JPS5899169A - Diamond sintered body for tool and manufacture - Google Patents

Diamond sintered body for tool and manufacture

Info

Publication number
JPS5899169A
JPS5899169A JP56197353A JP19735381A JPS5899169A JP S5899169 A JPS5899169 A JP S5899169A JP 56197353 A JP56197353 A JP 56197353A JP 19735381 A JP19735381 A JP 19735381A JP S5899169 A JPS5899169 A JP S5899169A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56197353A
Other languages
Japanese (ja)
Other versions
JPH0333674B2 (en
Inventor
哲男 中井
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56197353A priority Critical patent/JPS5899169A/en
Publication of JPS5899169A publication Critical patent/JPS5899169A/en
Publication of JPH0333674B2 publication Critical patent/JPH0333674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 現在、伸線用ダイスや非鉄金属プラスチック、セラミッ
クの切削用に、ダイヤモンドが70容量係を越した焼結
体が市販されている。これらの中でもダイヤモンド粒度
が細かい焼結体は、特に銅線などの比較約款かい線材を
伸線するダイスに使用した場合、伸線後の線表面は非常
になめらかで好評を博している。しかしながら、これら
の市販の焼結体は高温になるような条件下たとえばセラ
ミックの切削や掘削工具として使用した場合その耐熱性
に問題があり、満足できる性能を出すことができない。
DETAILED DESCRIPTION OF THE INVENTION Currently, sintered bodies containing more than 70 diamonds are commercially available for wire drawing dies and for cutting non-ferrous metal plastics and ceramics. Among these, sintered bodies with fine diamond grains have been well received, especially when used in dies for drawing comparative wire materials such as copper wires, as the wire surface after drawing is extremely smooth. However, when these commercially available sintered bodies are used under high-temperature conditions, for example as ceramic cutting or excavation tools, they have problems with their heat resistance and cannot provide satisfactory performance.

まに硬度の高い線材たとえば真鍮メッキされた高炭素銅
線の伸線ではダイヤモンド粒子が欠損したり脱落し、強
度面でも問題があり使用することが不可能である。
However, when drawing a wire with high hardness, such as a brass-plated high carbon copper wire, the diamond particles are damaged or fall off, and there are problems in terms of strength, making it impossible to use the wire.

本発明は前述した焼結ダイヤモンド工具の欠点を改良す
ることにより、耐熱性にすぐれかつ高強度の焼結ダイヤ
モンド工具に関する。
The present invention relates to a sintered diamond tool that has excellent heat resistance and high strength by improving the drawbacks of the sintered diamond tool described above.

まず市販のCoを結合材とし社用いたダ、イヤモ。First, we used commercially available Co as a bonding material.

ンド焼結体の耐熱性が劣る原因を調査するため加熱試験
を行った。その結果、加熱温度約600℃以上ではダイ
ヤモンド焼結体内にマイクロクラックが発生しはじめ約
800℃以上では一部のダイヤモンドがグラファイトす
るのが観察された。加熱時ダイヤモンド−粘体中にマイ
表口クラックが発生するのは結合材として用いてσ為る
COの熱膨張係数は13.8XlO−6であるのに対し
、ダイヤモンドの熱膨張係数は1.5〜48X10  
と低いため、この差によりダイヤモンド焼結体内部に熱
応力が発生し、マイクロクラッカが生じるものと考えら
れる。一方ダイヤモンドがグラファイト化するのは、結
合材であるCoはダイヤモンド合成時の触媒であるため
加熱によりダイヤモンドが逆変態して、グラファイト化
したのであろう。したがって焼結ダイヤモンド工具の耐
熱性を向上させるには、特開昭53−114589に開
示されている如く結合材であるCoを酸処理等の方法に
よりダイヤモンド焼結体中より除去すれば良い。
A heating test was conducted to investigate the cause of the poor heat resistance of the bonded sintered body. As a result, it was observed that at heating temperatures of about 600° C. or higher, microcracks began to occur in the diamond sintered body, and at heating temperatures of about 800° C. or higher, some of the diamonds turned into graphite. The reason why surface cracks occur in diamond-viscous materials when heated is because σ is used as a bonding material.The coefficient of thermal expansion of CO is 13.8XlO-6, while the coefficient of thermal expansion of diamond is 1.5. ~48X10
It is thought that this difference causes thermal stress to occur inside the diamond sintered body, resulting in microcrackers. On the other hand, diamond becomes graphite because Co, which is a binder, is a catalyst during diamond synthesis, so diamond undergoes reverse transformation due to heating and becomes graphite. Therefore, in order to improve the heat resistance of a sintered diamond tool, Co, which is a binder, can be removed from the diamond sintered body by a method such as acid treatment, as disclosed in JP-A-53-114589.

本発明者等はこれを確認するため特開昭53−1145
89に開示されている方法で追試を行った結果、確かに
耐熱性の向上は認められたが、ダイヤモンド焼結体の強
度が著しく低下する欠点があることがわかった。そこで
本発明者等は強度低下を伴わずに耐熱性のすぐれたダイ
ヤモンド焼結体を開発すべく鋭意研究を重ねた。その結
果、粒度、11tm以上のダイヤモンド粒子を衝撃波法
により得られた0、1μ1m以下好ましくは0.01μ
 以下の超微粒のダイヤモンド粒子、および/またはこ
の集合体、および粒度1μm以下の周期律表4a、5a
In order to confirm this, the inventors of the present invention
As a result of carrying out a follow-up test using the method disclosed in No. 89, it was found that although an improvement in heat resistance was certainly observed, there was a drawback in that the strength of the diamond sintered body was significantly reduced. Therefore, the present inventors have conducted intensive research in order to develop a diamond sintered body with excellent heat resistance without decreasing strength. As a result, diamond particles with a particle size of 11 tm or more were obtained by the shock wave method.
The following ultrafine diamond particles and/or aggregates thereof, and periodic table 4a and 5a with a particle size of 1 μm or less
.

6a、族の炭化物、窒化物または、これらの固溶体粉末
の一種または二種以上と鉄族金属を結合材として用いた
焼結体は耐熱性、強度共すぐれることを発見した。
It has been discovered that a sintered body using a group 6a carbide, nitride, or one or more of these solid solution powders and an iron group metal as a binder has excellent heat resistance and strength.

本発明の焼結体が耐熱性、強度共すぐれる理由は次の如
く考えられる。通常ダイヤモンド粒子の焼結はダイヤモ
ンド粉末と鉄族金属等の結合材の混合粉末あるいはダイ
ヤモンド粒子のみを加圧した後、ダイヤモンドが安定、
でかつ鉄族金属等の結合材の液相が発生する温度以上−
に加熱し1.ダイヤモンドの粒界に鉄族金属等の結合材
の液相を侵入させる。このとき、ダイヤモンド粒子の一
部が結合材中に溶解するiともにダイヤモンド粒界に析
出してダイヤモンド同志を結合させる。しかしダイヤモ
ンド粒子は強度が高く超尻圧に加圧してもダイヤモンド
粒子が破砕あるいは変形して理論密度にならず、空孔が
残ったままであり、この部分に多量の結合材が侵入する
。ところが、衝撃波法により得られた1μm以下超微粒
のダイヤモンド粉末あるいはこの集合体と1μm以下の
周期律表4a5a、(la族の炭化物、窒化物、あるい
はこれらの固溶体粉末′の一種または二種以上の結合材
の混合粉末と1μm以上のダイヤモンド粉末を用いれば
、加圧時に1μm以上のダイヤモンド粒子の間隙を結合
材の混合粉末が埋め、理論密度に近い値となる。
The reason why the sintered body of the present invention has excellent heat resistance and strength is considered to be as follows. Normally, diamond particles are sintered after pressurizing a mixed powder of diamond powder and a binder such as an iron group metal or only diamond particles, and then the diamond becomes stable.
Above the temperature at which the liquid phase of the binder such as iron group metals occurs.
Heat to 1. A liquid phase of a binder such as an iron group metal is introduced into the grain boundaries of diamond. At this time, some of the diamond particles dissolve in the binder and precipitate at the diamond grain boundaries, bonding the diamonds together. However, diamond particles have high strength, and even when pressed to extreme pressure, the diamond particles are crushed or deformed and do not reach the theoretical density, leaving pores remaining, into which a large amount of binder material enters. However, if ultrafine diamond powder of 1 μm or less obtained by the shock wave method or an aggregate thereof is combined with one or more of the periodic table 4a5a, (LA group carbide, nitride, or solid solution powder of these) of 1 μm or less, If a binder powder mixture and a diamond powder of 1 μm or more are used, the binder powder mixture fills the gaps between the diamond particles of 1 μm or more during pressurization, resulting in a value close to the theoretical density.

したがって加熱時に間隙に侵入する鉄族金属の量は非常
に少な(なる。さらに衝撃波法シー、より得られたダイ
ヤモンド粒子は0.1μm以下と超微粒であるため表面
エネルギが高く、微量の鉄族金属の触媒の存在下で1μ
m以上のダイヤモンド粒子と結合材、及び結合材同志を
強固に結合させる。しかしながら、衝撃波法により得ら
れた超微粒のダイヤモンド粒子は前述した如く表面エネ
ルギが高いため、粒成長する場合があるが、本発明焼結
体は、周期律表4a、5a16a族の炭化物1.窒化物
あるいはこれらの固溶体を含有するため、これら−が粒
成長抑制剤として作用する。以上の如く本発明焼結体は
微量の鉄族金属により1μm以上のダイヤモンド粒子を
強固に結合させるとともに、粒成長のない均一な組織と
なるため耐熱性と強度にすぐれているものと考えられる
Therefore, the amount of iron group metals that enter the gap during heating is extremely small.Furthermore, the diamond particles obtained by the shock wave method are ultrafine, less than 0.1 μm, so they have high surface energy and a trace amount of iron group metals. 1μ in the presence of metal catalyst
To firmly bond diamond particles of m or more in size, a binder, and the binders to each other. However, since the ultrafine diamond particles obtained by the shock wave method have high surface energy as described above, grain growth may occur.However, the sintered body of the present invention contains carbides 1. Since it contains nitrides or solid solutions thereof, these act as grain growth inhibitors. As described above, the sintered body of the present invention is considered to have excellent heat resistance and strength because diamond particles of 1 μm or more are firmly bound together by a small amount of iron group metal and has a uniform structure without grain growth.

本発明焼結体の粗粒のダイヤモンド粒度は1μm以上が
良い。1μm以下であると焼結体の耐摩耗性に問題が生
じる場合がある。また1μm以上のダイヤモンド粒子の
含有量は容量で20〜90%が好ましい。1μm以上の
ダイヤモンド粒子の含有量が20%未満であると耐摩耗
性が悪くなる。一方1−以上のダイヤモンド粒子の含有
量が90%を越すと1μm以上のダイヤモンド粒子の間
隙に埋まる。
The coarse diamond grain size of the sintered body of the present invention is preferably 1 μm or more. If it is less than 1 μm, problems may arise in the wear resistance of the sintered body. Further, the content of diamond particles of 1 μm or more is preferably 20 to 90% by volume. If the content of diamond particles of 1 μm or more is less than 20%, wear resistance will be poor. On the other hand, when the content of diamond particles of 1- or more exceeds 90%, the gaps between the diamond particles of 1 μm or more are filled.

衝撃波法により得られた0、1μ単以下の超微粒のダイ
ヤモンド粒子と周期律表4a15a、6a族の炭化物、
窒化物、あるいはこれらの固溶体の量が不足し、鉄族金
属の含有量が増加するため、耐熱性が劣る。また衝撃波
法により得られた0、1μm以下の超微粒ダイヤモンド
粒子の含有量は結合材中の容積で50〜95%が好まし
い。こめ含有量が50%未満であると結合材の耐摩耗性
が不足し、一方95%を超えると、結合材中の周期律表
4a、5a。
Ultrafine diamond particles of 0.1 μm or less obtained by shock wave method and carbides of groups 4a15a and 6a of the periodic table,
Heat resistance is poor because the amount of nitrides or solid solutions thereof is insufficient and the content of iron group metals increases. Further, the content of ultrafine diamond particles of 0.1 μm or less obtained by the shock wave method is preferably 50 to 95% by volume in the binder. If the grain content is less than 50%, the wear resistance of the binder will be insufficient, while if it exceeds 95%, the wear resistance of the binder will decrease.

6a、族の炭化物、窒化物またはこれらの固溶体の量が
減少するため、衝撃波法により得られた超微粒のダイヤ
モンド粒子が粒成長することがある。
Since the amount of group 6a carbides, nitrides, or solid solutions thereof is reduced, ultrafine diamond particles obtained by the shock wave method may undergo grain growth.

本発明焼結体の鉄族金属の含有量は耐熱性を向上させる
ためには5係以下が良い。特に鉄族金属の含有量が3%
以下になるとさらに良い。
The content of iron group metal in the sintered body of the present invention is preferably 5 or less in order to improve heat resistance. In particular, the content of iron group metals is 3%.
It's even better if it's below.

本発明の焼結体に使用するダイヤモンド原料粉末として
は粒度1μm以上のものは合成ダイヤモンドまたは天然
ダイヤモンドのいずれでも良い。
The diamond raw material powder used in the sintered body of the present invention may be either synthetic diamond or natural diamond with a particle size of 1 μm or more.

コノタイヤモンド粉末と衝撃波法により得られた超微粒
ダイヤモンド粒子あるいは、この集合体と周期律表第4
a、5a、6a族の炭化物、窒化物、または固溶体およ
び鉄族金属粉末をボールミル等の手段を用いて均一に混
合する。この鉄族金属は予め混合せずに焼結時に外部よ
り溶浸せしめても良い。混合した粉末を超高工高、温装
置に入れダイヤモンドが安定な条件下で焼結する。この
とき使用した鉄族金属と炭化物や窒化物の共晶液相の出
現温度以上で焼結する必要がある。
Kono Tire diamond powder and ultrafine diamond particles obtained by the shock wave method, or this aggregate and the fourth part of the periodic table.
A, 5a, 6a group carbide, nitride, or solid solution and iron group metal powder are uniformly mixed using a means such as a ball mill. This iron group metal may be infiltrated from the outside during sintering without being mixed in advance. The mixed powder is placed in an ultra-high-engineered, high-temperature device and sintered under conditions where the diamond is stable. At this time, it is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase of the iron group metal, carbide, or nitride appears.

本発明のダイヤモンド焼結体は高強度の線材を線引きす
る場合、焼結ダイヤモンドダイス内面には高圧力が発生
するが、ダイヤモンド焼結体の外径が小さく肉厚がうす
くなる場合は、伸線中にダイヤモンド焼結体が縦方向に
割れることがある。
When the diamond sintered body of the present invention is used to draw a high-strength wire rod, high pressure is generated on the inner surface of the sintered diamond die, but when the diamond sintered body has a small outer diameter and a thin wall thickness, The diamond sintered body may crack in the vertical direction.

このような場合はダイヤモンド焼結体の外周を超硬合金
等の支持体で包囲してダイヤモンド焼結体の外周から予
圧を加えることにより伸線中の縦割れを防止することが
可能である。
In such a case, it is possible to prevent vertical cracking during wire drawing by surrounding the outer periphery of the diamond sintered body with a support such as a cemented carbide and applying preload from the outer periphery of the diamond sintered body.

本発明の焼結体の用途としては、ダイスの他に切削工具
や掘削工具にも使用できる。この場合、ダイヤモンド焼
結体の靭性をさらに向上させるため、超硬合金等の支持
体に超蒔圧焼結中に接合さ!粒度8〜16μmのダイヤ
モンド粉末、衝撃波法により得られた粒度゛0.011
1mのダイヤモンド粉末平均粒度0.5μmのWC粉末
及びCo粉末を容積で、75:17:5:8に混合した
。この完成粉末を外径14 m m %内径10mmの
Ta製の容器に充填し、超高圧高温装置を用いて圧力5
5kM、温度1,400’で1゜分間焼結した。焼結体
を取り出して組織を観察したところ粒度8〜16μのダ
イヤモンド粒子は衝撃波法により得られた超微粒のダイ
ヤモンド粒子とWC及びCOより成る結合材を介して強
固に結合しており、均一な組織を示していた。次にダイ
ヤモンド焼結体の比重を測定したところ428であり、
完投配合組成の焼結体であった。このダイヤモンド焼結
体を用いて真空中で加熱テストした。比較のため、市販
の粒度30〜60μmのダイヤモンド焼結体(85〜9
0容積係ダイヤモンドとCoより成る)も同様にテスト
した。その結果、本発明のダイヤモンド焼結体は1.o
oo℃に加熱してもマイクロクラックの発生はほとんど
なく、ダイヤモンドのグラファイト化も検出されなかっ
た。一方市販のダイヤモンド焼結体は600℃付近でマ
イクロクラックが発生し出し800℃以上ではダイヤモ
ンド のグラファイト化が検出された。
The sintered body of the present invention can be used not only for dies but also for cutting tools and excavating tools. In this case, in order to further improve the toughness of the diamond sintered body, it is bonded to a support such as cemented carbide during super-pressing sintering! Diamond powder with particle size 8-16 μm, particle size ゛0.011 obtained by shock wave method
WC powder and Co powder with an average particle size of 1 m of diamond powder of 0.5 μm were mixed in a volume ratio of 75:17:5:8. This finished powder was filled into a Ta container with an outer diameter of 14 mm and an inner diameter of 10 mm, and was heated to a pressure of 5 mm using an ultra-high pressure and high temperature device.
Sintering was carried out at 5 km and a temperature of 1,400' for 1°. When the sintered body was taken out and its structure was observed, it was found that the diamond particles with a particle size of 8 to 16μ were strongly bonded to the ultrafine diamond particles obtained by the shock wave method via a binder made of WC and CO, and a uniform structure was observed. It showed the organization. Next, the specific gravity of the diamond sintered body was measured and found to be 428.
It was a sintered body with a complete blend composition. A heating test was conducted in vacuum using this diamond sintered body. For comparison, a commercially available diamond sintered body with a particle size of 30 to 60 μm (85 to 9
0 volume diamond and Co) was similarly tested. As a result, the diamond sintered body of the present invention has 1. o
Even when heated to 0°C, there were almost no microcracks, and no graphitization of diamond was detected. On the other hand, in commercially available diamond sintered bodies, microcracks occur at around 600°C, and graphitization of diamond was detected at temperatures above 800°C.

実施例2 粒度80〜60μmのダイヤモンド粒子、衝撃波法によ
り得られた0、1μm以下の超微粒のダイヤモンド粒子
の集合体(Mo、W)Cを容積で80:15:5の割合
いく混合した。この完成粉末を外径14mm内径10m
mのMo製の容器に充填し、更にその上に0.2mmの
Ni−Coの合金板を置いた。これを超高圧装置内に入
れ55に/8.1,450℃で10分間焼結した。焼結
体を取り出し、比重測定より、Ni−Coの含有量を推
定したところ容積で2.7%であった。
Example 2 Diamond particles having a particle size of 80 to 60 μm and an aggregate (Mo, W)C of ultrafine diamond particles of 0.1 μm or less obtained by a shock wave method were mixed in a volumetric ratio of 80:15:5. This finished powder has an outer diameter of 14 mm and an inner diameter of 10 m.
A 0.2 mm thick Ni-Co alloy plate was placed on top of the Mo container. This was placed in an ultra-high pressure device and sintered at 55°C/8.1,450°C for 10 minutes. The sintered body was taken out, and the Ni-Co content was estimated to be 2.7% by volume based on the specific gravity measurement.

この焼結体の抗折力を測定したところ162印/mm’
であった。比較のため実施例1で用いた粒度30〜60
μmの市販のダイヤモンド焼結体を王水処理してCOを
溶出したものの抗折力は80 収面m”であった。
The transverse rupture strength of this sintered body was measured and was 162 marks/mm'
Met. Particle size 30-60 used in Example 1 for comparison
The transverse rupture strength of a commercially available diamond sintered body having a diameter of 80 m'' was obtained by treating it with aqua regia and eluting CO.

実施例3 表1に示す組成の結合材粉末を作成した。Example 3 A binder powder having the composition shown in Table 1 was prepared.

これらの結合材粉末と、1μm以上のダイヤモンド粒子
を表2に示す割合いで混合した。これらの粉末を外径1
4mm、内径10mmのTa製の容器にWC−6%CO
組成の超硬合金の円板とTi箔を入れた後充填し、圧力
55kki、温度1,500℃で焼結した。
These binder powders and diamond particles of 1 μm or more were mixed in the proportions shown in Table 2. These powders have an outer diameter of 1
WC-6% CO in a Ta container with a diameter of 4 mm and an inner diameter of 10 mm.
After inserting a cemented carbide disk having the same composition and Ti foil, it was filled and sintered at a pressure of 55 kki and a temperature of 1,500°C.

焼結体を取り出して組織を観察したところ、イの表1 焼結体はダイヤモンドが粒成長していたが、他の焼結体
は均一な組織を示した。次にこれらの焼結体を用いて切
削工具のバイトを作成し、圧縮強度1.200にノ/c
m”の安山岩を速度20m/分、切込み1mm送り0.
3mm/回転で湿式で30分間切削した。その結果を表
2に示す。比較のため市販の粒度80−100実施例1
で作成した完投を内径8mmのWC−6%表2 COより成る超硬合金に充填して圧力55klS、温度
1.450℃で焼結した。この焼結体を用いて0.25
0mmの穴径のダイスを作成し、真鍮メッキした鋼線を
速度800m/分潤滑油中で伸線した。比較のため粒度
30〜60μmの市販のダイヤモンド焼結体のダイスも
作成しテストした。その結果、本発明焼結体は5.lt
伸線可能であったのに対し、市販のダイヤモンド焼結体
ダイスはl、3tl、、か伸線できなかった。
When the sintered body was taken out and its structure was observed, it was found that diamond grains had grown in the sintered body (see Table 1), but the other sintered bodies had a uniform structure. Next, a cutting tool bit was made using these sintered bodies, and the compressive strength was 1.200/c.
m" andesite at a speed of 20 m/min, depth of cut of 1 mm, and feed of 0.
Wet cutting was performed at 3 mm/rotation for 30 minutes. The results are shown in Table 2. Commercially available particle size 80-100 Example 1 for comparison
The complete cast prepared in the above was filled into a cemented carbide made of WC-6% CO having an inner diameter of 8 mm, and sintered at a pressure of 55 klS and a temperature of 1.450°C. 0.25 using this sintered body
A die with a hole diameter of 0 mm was prepared, and a brass-plated steel wire was drawn in lubricating oil at a speed of 800 m/min. For comparison, a commercially available diamond sintered die with a particle size of 30 to 60 μm was also prepared and tested. As a result, the sintered body of the present invention was found to be 5. lt
Wire drawing was possible, whereas commercially available diamond sintered dies could not draw wire.

実施例5 実施例3で作成したこの焼結体を用いて切削用のチップ
を作成した。これを用いてAβ−25%Stを速度25
0m/分切込み0.3mm送り0.15mm/回転で1
時間切削した。なお比較のため市販の粒度8〜6μmの
ダイヤモンド焼結体も切削テストを行った。その結果本
発明の焼結体の逃げ面摩耗中は0.047mmであった
のに対し市、販のダイヤモンド焼結体は0.095mm
であった。
Example 5 Using the sintered body produced in Example 3, a cutting tip was produced. Using this, Aβ-25%St was added at a speed of 25%.
1 at 0m/min depth of cut 0.3mm feed 0.15mm/rotation
Time was cut. For comparison, a cutting test was also conducted on a commercially available diamond sintered body with a grain size of 8 to 6 μm. As a result, the flank wear of the sintered body of the present invention was 0.047 mm, while that of the commercially available diamond sintered body was 0.095 mm.
Met.

349−349-

Claims (6)

【特許請求の範囲】[Claims] (1)粒度1μm 以上のダイヤモンド粒子を容量で2
0〜9096含有し、残部の結合材が50〜95容積%
の衝撃波法により得られた0、1μm以下の超微粒のダ
イヤモンド粒子、あるいはこの集合体及び粒度1μm以
下の周期律表、4 a、5a、6a族の炭化物窒化物ま
たはこれらの固溶体の一種また奢よ二種以上及び鉄族金
属より成る工具用ダイヤモンド焼結体。
(1) Diamond particles with a particle size of 1 μm or more in a capacity of 2
Contains 0 to 9096, with the remaining binder being 50 to 95% by volume
Ultrafine diamond particles with a particle size of 0 or 1 μm or less obtained by the shock wave method of A diamond sintered body for tools made of two or more metals and iron group metals.
(2)焼結体中の鉄族金属の富有量が容積で5%以下で
ある特許請求の範囲第(1)項記載の工具用ダイヤモン
ド焼結体。
(2) The diamond sintered body for a tool according to claim (1), wherein the enrichment amount of iron group metal in the sintered body is 5% or less by volume.
(3)粒度1μm 以上のダイヤモンド粉末と衝撃波法
により得られた0、1μm 以下の超微粒ダイヤモンド
粒子および/またはこれらの集合体、1μm以下の周期
律表第4a、5a、6a族の炭化物、窒化物およびこれ
らの固溶体粉末の一種または二種以上と鉄族金属の混合
粉末を作°成し、超高圧高温装置を用いてダイヤモンド
が安定な高温高圧下でホットプレスすることを特徴とす
る粒度1μm以上のダイヤモンド粒子を容量で20〜9
096含存し、残部が衝撃波法により得られたα1μm
以下の超微粒ダイヤモンド粒子および/またはこれらの
集合体、および粒度1μm以下の周期律表第4a、5a
、6a族の炭化物、窒化物またはこれらの固焼結体の製
造方法。
(3) Diamond powder with a particle size of 1 μm or more, ultrafine diamond particles of 0 or 1 μm or less obtained by shock wave method and/or aggregates thereof, carbides of groups 4a, 5a, and 6a of the periodic table of 1 μm or less, nitrided A particle size of 1 μm is produced by preparing a mixed powder of one or more of these solid solution powders and iron group metals, and hot-pressing the diamond under high temperature and pressure using an ultra-high pressure and high temperature equipment. More than 20 to 9 diamond particles in capacity
096, and the remainder was α1μm obtained by shock wave method.
The following ultrafine diamond particles and/or aggregates thereof, and particles 4a and 5a of the periodic table with a particle size of 1 μm or less
, a method for producing Group 6a carbides, nitrides, or solid sintered bodies thereof.
(4)粒度1μm以上のダイヤモンド粉末と衝撃波!法
により得られた0、1μm以下の超微粒ダイヤモンド粒
子、および/またはこれらの集合体、1μm以下の周期
律表W4 a s 5 a、6a、&jの炭化物窒化物
およびこれらの固溶体粉末の一種または二種以上を作成
し、超高圧高温装置を用いてダイヤモンドが安定な高温
、高圧下でホットプレスすることにより外部より鉄族金
属を侵入させて、焼結することを特徴とする1μm以上
のダイヤモンド粒子を容量で20〜90係含有し残部が
衝撃波法により得′られた0、1μm以下の超微粒のダ
イヤモンド粒子、および/またはこれらの集合体及び粒
度1μm以下の周期律表4a、5a、6a族の炭化物、
窒化物またはこれらの固溶体の一種または二種以上及び
鉄族金属より成る工具用焼結体の製造法。
(4) Diamond powder with a particle size of 1 μm or more and shock waves! ultrafine diamond particles of 0 or 1 μm or less obtained by the method, and/or aggregates thereof, carbide nitrides of W4 a s 5 a, 6 a, &j of the periodic table of 1 μm or less and solid solution powders of these or A diamond with a diameter of 1 μm or more is created by creating two or more types and hot-pressing the diamond under high temperature and pressure using an ultra-high pressure and high temperature device to allow iron group metal to enter from the outside and sinter it. Ultrafine diamond particles of 0 to 1 μm or less, containing 20 to 90 particles by volume, the remainder obtained by shock wave method, and/or aggregates thereof and particles of 1 μm or less in periodic table 4a, 5a, 6a carbide of the family,
A method for producing a sintered body for tools comprising one or more of nitrides or solid solutions thereof and iron group metals.
(5)混合する鉄族金属の割合いが容積で5係以下であ
る特許請求の範囲第(3)項記載の工具用ダイヤモンド
焼結体の製造法。
(5) The method for producing a diamond sintered body for a tool according to claim (3), wherein the proportion of the iron group metal to be mixed is less than or equal to a factor of 5 in terms of volume.
(6)ホットプレス中に侵入する鉄族金属の割合いが焼
結体中の容積で5%以下である特許請求の範囲第(4)
項記載の工具用ダイヤモンド焼結体の製造法。
(6) Claim No. 4, wherein the proportion of iron group metals that invade during hot pressing is 5% or less by volume in the sintered body.
A method for producing a diamond sintered body for tools as described in .
JP56197353A 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture Granted JPS5899169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197353A JPS5899169A (en) 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197353A JPS5899169A (en) 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture

Publications (2)

Publication Number Publication Date
JPS5899169A true JPS5899169A (en) 1983-06-13
JPH0333674B2 JPH0333674B2 (en) 1991-05-17

Family

ID=16373068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197353A Granted JPS5899169A (en) 1981-12-07 1981-12-07 Diamond sintered body for tool and manufacture

Country Status (1)

Country Link
JP (1) JPS5899169A (en)

Also Published As

Publication number Publication date
JPH0333674B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
EP0174546B1 (en) Diamond sintered body for tools and method of manufacturing the same
US8382868B2 (en) Cubic boron nitride compact
US8597387B2 (en) Abrasive compact with improved machinability
JP2004505786A (en) Manufacturing method of polishing products containing diamond
US20040062928A1 (en) Method for producing a sintered, supported polycrystalline diamond compact
EP0181258A2 (en) Improved cubic boron nitride compact and method of making
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPS5935066A (en) Diamond sintered body for tool and manufacture
JPS6167740A (en) Diamond sintered body for tools and its manufacture
JPH0530897B2 (en)
JPH083131B2 (en) Method for manufacturing diamond sintered body for tool
JPS627149B2 (en)
JPS6355161A (en) Manufacture of industrial diamond sintered body
CN111266573A (en) Preparation method of polycrystalline cubic boron nitride composite sheet
JPS5899169A (en) Diamond sintered body for tool and manufacture
JPS6350401B2 (en)
JPS6311414B2 (en)
JPS6319585B2 (en)
JP7425872B2 (en) Polycrystalline diamond with iron-containing binder
JPS5899168A (en) Diamond sintered body for tool and manufacture
JPS5891056A (en) Diamond sintered body for tools and manufacture
JPS6146540B2 (en)
JPH0377151B2 (en)
JPS5819737B2 (en) High hardness sintered body for tools and its manufacturing method
JPS61205664A (en) Manufacture of electroconductive sintered diamond