JPS5899131A - Production of optical glass material - Google Patents

Production of optical glass material

Info

Publication number
JPS5899131A
JPS5899131A JP19906581A JP19906581A JPS5899131A JP S5899131 A JPS5899131 A JP S5899131A JP 19906581 A JP19906581 A JP 19906581A JP 19906581 A JP19906581 A JP 19906581A JP S5899131 A JPS5899131 A JP S5899131A
Authority
JP
Japan
Prior art keywords
glass
pipe
glass pipe
plasma
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19906581A
Other languages
Japanese (ja)
Inventor
Masaharu Horiguchi
堀口 正治
Ryoji Sedaka
良司 瀬高
Hiroshi Takahashi
宏 高橋
Susumu Yoshida
進 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP19906581A priority Critical patent/JPS5899131A/en
Publication of JPS5899131A publication Critical patent/JPS5899131A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • C03B37/01823Plasma deposition burners or heating means
    • C03B37/0183Plasma deposition burners or heating means for plasma within a tube substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To deposit a glass layer efficiently on the inside circumferential surface of a glass pipe to be supplied therein with gaseous raw materials by a plasma CVD method by putting a heat resistant cylindrical body spacially on the outside circumference of said glass pipe and heating the glass pipe from the inside and outside circumferences. CONSTITUTION:A heat resistant cylindrical body 2 is put on the outside circumference of a glass pipe 1 via a spacing 3 and a plasma generator 6 is provided freely movably on the outside circumference of the body 2. Gaseous raw materials are supplied into the pipe 1 to generate plasmas P1, P2 in the pipe 1 and the spacing 3. The gaseous raw materials are thermally decomposed by the heat of generation of the plasmas P1, P2 and the fine powder of the glass which is the product of reaction deposits on the inside circumference of the pipe 1 and assumes a fused state, thereby forming a glass layer 7. After the glass layer of a prescribed thickness is formed, the pipe 1 is removed from the body 2 and the hollow part is erased by a collapsing treatment through oxyhydrogen flames, etc., whereby a bar-like optical glass material is obtained.

Description

【発明の詳細な説明】 本発明は光フアイバ用の母材、ロンドレンズ用の母材な
ど、これら光学系ガラス材をプラズマCVD法によシ製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing optical fiber base materials, Rondo lens base materials, and other optical system glass materials by plasma CVD.

光フアイバ用、ロラーレンズ用などの母材を製造する手
段の1つにプラズマCVD法がある。
One of the methods for manufacturing base materials for optical fibers, roller lenses, etc. is the plasma CVD method.

一般的なプラズマCVD法では、ガラスパイプ内にガラ
ス成分等を含む原料ガスを供給してこれをプラズマ発生
熱により熱分解反応させ、その反応生成物たるスート状
のガラス微粉末を上記ガラスパイプ内周に堆積させると
同時にガラス化してガラス層を形成し、以下、こりして
所定厚のガラス層力S内周に形成された後のガラスパイ
プを高温の熱処理にニジコラプスして棒状のガラス材(
光フアイバ用、ロンドレンズ用の母材)としている。
In the general plasma CVD method, a raw material gas containing glass components, etc. is supplied into a glass pipe, and this is subjected to a thermal decomposition reaction using the heat generated by plasma, and the soot-like fine glass powder that is the reaction product is transferred into the glass pipe. A glass layer is formed by vitrifying it at the same time as it is deposited on the periphery, and then the glass pipe after being crushed and formed on the inner periphery of the glass layer of a predetermined thickness is collapsed into a high temperature heat treatment to form a rod-shaped glass material (
It is used as a base material for optical fibers and Rondo lenses).

このプラズマCVD法も内付けCVD法と基本的には変
わりないが、酸水素炎を用いたガラスパイプ外周からの
加熱により前記熱分解反応を行なわせる一般の内付けC
VD法と比べた場合、上記プラズマCVD法ではガラス
パイプ内のプラズマ発生熱によシ熱分解反応を行なわせ
るので、ガラスパイプを強加熱する必要がなく、これが
1つの特徴となっている0 しかし上記の事項は熱分解反応に限ってのみいえること
であり、実際上、ガラスパイプ内におけるガラス堆積物
のひび割れを阻止してこれら両者を融着させるにはガラ
スパイプの高温化は必要である。
This plasma CVD method is basically the same as the internal CVD method, but it is a general internal CVD method in which the thermal decomposition reaction is carried out by heating from the outer periphery of the glass pipe using an oxyhydrogen flame.
When compared with the VD method, the above-mentioned plasma CVD method uses the heat generated by plasma inside the glass pipe to carry out the thermal decomposition reaction, so there is no need to strongly heat the glass pipe, which is one of its characteristics. The above matters apply only to thermal decomposition reactions, and in practice, it is necessary to raise the temperature of the glass pipe to prevent the glass deposits from cracking within the pipe and to fuse the two.

これらの事項も含め、プラズマCVD法でいえることは
、ガラスパイプを高温化する必要があること、ガラスパ
イプ内の長手方向に沿ってガラス層を堆積させるためプ
ラズマ発生装置を同方向へ往復動させる必要があること
、ガラスパイプ内でのプラズマ発生を容易にするためガ
ラスパイプ内を減圧する必要もあることなどであり、こ
れらの条件を満足させなければならない0 ところがガラスパイプ内に単にプラズマを発生させただ
けでは高温のパイプ加熱温度が容易に得られず、また、
ガラスパイプの一点における温度状況をみた場合、プラ
ズマ発生装置が往復動して元の位置へ復帰するまでの間
にその一点の温度は降下してしまうこととなり、再度所
定温度を得るのに時間が−かかるから、プラズマ発生装
置の移動速度は遅速化せざるを得す、したがってプラズ
マ発生装置に依存したガラス層の堆積能率が低下する。
Including these points, what can be said about the plasma CVD method is that it is necessary to heat the glass pipe to a high temperature, and in order to deposit a glass layer along the length of the glass pipe, the plasma generator must be moved back and forth in the same direction. However, it is necessary to satisfy these conditions. It is not easy to obtain a high pipe heating temperature by simply letting the
When looking at the temperature situation at one point in the glass pipe, the temperature at that point will drop while the plasma generator moves back and forth and returns to its original position, and it will take time to reach the specified temperature again. - Because of this, the moving speed of the plasma generator has to be slowed down, and therefore the glass layer deposition efficiency, which depends on the plasma generator, is reduced.

さらiこプラズマの発生を容易にするためガラスパイプ
内を所定の真空度とした場合、ガラスパイプは上記の加
熱と真空引きとの双方を受けることになるので潰れが起
シやすく、シたがって潰れを阻止しながらガラスパイプ
を加熱し、真空引きするのは技術的にかなり難しく、シ
かもこの際採用できる加熱温度はガラスパイプの軟化点
以下であるから、目的とする高温加熱も充分に達成でき
ない。
Furthermore, when the inside of a glass pipe is set to a certain degree of vacuum to facilitate the generation of plasma, the glass pipe is subject to both the heating and evacuation mentioned above, and is therefore prone to collapse. It is technically quite difficult to heat and vacuum a glass pipe while preventing it from collapsing, and the heating temperature that can be used in this case is below the softening point of the glass pipe, so the desired high temperature heating can be achieved sufficiently. Can not.

本発明はこの種プラズマCVD法においてガラスパイプ
の内外周からこれを加熱するといった新たな手段により
上記の問題点を解消しようとするもので、以下その具体
的方法を図示の実施例により説明する。
The present invention attempts to solve the above-mentioned problems by a new means of heating the glass pipe from the inner and outer peripheries in this type of plasma CVD method, and a specific method thereof will be explained below with reference to the illustrated embodiment.

図において、(1)はプラズマCVD法を実施する際の
サブストレイト(基材)となる石英系または多成分ガラ
ス系、または鉛ガラス系などのガラスパイプ、(2)は
該ガラスパイプ(1)の外周に間隙(3)を残して被せ
られた耐熱性の筒状体であり、この筒状体(2)はガラ
スパイプ+11よシも高融点の各種ガラスよりなる。
In the figure, (1) is a glass pipe made of quartz, multi-component glass, or lead glass that serves as the substrate when performing the plasma CVD method, and (2) is the glass pipe (1). It is a heat-resistant cylindrical body that is covered with a gap (3) left on the outer periphery of the glass pipe +11, and this cylindrical body (2), as well as the glass pipe +11, is made of various types of glass with a high melting point.

上記におけるガラスパイプ(1)の一端には原料ガス(
気相のガラス原料、気相のドープ剤、キャリアガス)を
供給するための原料供給系(4)が配管手段により連結
されておシ、一方、ガラスパイプ(1)および筒状体(
2)の他端にはこれらの内部を所定の減圧状態にするた
め真空ポンプ等を備えた真空吸引系(5)が上記と同様
に連結されている。
One end of the glass pipe (1) in the above is connected to the raw material gas (
A raw material supply system (4) for supplying a glass raw material in a gas phase, a dopant in a gas phase, a carrier gas) is connected by piping means, while a glass pipe (1) and a cylindrical body (
2) A vacuum suction system (5) equipped with a vacuum pump or the like is connected to the other end in the same manner as described above in order to bring the insides into a predetermined reduced pressure state.

さらに、上記筒状体(2)の外周にはガラスパイプ(1
)内および間隙(3)内でプラズマを発生させるための
プラズマ発生装置(6)が所定の長手方向へ移動自在に
設けられており、このプラズマ発生装置(6)はマイク
ロ波キャビティによるもの、あるいはradio fr
equency (r f ) :lイルを備えたもの
からなっているが、ガラスパイプ(1)内にのみプラズ
マを発生さぜる場合、筒状体(2)は抵抗加熱法などの
外部加熱手段により加熱する。
Furthermore, a glass pipe (1
) and within the gap (3), a plasma generating device (6) is provided movably in a predetermined longitudinal direction, and this plasma generating device (6) may be a microwave cavity, or radio fr
However, when plasma is generated only in the glass pipe (1), the cylindrical body (2) is heated by an external heating means such as a resistance heating method. Heat.

本発明では上記においてプラズマCVD法を実施するの
であり、これの1例としては原料供給系(4)からガラ
スパイプ(1)内へ所定の原料ガスを供給し、さらに図
示の左右方向へ移動するプラズマ発生装置(6)により
、ガラスパイプ(l)内オよび間隙(3)内にそれぞれ
プラズマP1、P2を発生させる。
In the present invention, a plasma CVD method is carried out in the above process, and as an example, a predetermined raw material gas is supplied from the raw material supply system (4) into the glass pipe (1), and then moved in the left and right direction as shown in the figure. A plasma generator (6) generates plasmas P1 and P2 within the glass pipe (l) and the gap (3), respectively.

ここで原料ガスについて説明すると、気相のガラス原料
としては5iCt4、SiBr4、SiH4,5iHC
13,5i(QC2Hグ)などが用いられ、かつ、該原
料中にはこれをガラス化した際の所望屈折率や熱的特性
などを得るため、Ge、P、Bs T r、Ta、Zr
s At%sbなどによる気相のドープ剤(化合物)が
用いられることもアシ、さらにこれら原料、ドープ剤の
キャリアガスとしてはAr%He、N2などの不活性ガ
ス、あるいは02ガス、もしくはこれらの混合ガスが用
いられる〇 一方、間隙(3)内もA「、あるいは02などのガスで
置換され、また、プラズマ発生装置(6)がマイクロ波
キャビティによるものであるとき、ガラスパイプ(1)
内および間隙(3)内は真空吸引系(5)を介してはぼ
同等に減圧される。
To explain the raw material gases here, gas phase glass raw materials include 5iCt4, SiBr4, SiH4, 5iHC.
13,5i (QC2Hg), etc. are used, and in order to obtain the desired refractive index and thermal properties when vitrified, the raw material contains Ge, P, BsTr, Ta, Zr.
It is also possible to use a gas phase dopant (compound) such as sAt%sb, and furthermore, as a carrier gas for these raw materials and dopant, inert gas such as Ar%He, N2, or 02 gas, or these ○ On the other hand, when a mixed gas is used, the inside of the gap (3) is also replaced with a gas such as A' or 02, and when the plasma generator (6) is based on a microwave cavity, the glass pipe (1)
The interior and the gap (3) are almost equally reduced in pressure via the vacuum suction system (5).

ただし、rfフィルによるプラズマ発生では上記の減圧
状態をとらな1こともらるO上述したごとく、ガラスパ
イプ+11内へ原料ガスを供給し、かつ、該パイプ(1
)内および間隙(3)内にそれぞれプラズマP1、P!
を発生させた場合、原料ガスはこれらプラズマP、、P
2の発生熱を介して熱分解され、そしてこの際の反応生
成物でちるスート状のガラス微粉末はガラスパイプ(1
1の内周に堆積されると同時にガラス化されて同パイプ
(1)と融着状態になり、これによりガラス層(7)が
形成される。
However, when plasma is generated by an RF filter, the above-mentioned reduced pressure state is not used.As mentioned above, the raw material gas is supplied into the glass pipe
) and gap (3) respectively.
When generated, the raw material gas is generated by these plasmas P, ,P
The soot-like fine glass powder, which is thermally decomposed through the heat generated in step 2 and dusted with the reaction product at this time, is passed through a glass pipe (1
As soon as it is deposited on the inner periphery of the pipe (1), it is vitrified and fused to the pipe (1), thereby forming a glass layer (7).

こうしたガラス層(7)は、図示の左右方向へ移動する
プラズマ廃止装置(6)を介しガラスパイプ+1)の長
手方向にわたって形成され、しかも繰り返し行なわれる
このプラズマCVD法により可能なかぎシその層厚が増
大される。
Such a glass layer (7) is formed over the length of the glass pipe +1 via a plasma abolition device (6) that moves in the horizontal direction shown in the figure, and the layer thickness can be increased by repeatedly performing this plasma CVD method. is increased.

以下、所定厚のガラス層(7)が形成された後のガラス
パイプ(1)は筒状体(2)からとシ出され、酸水素炎
などを介したコラプス処理によりその中空部が消去され
て棒状のガラス材となる。
Hereinafter, the glass pipe (1) after the glass layer (7) of a predetermined thickness has been formed is taken out from the cylindrical body (2), and its hollow part is erased by a collapse process using an oxyhydrogen flame or the like. It becomes a rod-shaped glass material.

本発明では上記の実施例におい、てガラスパイプ(1)
の内外周にプラズマP、%P、を発生させるようにして
いるから、゛これら2つのプラズマ発生熱によフ原料ガ
スの熱分解とこれにより生じたスート状ガラス微粉末の
ガラス化とが行なえるのはもちろんであるが、こうして
ガラスパイプ(1)を内外から加熱するようにした場合
、当該ガラスパイプ(1)をかなシの高温状態とするこ
とができ、シ友がって上記ガラス化後のガラス層(7)
とガラスパイプtl)との熱融着状態は完全となり、不
完全な融着状態に起因したガラス層(7)のひび割れ防
止、充分高温な熱分解反応であることによる残留塩素ガ
ス成分の低減(すなわちガラス材の特性向上)がはかれ
ることになる。
In the present invention, in the above embodiment, the glass pipe (1)
Since plasmas P and %P are generated on the inner and outer peripheries of the plasma, these two plasma-generated heats can thermally decompose the raw material gas and vitrify the soot-like glass powder produced thereby. Of course, if the glass pipe (1) is heated from the inside and outside in this way, the glass pipe (1) can be heated to a very high temperature, which will help the vitrification process. Later glass layer (7)
The thermal fusion state between the glass pipe tl) and the glass pipe tl) is now complete, preventing cracking of the glass layer (7) caused by incomplete fusion state, and reducing residual chlorine gas components due to the thermal decomposition reaction at a sufficiently high temperature ( In other words, the properties of the glass material will be improved.

また、ガラスパイプ(1)の外周に筒状体(2)がある
ため、その分だけ同パイプmからの放熱が阻止されるこ
とになシ、シかも上記内外加熱によるガラスパイプ(1
)の高速加熱も可能であるから、プラズマ発生装置(6
)の移動速度を早めながら当該プラズマCVD法が高能
率で実施できる。
In addition, since there is a cylindrical body (2) on the outer periphery of the glass pipe (1), the heat radiation from the pipe m may be blocked by that much.
), it is also possible to heat the plasma generator (6) at high speed.
) The plasma CVD method can be performed with high efficiency while increasing the moving speed of the particles.

さらにプラズマの発生を容易にする目的でガラスパイプ
[1)内を減圧するとき、間隙(3)内も減圧してガラ
スパイプ(1)内と等圧にすればよく、こうすることに
よシ当該パイプ(1)の潰れが防止できるから、真空状
態での高温加熱も問題な〈実施できる。
Furthermore, when reducing the pressure inside the glass pipe [1] for the purpose of facilitating plasma generation, it is sufficient to reduce the pressure inside the gap (3) to equalize the pressure inside the glass pipe (1). Since the pipe (1) can be prevented from collapsing, high-temperature heating in a vacuum state can be carried out without any problems.

その他、筒状体(2)を透明ガラス製としておくことに
より、ガラスパイプ(1)内の堆積状況もよく観察でき
るようになり、その分だけ製造条件の把握、制御が行な
いやすくなる。
In addition, by making the cylindrical body (2) made of transparent glass, it becomes possible to clearly observe the state of accumulation inside the glass pipe (1), which makes it easier to understand and control the manufacturing conditions.

つぎに本発明方法の各具体例を説明する。Next, each specific example of the method of the present invention will be explained.

具体例1 ガラスパイプ(1)としては内径8+a、外径lO■、
長さlrnの石英ガラス製を用いた。
Specific example 1 Glass pipe (1) has an inner diameter of 8+a, an outer diameter of lO■,
A piece made of quartz glass with a length lrn was used.

筒状体(2)としては内径14■、外径16m。The cylindrical body (2) has an inner diameter of 14 cm and an outer diameter of 16 m.

長さ1mの石英ガラス“製゛を用いた。A piece made of quartz glass with a length of 1 m was used.

ガラスパイプ(1)内には原料供給用としたその一端か
ら5iCt、(供給量am/m)、GeC4(供給量0
.2ω/m)、0□ (供給量50ω/−)を供給し、
該パイプ他端からの真空吸引により当該パイプT1)内
を10 torr に減圧した。
Inside the glass pipe (1), 5iCt, (supply amount am/m), GeC4 (supply amount 0
.. 2ω/m), 0□ (supply amount 50ω/-),
The pressure inside the pipe T1) was reduced to 10 torr by vacuum suction from the other end of the pipe.

上記ガラ4パイプ(1)と筒状体(2)との間隙(3)
にはAr(供給量10ω/ sw )を供給し、この間
隙(3)内も10 torrに減圧し九〇プラズマ発生
装置t +6)としてはマイクロ波キャビティによるも
のとし、100Wのマイクロ波電力によりプラズマP1
%P2を発生させながら当該装置(6)を約50crn
左動、右動させ、その移動速度は8m/−とした。
Gap (3) between the glass 4 pipe (1) and the cylindrical body (2)
Ar (supply rate: 10 ω/sw) is supplied, the pressure in this gap (3) is reduced to 10 torr, and a microwave cavity is used as the 90 plasma generator (t+6) to generate plasma using a microwave power of 100 W. P1
Approximately 50 crn of the device (6) while generating %P2
It was moved to the left and then to the right, and the moving speed was 8 m/-.

以上の条件でプラズマCVD法を2時間実施した。The plasma CVD method was carried out for 2 hours under the above conditions.

(の際、ガラスパイプ(1)の温度を放射温度計により
測定したところ、約1100℃の高温が確認できた。
(At this time, the temperature of the glass pipe (1) was measured using a radiation thermometer, and a high temperature of about 1100°C was confirmed.

また、冷却を待ってガラス層(7)を観察したところ、
同層(7)の亀裂は認められず、さらに残留Ct量の分
析結果も約200 ppmでちり、従来の約半分である
ことが確認できた。
In addition, when we observed the glass layer (7) after waiting for cooling, we found that
No cracks were observed in the same layer (7), and the analysis results for the amount of residual Ct showed that it was about 200 ppm, about half of the conventional amount.

さらにガラス層堆積後の上記ガラスパイプ(11を回転
状態としつつ酸水素炎による加熱手段でコラプスして光
フアイバ用母材としたところ、当該母材段階でも泡の発
生がなく、良好なものが得られた。
Furthermore, when the above-mentioned glass pipe (11) after glass layer deposition was rotated and collapsed using heating means using an oxyhydrogen flame to obtain a base material for optical fiber, no bubbles were generated even at the stage of the base material, and a good product was obtained. Obtained.

なお、この具体例1において、間隙(3)内へのなガス
圧で封じこめても先と同様の効果(1得られた0 具体例2 ガラスパイプ+1)としては具体例1と同様のものを用
いた0 筒状体(2)としては内径12m、外径14−のアルミ
ナパイプを用いたO ガラスパイプ(1)内へ供給する原料ガスは具体例1と
同じにし、間隙(3)内にはArと02との混合ガス(
供給量10ca/m)を供給し、これら各部(1)(3
)内の真空度はいずれも8 torrとした0 ガラスパイプ(1)内には具体例1と同様の手段でプラ
ズマPKを発生させる一方、筒状体(2)はこれの外周
に設けられた筒形の加熱手段(抵抗加熱炉700℃)に
より加熱した。
In addition, in this specific example 1, even if the gap (3) is sealed with a large gas pressure, the same effect as before (1 obtained 0 specific example 2 glass pipe + 1) is the same as that in specific example 1. An alumina pipe with an inner diameter of 12 m and an outer diameter of 14 mm was used as the cylindrical body (2). The source gas supplied into the glass pipe (1) was the same as in Example 1, and the gas inside the gap (3) was is a mixed gas of Ar and 02 (
Supply amount 10ca/m), and each part (1) (3
) The degree of vacuum inside the glass pipe (1) was set at 8 torr.Plasma PK was generated inside the glass pipe (1) by the same means as in Example 1, while the cylindrical body (2) was provided around the outer circumference of the glass pipe (1). Heating was performed using a cylindrical heating means (resistance heating furnace at 700°C).

以上の条件でプラズマCVD法を2時間実施したところ
、具体例1とほぼ同様の好結果が得られた0゜ 具体例3 ガラスパイプ(1)としては内径8IIII+1外径1
0■、長さ1mの鉛ガラスパイプを用いた。
When the plasma CVD method was carried out for 2 hours under the above conditions, good results almost similar to those of Example 1 were obtained.
A lead glass pipe with a length of 0 mm and a length of 1 m was used.

筒状体(2)としては内径12m、外径14m。The cylindrical body (2) has an inner diameter of 12 m and an outer diameter of 14 m.

長さ1mの石英ガラス製とした。It was made of quartz glass and had a length of 1 m.

さらにガラスパイプ+1)内にはG e C+4.5b
ct02を供給し、抵埠加熱炉による筒状体(2)の加
熱温度を300℃とした他は、具体例2と同様にしてプ
ラズマCVD法を実施した。
Furthermore, inside the glass pipe +1) is G e C +4.5b.
The plasma CVD method was carried out in the same manner as in Example 2, except that ct02 was supplied and the heating temperature of the cylindrical body (2) in the resistance heating furnace was set to 300°C.

この具体例3の場合、ガラス層(7)の残留Ct量が3
00 ppmと若干高くなったが、それでも各具体例に
近似した好結果が得られた0以上説明した通り、本発明
の方法ではガラス成分等を含む原料ガスをガラス7ぐイ
ブ内へ供給し、該ガラスパイプ内の原料ガスをプラズマ
の発生熱により熱分解反応ならびにガラス化してそのガ
ラスパイプ内周ガラス層を堆積させる光学系ガラス材の
製造方法において、上記ガラスパイプの外周には間隙を
残して耐熱性の筒状体を被せておき、ガラスバイブ内の
プラズマ発生熱と、上記間隙内のプラズマ発生熱または
筒状体外周からの加熱手段とにより、ガラスパイプをそ
の内外周から加熱しながら該ガラスパイプ内周にガラス
層を堆積させるようにしているから、サブストレイトで
ちるガラスパイプを充分3、 高温に加熱しながらその
内周に良質のガラス層を堆積させるといったことが簡易
かつ効率よ〈実施でき、また、ガラスバイブ内を減圧す
るに際しても、これの潰れが阻止できる0
In the case of this specific example 3, the amount of residual Ct in the glass layer (7) is 3
As explained above, in the method of the present invention, a raw material gas containing glass components etc. is supplied into the glass tube, A method for manufacturing an optical glass material in which a raw material gas in the glass pipe is thermally decomposed and vitrified by heat generated by plasma to deposit a glass layer on the inner circumference of the glass pipe, wherein a gap is left on the outer periphery of the glass pipe. A heat-resistant cylindrical body is covered, and the glass pipe is heated from its inner and outer peripheries using the plasma generated heat in the glass vibrator, the plasma generated heat in the gap, or the heating means from the outer periphery of the cylindrical body. Since the glass layer is deposited on the inner periphery of the glass pipe, it is simple and efficient to deposit a high-quality glass layer on the inner periphery of the glass pipe while heating it to a high temperature. It is also possible to prevent the glass vibrator from collapsing when reducing the pressure inside it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の1実施例を示した略示説明図である
。 +l)  ・・・・・ガラスパイプ (2)  ・・・・・筒状体 (3)・9・・書間 隙 (4)  ・・・・・原料供給系 (5)  ・・・・・真空吸引系 (6)  ・・・・・プラズマ発生装置(7)  ・−
・ψ・ガラス層 P、 、P、  ・・・プラズマ
The drawings are schematic illustrations showing one embodiment of the method of the present invention. +l) ...Glass pipe (2) ...Cylindrical body (3), 9...Gap (4) ...Raw material supply system (5) ...Vacuum Suction system (6) ...Plasma generator (7) ・-
・ψ・Glass layer P, ,P, ・・・Plasma

Claims (1)

【特許請求の範囲】 +1)  ガラス成分等を含む原料ガスをガラスパイプ
内へ供給し、該ガラスパイプ内の原料ガスをプラズマの
発生熱によシ熱分解反応ならびにガラス化してそのガラ
スパイプ内周にガラス層を堆積させる光学系ガラス材の
製造方法において、上記ガラスパイプの外周には間隙を
残して耐熱性の筒状体を被せておき、ガラスパイプ内の
プラズマ発生、熱と、上記間隙内のプラズマ発生熱また
は簡′状体外周からの加熱手段とにより、ガラスパイプ
をその内外周から加熱しながら該ガラスパイプ内周にガ
ラス層を堆積させることを特徴とした光学系ガラス材の
製造方法。 (2)  ガラスパイプ内は減圧されてぃ仝特許請求の
範囲第1項記載の光学系ガラス材の製造方法。 (3)  ガラスパイプ内は減圧されており、該ガラス
パイプ内と間隙内とはほぼ等圧に保持されている特許請
求の範囲第1項記載の光学系ガラス材の製造方法。 (4)筒状体はガラスパイプよシも融点が高い特許請求
の範囲第1項記載の光学系ガラス材の製造方法。
[Scope of Claims] +1) A raw material gas containing a glass component, etc. is supplied into a glass pipe, and the raw material gas in the glass pipe undergoes a thermal decomposition reaction and vitrification using the heat generated by plasma, and the inner periphery of the glass pipe is In a method for manufacturing optical glass materials in which a glass layer is deposited on the glass pipe, a heat-resistant cylindrical body is covered with a heat-resistant cylindrical body leaving a gap around the outer periphery of the glass pipe, so that plasma generation and heat inside the glass pipe and the inside of the gap are covered. A method for producing an optical glass material, characterized in that a glass layer is deposited on the inner periphery of a glass pipe while heating the glass pipe from its inner and outer peripheries using plasma generated heat or heating means from the outer periphery of the simple body. . (2) The method for manufacturing an optical glass material according to claim 1, wherein the pressure inside the glass pipe is reduced. (3) The method of manufacturing an optical glass material according to claim 1, wherein the pressure inside the glass pipe is reduced, and the pressure inside the glass pipe and the inside of the gap are maintained at approximately the same pressure. (4) The method for manufacturing an optical glass material according to claim 1, wherein the cylindrical body has a higher melting point than a glass pipe.
JP19906581A 1981-12-10 1981-12-10 Production of optical glass material Pending JPS5899131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19906581A JPS5899131A (en) 1981-12-10 1981-12-10 Production of optical glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19906581A JPS5899131A (en) 1981-12-10 1981-12-10 Production of optical glass material

Publications (1)

Publication Number Publication Date
JPS5899131A true JPS5899131A (en) 1983-06-13

Family

ID=16401519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19906581A Pending JPS5899131A (en) 1981-12-10 1981-12-10 Production of optical glass material

Country Status (1)

Country Link
JP (1) JPS5899131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222936A (en) * 1985-03-27 1986-10-03 Furukawa Electric Co Ltd:The Plasma cvd process
NL1020358C2 (en) * 2002-04-10 2003-10-13 Draka Fibre Technology Bv Method and device for manufacturing optical preforms, as well as the optical fibers obtained therewith.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222936A (en) * 1985-03-27 1986-10-03 Furukawa Electric Co Ltd:The Plasma cvd process
NL1020358C2 (en) * 2002-04-10 2003-10-13 Draka Fibre Technology Bv Method and device for manufacturing optical preforms, as well as the optical fibers obtained therewith.
WO2003086998A1 (en) * 2002-04-10 2003-10-23 Draka Fibre Technology B.V. Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith
US7734135B2 (en) 2002-04-10 2010-06-08 Draka Comteq B.V. Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith

Similar Documents

Publication Publication Date Title
CA1080562A (en) Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4125389A (en) Method for manufacturing an optical fibre with plasma activated deposition in a tube
JPS5945609B2 (en) Optical fiber manufacturing method
JPH0127005B2 (en)
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
US20120285202A1 (en) Method Of Fabricating Optical Fiber Using An Isothermal, Low Pressure Plasma Deposition Technique
JPS5899131A (en) Production of optical glass material
JP3601939B2 (en) Method and apparatus for manufacturing quartz glass crucible
US8857372B2 (en) Method of fabricating optical fiber using an isothermal, low pressure plasma deposition technique
EP0072069B1 (en) Method of producing preforms for drawing optical fibres and apparatus for the continuous production of optical fibres
KR20160025526A (en) Plasma deposition process with removal of substrate tube
JP3797567B2 (en) Manufacturing method of optical fiber preform
US5211731A (en) Plasma chemical vapor deposition of halide glasses
WO1980001801A1 (en) Optical fiber fabrication process
JPS63210044A (en) Formation of quartz-based glass film
CN111056740B (en) Device and method for preparing active optical fiber preform by PCVD method
JP3434945B2 (en) Method for producing hollow silica glass preform for fiber
JPS6143290B2 (en)
JPS605030A (en) High purity glass powder and apparatus and method for manufacturing glass products thereby
Yoshinari et al. Device for manufacturing SiO 2-TiO 2 based glass
JPH053416B2 (en)
JPS62108748A (en) Preparation of glass fiber base material
JPH0524875A (en) Production of preform for fluoride optical fiber and production device therefor
JPS6028604A (en) Manufacture of light transmitting material
JPS61215229A (en) Production of parent material for optical fiber