体を物理的又は化学的変化を与える材料のイオン表面処
理法において、炉内へのガスの噴出口を間欠的あるいは
連続的にその位置を変化させることを特徴とするイオン
表面処理法。 3、特許請求の範囲第1項及び第2項において、・前記
処理ガスの噴出口が複数個設置されていることを特徴と
するイオン表面処理法。 4、特許請求の範囲第1項及び第2項において、前記処
理ガスの噴出口は間欠的あるいは連続的にその位置を変
化させるに際し、回転運動と上下、への昇降運動が行わ
れることを特徴とする。イオン表面処理法。
[Claims] 1. Glow discharge by applying high pressure between a metal material connected to a cathode, which is an article to be treated, and an anode placed opposite to the metal material in a reduced pressure container. An ion surface treatment method for materials that generates gas and causes physical or chemical changes to the surface or the entire surface of the product, characterized by changing the position of the gas injection port into the furnace intermittently or continuously. ionic surface treatment method. 2. In a reduced pressure container, a shattered metal material is connected to the cathode of the object to be treated, and a hollow cathode discharge is formed by connecting the metal material to the cathode to physically or chemically damage the surface or the entire object to be treated by the hollow cathode effect. An ion surface treatment method for materials that causes change, which is characterized by changing the position of the gas ejection port into the furnace intermittently or continuously. 3. An ion surface treatment method according to claims 1 and 2, characterized in that a plurality of jet ports for the processing gas are installed. 4. Claims 1 and 2 are characterized in that when the processing gas jet port changes its position intermittently or continuously, rotational movement and vertical movement are performed. shall be. Ionic surface treatment method.
JP10709281A 1981-07-10 1981-07-10 Surface treatment by ion Granted JPS589974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10709281A JPS589974A (en) 1981-07-10 1981-07-10 Surface treatment by ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10709281A JPS589974A (en) 1981-07-10 1981-07-10 Surface treatment by ion

Publications (2)

Publication Number Publication Date
JPS589974A true JPS589974A (en) 1983-01-20
JPS6121308B2 JPS6121308B2 (en) 1986-05-26

Family

ID=14450252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10709281A Granted JPS589974A (en) 1981-07-10 1981-07-10 Surface treatment by ion

Country Status (1)

Country Link
JP (1) JPS589974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222066A (en) * 1986-03-20 1987-09-30 Toshiba Corp Member deposited with ceramics
US5514229A (en) * 1993-11-24 1996-05-07 Ramot-University Authority For Applied Research And Industrial Development Ltd., Tel Aviv University Method of producing transparent and other electrically conductive materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222066A (en) * 1986-03-20 1987-09-30 Toshiba Corp Member deposited with ceramics
US5514229A (en) * 1993-11-24 1996-05-07 Ramot-University Authority For Applied Research And Industrial Development Ltd., Tel Aviv University Method of producing transparent and other electrically conductive materials

Also Published As

Publication number Publication date
JPS6121308B2 (en) 1986-05-26

Similar Documents

Publication Publication Date Title
Yushkov et al. Deposition of boron-containing coatings by electron-beam evaporation of boron-containing targets
EP0064884B1 (en) Method and apparatus for coating by glow discharge
US4394234A (en) Method of processing electrically conductive material by glow discharge
JP2015183293A (en) Inner diameter nitriding system using hollow cathode discharge
JPS589974A (en) Surface treatment by ion
JP2693382B2 (en) Composite diffusion nitriding method and device, and nitride production method
JP2001192861A (en) Surface treating method and surface treating device
Xu et al. Plasma surface alloying
JPS6134505B2 (en)
JPH0427294B2 (en)
JPS60125366A (en) Surface treatment of member
CN106637064A (en) Nitridation loosening layer heat treatment method capable of controlling ion nitriding formation effectively
JP2593011B2 (en) Method of manufacturing hard film-coated metal member
KR20010048116A (en) High density plasma ion nitriding method and apparatus
KR20140045072A (en) Method and system for nitriding bore of pipe with hollow cathode discharge
Zvezdin et al. Ion-plasma nitriding of machines and tools parts instrumental steels
JP3516804B2 (en) Ion carburizing furnace and transfer jig
JPS6223064B2 (en)
JPS6137352B2 (en)
KR20000024450A (en) Method for ion-nitrating and coating diamond-Like carbon film using micropulse glow discharge
KR100288319B1 (en) Surface treatment method of foam tool
JPS5931586B2 (en) Method of heating metal materials
JP2003003262A (en) Method of manufacturing member coated with hard carbon film
JP2844771B2 (en) Plasma CVD equipment
JPS5970767A (en) Method and device for coating by glow discharge