JPS5898411A - Hollow fiber membrane for blood treatment and its production - Google Patents

Hollow fiber membrane for blood treatment and its production

Info

Publication number
JPS5898411A
JPS5898411A JP19076681A JP19076681A JPS5898411A JP S5898411 A JPS5898411 A JP S5898411A JP 19076681 A JP19076681 A JP 19076681A JP 19076681 A JP19076681 A JP 19076681A JP S5898411 A JPS5898411 A JP S5898411A
Authority
JP
Japan
Prior art keywords
membrane
cellulose acetate
hollow fiber
cellulose
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19076681A
Other languages
Japanese (ja)
Inventor
Shohei Kamishiro
神代 尚平
Nobuo Taneda
種田 信夫
Kimihiko Matsuzawa
松沢 公彦
Koji Soga
曽我 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19076681A priority Critical patent/JPS5898411A/en
Publication of JPS5898411A publication Critical patent/JPS5898411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:cellulose acetate, plasticizers and additivies are mixed, the resultant mixture is subjected to melt spinning and the fibers are treated with an alkali solution to effect partial hydrolysis, thus producing the titled fiber membrane that has a specific average acetylation degree, the inner surface remaining in the form of acetate and good haemocompatibility. CONSTITUTION:A mixture consisting of cellulose acetate such as cellulose diacetate, plasticizers such as polyethylene glycol and additives is extruded out through the outer nozzles of a double-tube type spinneret and a nitrogen gas is passed through the inner nozzles to effect melt spinning. The resultant hollow fibers are partially hydrolyzed in an alkali solution until the average acetylation degree becomes higher than 10% and the inner surface substantially remains in the form of cellulose acetate. The hollow fiber membrane A shows higher haemocompatibility than the hydrolyzate C of lower acetylation degree and as high as the cellulose acetate membrane B, when they are tested by bringing these fibers into contact with blood by extracorporeal circulation from the carotid artery to the cervical vein in rabbits.

Description

【発明の詳細な説明】 本発明は限外p遍、透析勢O隔膜分離に使用し得る膜、
特に血液透析に適する中空繊維膜およびその製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a membrane that can be used for ultrapolar and dialysis membrane separation,
In particular, the present invention relates to a hollow fiber membrane suitable for hemodialysis and a method for producing the same.

本発明の目的は、透析性、濾過性能、生体適合性および
物性の優れた中空繊維膜を提供することである。近年血
液透析療法O普及に伴ない。
An object of the present invention is to provide a hollow fiber membrane with excellent dialysis performance, filtration performance, biocompatibility, and physical properties. With the spread of hemodialysis therapy in recent years.

透析器に!!求される特性も多岐に渡す、性能。To the dialysis machine! ! Performance that delivers a wide range of required characteristics.

品質、安全性について種々の改善が成されている。%に
長期透析にみられるように、透析療法が生活の1部とな
ってきた現在、安定透析、無症状透析が可能な安全性、
生体適合性のよシ優れた透析器を望む医療ニーズに対応
して、バランスの整った性能、つ壕り高い溶質透過性と
透析患者の費望に応じて任意Kll択制御された透水性
を有する膜で、なおかつ優れた血液適合性を持つ透析膜
管開発することである。
Various improvements have been made regarding quality and safety. Nowadays, as dialysis therapy has become a part of daily life, as seen in long-term dialysis, the safety of stable dialysis and asymptomatic dialysis,
In response to medical needs for a dialyzer with excellent biocompatibility, we offer well-balanced performance, high solute permeability, and controlled water permeability that can be selected according to the needs of dialysis patients. The objective is to develop a dialysis membrane tube with a membrane that has excellent blood compatibility.

従来、血液透析用の膜材としてはセルロースが主として
使用されてきた。すなわちセルロースの分子鎖の化学構
造が親水性であシ、水および水溶性溶質との親和性が嵩
いために優れた溶質透過性を有するからである。一方血
液透析用竜ルロース膜は、その製法を問わず親水性であ
るが故に、乾燥時に収縮し、不可逆な構造変化を伴ない
膜が緻密化する。再び湿fI4状11に戻しても、*a
はするがもはや乾燥前の構造とは異なるためK、溶質透
過性、透水性が大巾に劣化する6%に中空繊維の形状で
は長き方向、断面方向ともに収縮、膨潤するため膜の屈
曲や真円性の低下を来たす。セルロース膜を血液透析器
に組立てる工程では、グリセリン等の高沸点可塑化剤を
付着浸透させることで乾燥工種での膜寸法の安定化を計
り、溶質透過性透水性の劣化を防止している。
Conventionally, cellulose has been mainly used as a membrane material for hemodialysis. That is, the chemical structure of the molecular chain of cellulose is hydrophilic, and it has a high affinity for water and water-soluble solutes, so it has excellent solute permeability. On the other hand, the Rulose membrane for hemodialysis is hydrophilic regardless of its manufacturing method, and therefore shrinks during drying, resulting in an irreversible structural change and the membrane becomes dense. Even if it returns to humidity fI4 state 11 again, *a
However, since the structure is no longer the same as before drying, the K, solute permeability, and water permeability deteriorate significantly.The hollow fiber shape shrinks and swells in both the longitudinal and cross-sectional directions, causing bending and straightening of the membrane. This causes a decrease in circularity. In the process of assembling cellulose membranes into hemodialyzers, a high boiling point plasticizer such as glycerin is attached and permeated to stabilize membrane dimensions during drying and prevent deterioration of solute permeability and water permeability.

一方、セルロースアセテートを湿式msすることKより
逆浸透膜から限外濾過膜まで広範囲の透水性を発揮する
ことが知られている。又セルロースアセテートと可塑剤
、添加剤の混合物を溶融製膜して得られるセルロースア
セテート膜から、可塑剤と添加剤を抽出することKよ抄
透水性の優れた膜を製造出来る。しかも可塑剤と添加剤
の種類、比率ttyえることで透水性を容易に制御出来
る。セルロースアセテート膜はセルロースに比べ、強度
が嵩く、乾燥に伴う寸法便化が少ない、つま抄中!2!
−織の形態としては、乾燥、再湿潤の状態変化に伴う再
湿伸長が線維方向、断面方向ともに小さいという特徴が
ある。しかしながらセルロールア竜テートは疎水性であ
るが故に血液透析膜として使用するKは、セルロース膜
に比べて溶質透過性が低いという欠点を有している。つ
10溶質透過性を向上させようとすれば透水性も高くな
1、透析膜としては適さなくなる。
On the other hand, it is known that wet massaging cellulose acetate exhibits a wide range of water permeability from reverse osmosis membranes to ultrafiltration membranes. Furthermore, by extracting the plasticizer and additives from a cellulose acetate membrane obtained by melt-forming a mixture of cellulose acetate, a plasticizer, and an additive, a membrane with excellent water permeability can be produced. Furthermore, water permeability can be easily controlled by changing the type and ratio of the plasticizer and additives. Compared to cellulose, cellulose acetate membrane is stronger and bulkier and less likely to lose size due to drying. 2!
- The woven structure is characterized by small rewet elongation in both the fiber direction and the cross-sectional direction due to changes in drying and rewet conditions. However, since celluloarate is hydrophobic, K used as a hemodialysis membrane has the disadvantage of lower solute permeability than cellulose membranes. If the solute permeability is to be improved, the water permeability will also be high, making it unsuitable as a dialysis membrane.

従来、セルロースアセテートを膜原材として透析用膜を
製造する方法としては、湿式法、乾湿式法あるいは溶融
法による製膜又は紡糸を行い、いわゆるセルロースアセ
テート1膜又は原糸とし、しかる螢アルカリ溶液で加水
分解し再生セルロース膜とすることが知られていゐ。し
かし、セルロースアセテートは、重合度、酢化度を問わ
ず加水分解により酢酸基の遊離と共にセルロースの主鎖
の切断が起9、低重合度化することは避けられない事実
である。との皮めセルロースアセテート膜をアルカリ溶
液で加水分解すると酢化度の低下につれてセルロースの
主鎖から切断されたセルロースの1部がオリゴマーとし
て溶液中に遊離溶拳、あるいは浮遊してくる。膜の形態
が中空all維膜である場合には、これらセルロースの
オリゴ妥−が中空#II#Ik膜の内部に遊離すること
Kなる。故にセルロースアセテートを加水分解して得ら
れる再生セルロース中空繊維を血液透析膜として用いる
場合Kti、血液の流路となる中空線維内部に存在する
これらセルロースオリゴマーを充分洗浄除去する会費が
ある。
Conventionally, methods for manufacturing dialysis membranes using cellulose acetate as a membrane raw material include membrane forming or spinning using a wet method, a wet-dry method, or a melting method to obtain a so-called cellulose acetate membrane or raw thread, followed by a fireworks alkaline solution. It is known that it can be hydrolyzed to form a regenerated cellulose membrane. However, it is an unavoidable fact that cellulose acetate, regardless of its degree of polymerization or acetylation, undergoes hydrolysis to liberate acetic acid groups and cleave the main chain of cellulose9, resulting in a lower degree of polymerization. When a peeled cellulose acetate film is hydrolyzed with an alkaline solution, as the degree of acetylation decreases, a portion of the cellulose cut from the cellulose main chain becomes free dissolved or floating in the solution as oligomers. When the membrane is in the form of a hollow all-fiber membrane, these cellulose oligomers are liberated inside the hollow #II#Ik membrane. Therefore, when regenerated cellulose hollow fibers obtained by hydrolyzing cellulose acetate are used as a hemodialysis membrane, there is a fee, Kti, to thoroughly wash and remove these cellulose oligomers present inside the hollow fibers that serve as blood flow paths.

血液適合性という観点からこれらセルロース膜、セルロ
ースアセテート膜をみれば、透析膜としての用途が近年
開発されゐKつれて明らかKなってきた。溶融紡糸法に
よる竜ルロースアセテート中空僚維は、湿式又は乾湿式
法に比べて内壁の平滑度が^く、血液の抗凝固性に優れ
ている。又再生セルロースと比べて血小板減少率が低く
、白血球の保持率が高く、補体活性が低いfIIIIO
優れた生体適合性を示す。
Looking at these cellulose membranes and cellulose acetate membranes from the viewpoint of blood compatibility, it has become clear that their use as dialysis membranes has been developed in recent years. Rululose acetate hollow fibers produced by the melt-spinning method have smoother inner walls than those produced by the wet or dry method, and are superior in blood anticoagulability. In addition, compared to regenerated cellulose, fIIIO has a lower thrombocytopenia rate, higher white blood cell retention rate, and lower complement activity.
Shows excellent biocompatibility.

本発明者らは、これらセルロースの利点である高い溶質
透過性とセルロースアセテートの利点である撰択制御可
能な高い透水性と内壁面の優れた血液適合性という両者
の長所を兼ね備えた透析用の膜の開発を目的とし、鋭意
研究検討した結果、セルロースアセテート中空峻細膜の
外壁面、つまり非血液接触面より限定加水分解を行ない
、血液と接触する内壁面のみを実質的に−にルロースア
セテートのtt残存させることで、膜の寸法安定性強度
、性能、血液適合性の全ての面にわ曳って着るしく改善
されることを見出して本発明を完成するに到った。
The present inventors have developed a material for dialysis that combines the advantages of cellulose, which is high solute permeability, and cellulose acetate, which has high water permeability that can be selected and controlled, and excellent blood compatibility of the inner wall surface. As a result of intensive research and study for the purpose of membrane development, we conducted limited hydrolysis from the outer wall surface of the cellulose acetate hollow thin membrane, that is, the non-blood contact surface, and only the inner wall surface that comes into contact with blood was essentially converted into lullose acetate. We have completed the present invention by discovering that by allowing the tt to remain, the dimensional stability, strength, performance, and blood compatibility of the membrane can be improved in all aspects, making it more comfortable to wear.

すなわち、本発明は、実質的にセルロースアセテートか
らなり、中空部に不活性気体又は疎水性液体を含む中空
繊維を、外壁面よりアルカリ溶液で限定加水分解して得
られる中空ll11繍であって、(、)平均酢化度がt
o%以上、(b)膜内壁面が実質的にセルロースアセテ
ートのまま、であることを特徴とする中空繊維膜である
That is, the present invention is a hollow fiber obtained by limited hydrolysis of a hollow fiber substantially made of cellulose acetate and containing an inert gas or a hydrophobic liquid in the hollow part with an alkaline solution from the outer wall surface, (,) The average degree of acetylation is t
(b) The inner wall surface of the membrane remains substantially as cellulose acetate.

本発明方法は、セルロースアセテート、可塑剤および飽
加剤からなる混合物を溶融紡糸法で中空Ill維化し、
次いでアルカリ溶液により限定加水分解し、内壁面が実
質的にセルロースアセテートのまま残存させることを特
徴とする中空線維膜の製造方法である。
The method of the present invention involves forming a mixture of cellulose acetate, a plasticizer, and a saturant into hollow Ill fibers using a melt spinning method.
The method for producing a hollow fiber membrane is characterized in that the membrane is then subjected to limited hydrolysis using an alkaline solution, and the inner wall surface remains substantially as cellulose acetate.

本発lplを貌明する。The present lpl will be revealed.

本発明に用いるセルロースジアセテートおよびセルロー
ストリアセテートが、可塑剤、添加剤との混合性からと
くに好ましい。このセルロースアセテートはjll[!
kK用いてもよいし、膜性能、物性改良を目的として混
合して使用することも出来る。
Cellulose diacetate and cellulose triacetate used in the present invention are particularly preferred because of their miscibility with plasticizers and additives. This cellulose acetate is jll [!
kK may be used, or they may be used in combination for the purpose of improving membrane performance and physical properties.

又、同一の酢化度のセルロースアセテートで、重合度郷
の異なるものを混合して用いることもできる。セルロー
スアセテート、可塑剤及びセルロースアセテートと非相
溶性の添加剤を溶融混合し通常の方法にて、2重管環状
ノズルより押し出し内部中空部にN又はCへ等の不活性
気体又は溶融温度に於いて低い蒸気圧を有するンリコン
オイル等の高沸点の疎水性液体を含有する中空Ia維原
厚膜製造する。可塑剤と添加剤の損択に当っては、目標
とする透水性を考慮して決められる。つまりセルロース
アセテート、可塑剤および添加剤の3成分間の親和性お
よび組成比率により溶融固化時に起るミクロ相分離構造
が決定され、ポリマーの基本骨格となるセルロース主鎖
の配列が固定化されるため、この段階で厚膜の透水性ポ
テンシャルが完成する・次に得られた中空繊維像層をア
ルカリ溶液又は水溶液がアルカリ性を示す鉤塩基塩潜液
で限定加水分解する。従来セルロースジセテートカら再
生セルロースに変換する九めKFi主とじて強アルカリ
を、必要とする鹸化当量以上に使用することによって、
膜壁の厚み方向で均一に加水分解し酢化度を低下させ、
実質的に酢化度を10襲以下としてきた。
Furthermore, cellulose acetate having the same degree of acetylation but having different degrees of polymerization may be mixed and used. Cellulose acetate, a plasticizer, and an additive incompatible with cellulose acetate are melt-mixed and extruded through a double-tube annular nozzle using a conventional method, and then injected into the internal hollow space with an inert gas such as N or C or at a melting temperature. A hollow Ia fibrillar thick film containing a high-boiling hydrophobic liquid, such as licorice oil, having a low vapor pressure is produced. The selection of plasticizers and additives is determined by considering the target water permeability. In other words, the affinity and composition ratio between the three components of cellulose acetate, plasticizer, and additives determine the microphase separation structure that occurs during melt-solidification, and the arrangement of the cellulose main chain, which is the basic skeleton of the polymer, is fixed. At this stage, the water permeability potential of the thick film is completed.Next, the obtained hollow fiber image layer is subjected to limited hydrolysis with an alkaline solution or a hook base salt dipping solution whose aqueous solution is alkaline. Conventionally, KFi converts cellulose disetate into regenerated cellulose by using a strong alkali in an amount greater than the required saponification equivalent.
Hydrolyzes uniformly in the thickness direction of the membrane wall to reduce the degree of acetylation,
In effect, the degree of acetylation has been reduced to 10 or less.

ここでいう酢化度々け次式で定義するものである。The acetylation mentioned here is defined by the following formula.

本発明でいう限定加水分解とは、膜の厚み方向で加水分
解を不均一に完結させ恩ことでおる。
The term "limited hydrolysis" as used in the present invention means that hydrolysis is completed unevenly in the thickness direction of the membrane.

つま9膜壁の内部へ向うほど酢化度が高くなり、外壁部
では実質的にセルロース!で加水分解されていることで
ある。加水分解反応速度を抑える手段としては、第1に
弱塩基塩、中性塩、厚膜に含まれる可塑剤又は反応副生
物として生成するアセチル塩を、アルカリ溶液中に共存
させることである。具体的には、炭酸ソーダ、ポリエチ
レングリコール畔である。これらの塩又は可塑剤等の濃
度を高めることで、加水分解反応を自由に制御緩和出来
、得られる膜の平均酢化度、内壁面の酢化度をbatで
低下させ得る。
The degree of acetylation increases towards the inside of the membrane wall, and the outer wall is essentially cellulose! This means that it is hydrolyzed. The first means to suppress the hydrolysis reaction rate is to coexist in the alkaline solution a weak base salt, a neutral salt, a plasticizer contained in a thick film, or an acetyl salt produced as a reaction by-product. Specifically, they are soda carbonate and polyethylene glycol. By increasing the concentration of these salts or plasticizers, the hydrolysis reaction can be freely controlled and relaxed, and the average degree of acetylation of the resulting membrane and the degree of acetylation of the inner wall surface can be lowered by bat.

溶質透過性を高くするためには酢化度を下げればよいが
、透水性が極端に減少してしまうことや、内壁面を実質
的にセルロースアセテートのまオ残存させるためKF′
i平均酢化度を10饅以上であることが好ましい。
In order to increase the solute permeability, it is possible to lower the degree of acetylation, but the water permeability will be extremely reduced and the inner wall surface will remain essentially cellulose acetate, so KF'
It is preferable that the average degree of acetylation is 10 or more.

第2に、アルカリ濃度、処理温度、厚膜の浸漬時間等の
条件を緩和することである。
Second, conditions such as alkali concentration, processing temperature, and immersion time for thick films should be relaxed.

本発明による力q水分解法のもう1つの特徴は、血液と
非接触面より限定分解する点である。これは本発明の膜
が透析用であるということに関する。
Another feature of the force-q water decomposition method according to the present invention is that the decomposition is limited to surfaces that are not in contact with blood. This relates to the fact that the membrane of the invention is used for dialysis.

内壁面が血液に対して優れた適合性を示すことである。The inner wall surface exhibits excellent compatibility with blood.

つ捷り、内壁の構造、平滑度1女ルロースオリゴマーの
残存、セルロースアセテートの疎水性残基と判定しがた
い若干の親水性部分及び伶加剤により起孔されたボアー
の組合せが、血液適合性を左右するのである。限定加水
分解の方法としては、中空繊維内部よりアルカリ溶液で
内壁面を再生セルロースへ変換する方法もあるが、前に
述べたように、−にルロースオリゴマーの発生は避けら
れない。
The combination of thinness, inner wall structure, smoothness of 1 female reulose oligomer, some hydrophilic parts that cannot be determined to be hydrophobic residues of cellulose acetate, and the pores formed by the additives are blood compatible. It affects gender. As a method of limited hydrolysis, there is also a method of converting the inner wall surface of the hollow fiber into regenerated cellulose using an alkaline solution from inside the hollow fiber, but as mentioned above, the generation of -lulose oligomer is unavoidable.

以−ト述べた本発IjiIKよる中空繊維膜は、透析膜
として数多くの一期的な特徴を有し、その効果について
は下記の如くである。
The hollow fiber membrane made of IjiIK of the present invention described above has many temporary characteristics as a dialysis membrane, and its effects are as follows.

w41に中空線−〇内壁が実質的にセルロースアセテー
トであや、透析膜として用いた場合、再生セルロースよ
り優れた血液適合性を有する点であり、Sa状透析が可
*@になる。
Hollow wire in W41 - The inner wall is substantially made of cellulose acetate, and when used as a dialysis membrane, it has better blood compatibility than regenerated cellulose, making Sa-like dialysis possible *@.

纂2に、中空線−膜の外壁部、つ壜り血液非接触部より
限定加水分層を実施することにより、セルロースアセテ
ートの溶融紡糸で得られた平滑な膜内面構造をそのtま
血液流路面として保持出来るため、透析時の血液抗凝固
性が高い点である。又再生セルロース化に伴なうセルロ
ースオリゴマーの生成が皆無であり、血液流路である中
空繊維膜内面の洗浄をほとんど必要としない点である。
Second, by forming a limited hydrolysis layer from the outer wall of the hollow wire-membrane and the non-contact area of the bottle blood, the smooth inner surface structure of the membrane obtained by melt spinning of cellulose acetate can be used to improve blood flow. Because it can be held as a road surface, it has high blood anticoagulability during dialysis. Furthermore, there is no production of cellulose oligomers associated with regenerated cellulose formation, and there is almost no need to clean the inner surface of the hollow fiber membrane, which is the blood flow path.

このため乾燥状態の透析膜を透析器に組立てた後、ドラ
イタイプ透析器として使用できる。
Therefore, after a dry dialysis membrane is assembled into a dialyzer, it can be used as a dry type dialyzer.

第BK、中空繊維農内壁がセルロースアセテートであり
、外壁面に向うほど酢化度が低くなる再生セルロースか
ら構成されるため、再生1ルロースの有する高い溶質透
過性と(ルロースアセテートの1する高い透水性を兼ね
備えている。又加水分解反応速度を制御することで、両
者のバランスを撰択出来る点である。
No. BK, the hollow fiber inner wall is made of cellulose acetate, and is composed of regenerated cellulose whose degree of acetylation decreases toward the outer wall surface. Furthermore, by controlling the hydrolysis reaction rate, the balance between the two can be selected.

第4に、中空繊維膜の内壁が機械的強度0強いセルロー
スアセテートであるため、変形、、m曲、破れなどの発
生が皆無であ抄、紡糸で確得した中空緻維鳳膜の真円な
断面形状が、透析器への組立操作、あるいは透析時の操
作圧力に耐えて依維される。このため中空繊維膜断面の
変形に基づく血液の偏流が減少し、透析後の残血が着る
しく改善される点である。
Fourthly, since the inner wall of the hollow fiber membrane is made of cellulose acetate, which has zero mechanical strength, there is no occurrence of deformation, bending, tearing, etc., and the perfect circle of the hollow fiber membrane obtained by papermaking and spinning. The cross-sectional shape is maintained while withstanding the operation pressure during assembly into a dialyzer or during dialysis. Therefore, the uneven flow of blood due to the deformation of the cross section of the hollow fiber membrane is reduced, and the amount of blood remaining after dialysis is improved.

第5に、乾燥−湿潤状態での膜寸法安定性に優れている
点である。乾燥による膜構造や性能変化が少なく、乾燥
前の1澗状態での透析性が乾燥後、再湿潤状LIIK戻
した時にも保持されている。
Fifth, the membrane has excellent dimensional stability in dry-wet conditions. There is little change in the membrane structure or performance due to drying, and the dialysis performance in the 1-liter state before drying is maintained even when returned to the rewet LIIK state after drying.

このような多数の特徴を持つ新しい中9鎗維膜は、透析
性、安全性、血液適合性、操作性岬の全ての面で着るし
く改善京わており、このような中9##膜から構成され
る血液透析響け、透析療法の今後に大いに貢献するもの
と信じる。
The new medium 9 membrane with many characteristics has been improved in all aspects such as dialysis performance, safety, blood compatibility, and operability. We believe that this research will greatly contribute to the future of dialysis therapy.

以下実施例によって本発明をさらに説明する。The present invention will be further explained below with reference to Examples.

実施例1 セルロースジアセテート(帝人製Fタイプ酢化度54.
5チ1重合度168)フレークス(43,1wt% )
 、ポリエチレングリコール(以T PEGと略す)◆
400 (38,8wtチ)、ジグリセリン(18,1
wt%)からなる混合物を溶融し、2i管ノズルの外環
から押出し、内管から芯剤として塊ガスを同時に吐出し
、15(1%/−で巻き取り、外径が、275μであり
内径が215μの中空繊維厚膜を得た。この厚膜を炭酸
ソーダ5%水溶液を用いて70℃に於いて1分間処理[
7て、直ちに水洗し、°外径2SOp。
Example 1 Cellulose diacetate (Teijin F type acetylation degree 54.
5chi1 polymerization degree 168) flakes (43.1wt%)
, polyethylene glycol (hereinafter abbreviated as TPEG)◆
400 (38,8wt), diglycerin (18,1
wt%) is melted and extruded from the outer ring of the 2i tube nozzle, and a lump gas is simultaneously discharged as a core material from the inner tube. A hollow fiber thick film of 215μ was obtained.This thick film was treated with a 5% aqueous solution of sodium carbonate at 70°C for 1 minute [
7. Immediately wash with water and reduce the outer diameter to 2SOp.

内径100/Jの真円性の優れ九膜厚の均一な中空am
を得え、この膜の平均酢化度、および内Il薗の酢化度
を測定しえ、内壁部のサンプリングは、中空繊維膜を水
洗し凍結乾燥費、ワックスで固型化し外壁面を切削分離
して得た。
Hollow am with an inner diameter of 100/J and excellent circularity and a uniform film thickness.
The average degree of acetylation of this membrane and the degree of acetylation of the inner wall were measured.The inner wall was sampled by washing the hollow fiber membrane with water, freeze-drying it, solidifying it with wax, and cutting the outer wall surface. Obtained by separation.

膜物性および膜性能を第1表に示す。The physical properties and performance of the membrane are shown in Table 1.

第  1  表 この中空繊維膜を一旦乾燥し、再1!1M後膜物性寸法
、性能を測定したが、乾燥前に比べて、はとんど変化は
認められなかった。
Table 1 This hollow fiber membrane was once dried, and the physical properties and dimensions and performance of the membrane were measured again after 1.1M, but almost no changes were observed compared to before drying.

実施例2゜ セルローストリア竜テート(酢化度60 Is %。Example 2゜ Cellulose toriatate (degree of acetylation 60 Is%).

重合度570)フレークス(4,3wt% )、 *ル
ロースジア竜テート(酢化度s s、e %、重會度1
60)7レークス(s s、s wt% )、 、  
Pl:Gφ400(38,8wt%)、a−カプロラク
トン(s a、1wt$ )からなる混合物を、実施例
1と同様にして中空健維厚膜を得た。この厚膜を水酸化
ナトリウム0.5チと酢酸ソーダ15嗟を含むアルカリ
水溶液を用いて6(IcK於いて111秒間処理し水洗
した。この膜の物性、性能は第21!に示す。
Polymerization degree 570) flakes (4.3wt%), *Rulose diarytate (acetylization degree ss, e%, gravity degree 1)
60) 7 Lakes (s s, s wt%), ,
A hollow healthy fiber thick film was obtained in the same manner as in Example 1 using a mixture consisting of Pl:Gφ400 (38.8 wt%) and a-caprolactone (sa, 1 wt$). This thick film was treated with an alkaline aqueous solution containing 0.5 g of sodium hydroxide and 15 g of sodium acetate at 6 (IcK) for 111 seconds and washed with water.The physical properties and performance of this film are shown in Section 21!

!!論例3゜ 実施例1において、芯剤として紡糸ポリマーの瘉融温度
まで加熱したシリコンオイルを吐出し、20町−で巻数
った。91に例1と同様の処理を行ない得られた中空繊
維膜をメタノールで洗浄しこの膜の物性、性能を測定し
た。結果を總2表に示す。
! ! Example 3 In Example 1, silicone oil heated to the melting temperature of the spinning polymer was discharged as a core material, and the number of turns was 20. No. 91 was treated in the same manner as in Example 1, the resulting hollow fiber membrane was washed with methanol, and the physical properties and performance of this membrane were measured. The results are shown in Table 2.

第2表 比較例1〜7゜ 実施例1で得られた中空繊維膜を第3表に示す項目のア
ルカリ溶漬組成で処理した。測定結果を第4表に示す。
Table 2 Comparative Examples 1 to 7 The hollow fiber membrane obtained in Example 1 was treated with the alkali dipping composition shown in Table 3. The measurement results are shown in Table 4.

第3表 第  4  表 内壁部が実質的にセルロースアセテート厚膜の11残存
させるために柱、平均酢化度で10.0−以上、より好
ましくは30%以上必要であることが判る。
Table 3 Table 4 It can be seen that in order to substantially maintain the cellulose acetate thick film in the inner wall portion, the column and average acetylation degree are required to be 10.0% or more, more preferably 30% or more.

比較例8〜11 可塑剤および添加剤の組成、比率を第5表に示す項目に
ついて七れぞれ溶融紡糸し、得られた中21!糸庫l[
t−実施例1に従って処理した。測定結果−則表に記す
Comparative Examples 8 to 11 The compositions and ratios of plasticizers and additives shown in Table 5 were melt-spun, and the resulting mediums were 21! Yarn storage l [
t-Processed according to Example 1. Measurement results - Record in the rules table.

第6表 いづれの結果も透水性と透析性のバランスが悪く透析膜
としては不適である0組成の損択によって透水性を飢御
することが、本尭明の限定加水分解を行ううえで重要で
あることを示している。
Both of the results in Table 6 show that the balance between water permeability and dialysis performance is poor, making it unsuitable for use as a dialysis membrane.It is important to control water permeability by selecting the zero composition when performing the limited hydrolysis of Hontakamei. It shows that.

実施例4゜ 実施例1.比較例1および比V例2で得られた中空綾維
膜を長さ15mK切断し九ものを約900本束ね1.両
端をウレタン樹脂で固定波切断して膜面積O,OS−の
ミニ透析器を組立てた。
Example 4゜Example 1. The hollow twill fiber membranes obtained in Comparative Example 1 and Comparative Example 2 were cut to a length of 15 mK and bundled into approximately 900 pieces.1. A mini dialyzer with a membrane area of O and OS- was assembled by cutting fixed waves at both ends with urethane resin.

この透析器を用いて、兎頚動脈と静脈の間で体外S流試
験を行ない、透析器出口の血液を経時的に採取し、白血
球数の減少とリバウンド、および血小板の保持率を測定
した。結果を図1゜図2に示す。
Using this dialyzer, an extracorporeal S flow test was conducted between the rabbit carotid artery and vein, and blood from the dialyzer outlet was collected over time to measure the decrease and rebound of the white blood cell count and the platelet retention rate. The results are shown in Figures 1 and 2.

本発明による膜は、セルロースアセテ−)[とほぼ同じ
挙動を示し、血液適合性の高いことを、示している。
The membrane according to the present invention exhibits almost the same behavior as cellulose acetate, indicating high blood compatibility.

次に、実施例1と比較例2で得られた中空繊維膜の内面
電子Ili微鏡写真を図3に示す。
Next, FIG. 3 shows internal electron Ili micrographs of the hollow fiber membranes obtained in Example 1 and Comparative Example 2.

比較例2の内面にセルロースオリゴマーが付着している
のが認められるのに対して、実施例1の内面は平滑であ
る。
While cellulose oligomer was observed to be attached to the inner surface of Comparative Example 2, the inner surface of Example 1 was smooth.

実施例5 実施例1で得られた中空−維膜を10@00本束ねて、
ポリアクリルスチレン製容器に収め、透析器を組立てた
。この透析器の有効膜長は15(1)で、透析面積は約
1.odであった。蒸留水1ooccを用いて、中空膜
内部を循碩洗滲し、洗沖液を遠心分離で濃縮し、濃縮液
中の竜ルロ酸法で比色定量したが、オリゴマーの存在は
認められなかった。この透析器の透析性能を第−表に示
す、ここでダイアリダンスとは次式に示すもので造析効
本を表わす。
Example 5 10@00 hollow fiber membranes obtained in Example 1 were bundled,
It was placed in a polyacryl styrene container and a dialyzer was assembled. The effective membrane length of this dialyzer is 15(1), and the dialysis area is approximately 1. It was od. Using 10cc of distilled water, the inside of the hollow membrane was circulated and washed, the washing liquid was concentrated by centrifugation, and the concentrated liquid was colorimetrically determined using the ruroic acid method, but no oligomers were detected. . The dialysis performance of this dialyzer is shown in Table 1, where dialidance is expressed by the following equation and represents the analytical efficiency.

X血液KJli2 Q OCd1M”)第6表 次に、豚′tfr鮮血(ヘマトクリット1直46)を用
いて、横紐透析を3Hr実施した。抗凝固剤としてAC
Dを使用した。透析後ACD添加生壇食埴水100−で
返血し、エアー7ラツシユ後の残血状慈をil!察した
が、全く残血は誌められず、透析中の血流が極め1均一
であったことを示していた。
Next, transverse cord dialysis was performed for 3 hours using pig'tfr fresh blood (hematocrit 1 straight 46).AC was used as an anticoagulant.
D was used. After dialysis, the blood was returned with 100% ACD-added Seitan shokuhani water, and the remaining blood after 7 air lashes was removed. However, no residual blood was observed, indicating that the blood flow during dialysis was extremely uniform.

【図面の簡単な説明】 図1は実施例1.比較例1および比較例2の試料の潅流
時間の経過に伴う白血球の数の蜜イしを百分率で示した
4のであり、図2は実施例1゜比較例1および比較例2
の試料の潅流時間の経過に什り血小板の保持率(百分率
)を示したものである。また、図3および図4は実施例
1および比較例2の試料の内向の電子珈微銚写真である
。図面においてAは実施例1.Bは比較例1、Cけ比較
例2である。 四1 回? 図 3 ■ + 手続補正書(方式) 昭和57年4 月 ム日 特許庁長官殿 1、事件の表示 特願昭  56−190766   号2、発明の名称 血#肌理用中空繊維膜およびその製造法3 補正をする
者 事件との関係  特許出願人 大阪市東区南本町1丁目11番地 (300)帝人株式会社 代表者 φ 末 知 夫
[Brief Description of the Drawings] Figure 1 shows Example 1. Figure 2 shows the change in the number of white blood cells as a percentage with the passage of perfusion time for the samples of Comparative Example 1 and Comparative Example 2.
The figure shows the retention rate (percentage) of platelets over the perfusion time of the sample. 3 and 4 are inward-looking electronic micrographs of the samples of Example 1 and Comparative Example 2. In the drawings, A indicates Example 1. B is Comparative Example 1, and C is Comparative Example 2. Forty-one times? Figure 3 ■ + Procedural amendment (method) April 1980 Mr. Commissioner of the Japan Patent Office 1 Indication of the case Patent application No. 190766 1982 Name of the invention Blood #Hollow fiber membrane for texture and its manufacturing method 3 Relationship with the case of the person making the amendment Patent applicant 1-11 Minamihonmachi, Higashi-ku, Osaka (300) Representative of Teijin Limited φ Tomoo Sue

Claims (1)

【特許請求の範囲】 1)実質的にセルロースアセテートがらな抄、中空部に
不活性気体又は瞭水性液体を含む中空繊維を、外壁面側
よりアルカリ溶液で限定加水分解して得られる中!!!
鎗維婁であって、(畠) 平均酢化度がlOチ以上、 (b)  膜内壁面が実質的に−にル゛μ〜スアセテー
トの“ま゛ま、 であることを特徴とする中空繊維膜。 2)−にルロースアセテート、可塑剤および添加剤から
なる混合物を溶融紡糸法で中空繊維化し、次いでアルカ
リ溶液により限定加水分解し5、内壁面が実質的にセル
ロースアセテートのまま残存させることを特徴とする中
911維膜の製造法。 3)アルカリ溶液が、強塩基溶液又は水溶液がアルカリ
性を呈する[11液との単独又は鋸合せよ艶なり、必’
IK応じ中性塩、アセチル塩を含むアルカリ溶液よりな
る特許請求osuy+第2項記第2中記載O中膜の製造
法。
[Claims] 1) A hollow fiber obtained by paper-making substantially entirely of cellulose acetate, and by limited hydrolysis of a hollow fiber containing an inert gas or a water-clearing liquid from the outer wall side with an alkaline solution! ! !
(b) The inner wall surface of the membrane is substantially the same as that of -sucetate. Hollow fiber membrane. 2) - A mixture consisting of lulose acetate, a plasticizer, and additives is made into hollow fibers by a melt-spinning method, and then limited hydrolysis is performed with an alkaline solution 5, so that the inner wall surface remains substantially as cellulose acetate. 3) The alkaline solution is a strong base solution or an aqueous solution exhibiting alkalinity.
2. A method for producing an O medium membrane according to claim 2, which comprises an alkaline solution containing a neutral salt and an acetyl salt according to IK.
JP19076681A 1981-11-30 1981-11-30 Hollow fiber membrane for blood treatment and its production Pending JPS5898411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19076681A JPS5898411A (en) 1981-11-30 1981-11-30 Hollow fiber membrane for blood treatment and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19076681A JPS5898411A (en) 1981-11-30 1981-11-30 Hollow fiber membrane for blood treatment and its production

Publications (1)

Publication Number Publication Date
JPS5898411A true JPS5898411A (en) 1983-06-11

Family

ID=16263362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19076681A Pending JPS5898411A (en) 1981-11-30 1981-11-30 Hollow fiber membrane for blood treatment and its production

Country Status (1)

Country Link
JP (1) JPS5898411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632969A2 (en) * 1993-07-09 1995-01-11 Rhone-Poulenc Rhodia Aktiengesellschaft Filtertow and process for its manufacture as well as tobacco smoke filter and process for its manufacture
WO2003000967A1 (en) * 2001-06-22 2003-01-03 Sk Chemicals Co., Ltd Method of producing cellulose fibers by use of cold-pad-batch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046921A (en) * 1973-08-30 1975-04-26
JPS536627A (en) * 1976-07-08 1978-01-21 Nippon Zeon Co Ltd Hollow fibers
JPS5542420A (en) * 1978-09-21 1980-03-25 Nippon Telegr & Teleph Corp <Ntt> Expansion-type antenna reflector
JPS5590615A (en) * 1978-12-25 1980-07-09 Mitsubishi Rayon Co Ltd Regenerated cellulose hollow fiber
JPS55158318A (en) * 1979-05-23 1980-12-09 Nippon Zeon Co Ltd Process for hydrolysis of hollow fiber made of cellulose ester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046921A (en) * 1973-08-30 1975-04-26
JPS536627A (en) * 1976-07-08 1978-01-21 Nippon Zeon Co Ltd Hollow fibers
JPS5542420A (en) * 1978-09-21 1980-03-25 Nippon Telegr & Teleph Corp <Ntt> Expansion-type antenna reflector
JPS5590615A (en) * 1978-12-25 1980-07-09 Mitsubishi Rayon Co Ltd Regenerated cellulose hollow fiber
JPS55158318A (en) * 1979-05-23 1980-12-09 Nippon Zeon Co Ltd Process for hydrolysis of hollow fiber made of cellulose ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632969A2 (en) * 1993-07-09 1995-01-11 Rhone-Poulenc Rhodia Aktiengesellschaft Filtertow and process for its manufacture as well as tobacco smoke filter and process for its manufacture
EP0632969A3 (en) * 1993-07-09 1995-03-29 Rhodia Ag Rhone Poulenc Filtertow and process for its manufacture as well as tobacco smoke filter and process for its manufacture.
WO2003000967A1 (en) * 2001-06-22 2003-01-03 Sk Chemicals Co., Ltd Method of producing cellulose fibers by use of cold-pad-batch

Similar Documents

Publication Publication Date Title
JP3783239B2 (en) Dispersion spinning method for poly (tetrafluoroethylene) and related polymers
US5063009A (en) Process for preparation of hollow fibers for fluid separator construction
TWI406703B (en) Purify blood with hollow fiber membrane and use its blood purifier
US5035801A (en) Analysis membranes with improved compatibility
NL192269C (en) Method of manufacturing a hollow cellulose fiber.
US4824569A (en) Hollow fiber for dialysis and method for manufacture thereof
JPS5898411A (en) Hollow fiber membrane for blood treatment and its production
US4051040A (en) Antithrombogenic hemo dialysis membranes
WO1984003228A1 (en) Hollow fibers for use in dialysis and artificial kidney
JPH02258035A (en) Manufacture of hollow fiber dialyzing membrane
JPS6160165B2 (en)
Paul Polymer hollow fiber membranes for removal of toxic substances from blood
US20190240641A1 (en) Filtering medium for selective adsorption of blood components, and blood filter
EP0321447A2 (en) Cellulose type hollow fibers
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JP2710663B2 (en) Blood processing device manufacturing method
JPS5949806A (en) Selectively permeable hollow fiber of cellulose ester and its production
JPS60241904A (en) Hollow fiber-seaped porous membrane
JP3533013B2 (en) Hemodialysis membrane intermediate and hemodialyzer
JPS61185305A (en) Preparation of cellulose acetate hollow yarn
JPH0523554A (en) Cellulose hollow yarn
JPH02268821A (en) Production of hollow fiber membrane of polysulfone
JPS60193504A (en) Hollow fiber membrane for dialysis
JPH0440060B2 (en)
JPH11169457A (en) Cleaning of hollow fiber membrane