JPS589822A - Desorption of uranium - Google Patents

Desorption of uranium

Info

Publication number
JPS589822A
JPS589822A JP10569381A JP10569381A JPS589822A JP S589822 A JPS589822 A JP S589822A JP 10569381 A JP10569381 A JP 10569381A JP 10569381 A JP10569381 A JP 10569381A JP S589822 A JPS589822 A JP S589822A
Authority
JP
Japan
Prior art keywords
uranium
desorption
adsorbent
organic matter
desorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10569381A
Other languages
Japanese (ja)
Inventor
Kazunori Fujita
一紀 藤田
Hisao Yamashita
寿生 山下
Chiaki Maekoya
前小屋 千秋
Yoshihiro Ozawa
小澤 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10569381A priority Critical patent/JPS589822A/en
Publication of JPS589822A publication Critical patent/JPS589822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:Particles of a magnetic adsorbent carrying adsorbed uranium are caught with a high-gradient magnetic separator and the desorbing solution from which organic substances are removed by treatment with an adsorbent, is passed through the circulation system to increase the concentration of uranium in the desorbing solution and permit the high-efficiency recovery of uranium. CONSTITUTION:Sea water containing particles of magnetic adsorbent carrying adsorbed uranium is introduced from inlet 20 and passed through the filter 1 of the high-gradient magnetic separator to collect the magnetic adsorbent. The cleaning solution in the tank 2 is sent with pump 36 to the filter 1 to clean the adsorbent and the cleaning waste water is sent to the waste water tank 4. Then, the desorbing solution from the tank 3 is passed through the filter 1 with pump 7 and circulated through the organic substance separator 5 to effect the desorption of the uranium in the adsorbent. For example, styrene-divinyl benzene copolymer or acrylic ester polymer is used as a separator of organic substances by adsorption.

Description

【発明の詳細な説明】 本発明は、吸着法により海水中のウランを採取する方法
において、ウラン脱着液中に含まれる有機物を効果的に
吸着除去し、効率良くウランを回収しうるウランの脱着
方法(゛こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a uranium desorption method that effectively adsorbs and removes organic matter contained in a uranium desorption solution and efficiently recovers uranium in a method for collecting uranium from seawater using an adsorption method. Method (related to this)

近年、海水中のウランは核燃料の原料すなわち将来のエ
ネルギー資源として有望視され、その採取方式は種々提
案されているが、その中でも効率良くウランを採取する
方法として吸着法が着目されている。吸着法においては
、吸着、脱着、二次濃縮及び固形化の工程でウランを回
収しなければならない。ウランを吸着した吸着剤からウ
ランを脱離さ、(する方法は、脱着方式により異なる。
In recent years, uranium in seawater has been viewed as a promising raw material for nuclear fuel, that is, as a future energy resource, and various extraction methods have been proposed, among which adsorption methods are attracting attention as an efficient method for extracting uranium. In adsorption methods, uranium must be recovered through the steps of adsorption, desorption, secondary concentration, and solidification. Uranium is desorbed from the adsorbent that has adsorbed uranium (the method differs depending on the desorption method.

すなハち、脱着液の接触方式は、特に微粉末の吸着剤を
用いてスラリー状で吸着を行った場合、適当な方法で吸
着剤を海水から分離した後、脱着液を添加してスラリ一
方式で行う必要がある。
In other words, the contact method for the desorption liquid is such that, especially when adsorption is performed in the form of a slurry using fine powder adsorbent, the adsorbent is separated from seawater using an appropriate method, and then the desorption liquid is added to form a slurry. It needs to be done one-sidedly.

本発明者等は、先に、磁性をもつ微粉末吸着剤(以下磁
性吸着剤という)を用いて、吸着をスラリ一方式で行い
、又、海水からの吸着剤の分離を磁気分離により行い、
ウランの脱着は吸着剤を磁気分離機Vこ捕そくした状態
で行う方法を提案した。(特開昭53 ’−11560
,1号公報、特開昭56−9141号公報及び特願昭5
6−10169号明細書参照) ウランの脱着液としては炭酸塩例えば炭酸アンモニウム
溶液又は炭酸ナトリウツ阜炭酸ナトリウムの混合溶液等
が使用されるが、脱着率を向上させる因子として、脱着
液の濃度及び温度があることが実験的に確められている
。又、吸着剤に吸着した有機物が脱着液中に溶解し、こ
れが後工程の二次濃縮に影響を及ぼすため、この有機物
の除去は欠かすことができない。したがって、従来は、
脱着終了後に、所定の吸着剤を使用して有機物を除去す
る方法がとられている。
The present inventors previously performed adsorption using a slurry method using a magnetic fine powder adsorbent (hereinafter referred to as magnetic adsorbent), and also separated the adsorbent from seawater by magnetic separation.
We proposed a method for desorption of uranium in which the adsorbent is trapped in a magnetic separator V. (Unexamined Japanese Patent Publication No. 53'-11560
, No. 1, JP-A-56-9141 and Japanese Patent Application No. 1983
6-10169) As the uranium desorption liquid, carbonates such as ammonium carbonate solution or sodium carbonate mixed solution are used, but the concentration and temperature of the desorption liquid are factors that improve the desorption rate. It has been experimentally confirmed that there is. In addition, since the organic matter adsorbed on the adsorbent dissolves in the desorption liquid and this affects the secondary concentration in the subsequent process, it is essential to remove this organic matter. Therefore, conventionally,
After the desorption is completed, a method is used in which organic substances are removed using a predetermined adsorbent.

本発明の目的は、上記した吸着法により海水中のウラン
を採取する方法において、高勾配磁気分離機(Hlgh
 Gradient Magnetic 5epara
tor。
An object of the present invention is to use a high gradient magnetic separator (Hlgh
Gradient Magnetic 5epara
tor.

以下HGMSという)にウランを吸着した吸着剤を捕そ
くシ、この状態で脱着液によりウランを脱離させ、脱着
液中のウラン濃度を高めて効率よくウランを回収しうる
ウランの脱着方法を提供することである。
To provide a uranium desorption method that can efficiently recover uranium by trapping an adsorbent that has adsorbed uranium on a HGMS (hereinafter referred to as HGMS), desorbing uranium using a desorption liquid in this state, and increasing the uranium concentration in the desorption liquid. It is to be.

本発明をま上記の目的を達成するためへ次の構ff1e
とるものである。すなわち、本発明のウランの脱着方法
(第1番目の発明)は、ウランを吸着した吸着剤’((
HGMSで捕そくシ、これに脱着液を流通させてウラン
を脱着させる方法において、該脱着液の循環流路系内に
該脱着液を吸着剤処理する手段を設けて該脱着液中の有
機物を吸着除去することを特徴とするものであり、又、
本発明のウランの脱着方法(第2番目の発明)は、ウラ
ンを吸着した吸着剤をHGMSで捕そくシ、これに脱着
液を流通させてウランを脱着させる方法において、該脱
着液貯槽内に該脱着液を吸着剤処理する手段を設けて該
脱着液中の信機物を吸着除去することを特徴とするもの
であるう 本発明者等は、前記ウラン脱着液とウラン濃度との関係
につき検討を重ねた結果、脱着液を繰返し1吏用すると
、ウラン濃度がある一定値以上高くならないという現象
があり、この現象は、脱着液中の有機物の含量が徐々に
高くなっていることから、有機物の存在が脱着作用に悪
影響を与え妨害しているために起ることを確認した。
In order to achieve the above object, the present invention has the following structure.
It is something to take. That is, the uranium desorption method of the present invention (first invention) uses an adsorbent '(((
In a method in which uranium is captured by HGMS and desorbed by passing a desorption liquid through the HGMS, a means for treating the desorption liquid with an adsorbent is provided in the circulation flow path system of the desorption liquid to remove organic substances in the desorption liquid. It is characterized by adsorption and removal, and
The uranium desorption method (second invention) of the present invention is a method in which an adsorbent that has adsorbed uranium is captured by HGMS, and a desorption liquid is passed through the adsorbent to desorb uranium. The invention is characterized in that a means for treating the desorption liquid with an adsorbent is provided to adsorb and remove the radioactive materials in the desorption liquid. As a result of repeated studies, we found that if the desorption liquid is used repeatedly, the uranium concentration does not rise above a certain value.This phenomenon is caused by the gradual increase in the content of organic matter in the desorption liquid. It was confirmed that this occurs because the presence of organic matter adversely affects and interferes with the desorption process.

本発明においては、この事象を考慮して、脱着中に有機
物を除去するため、脱着液を循環させ、その循環流路系
内に脱着液を吸着処理する有機物除去手段(例えば吸着
剤を充てんした塔等)を設け、あるいは又、脱着液貯槽
中に有機物除去手段(例えば吸着剤を充てんしたバッグ
又は布製袋等)を投入し、ウラン脱着中に一方ではウラ
ン吸着剤から脱離してくる有機物を除去する構成により
、ウランの脱着を効率よく行い、脱着液中のウラン濃度
を高める効果を得ることかで・きる。
In the present invention, in consideration of this phenomenon, in order to remove organic substances during desorption, the desorption liquid is circulated, and an organic substance removal means (for example, an organic substance removal means (for example, an adsorbent-filled Alternatively, an organic matter removal means (for example, a bag filled with an adsorbent or a cloth bag, etc.) may be placed in the desorption liquid storage tank to remove organic matter that is desorbed from the uranium adsorbent during uranium desorption. Depending on the removal configuration, uranium can be efficiently desorbed and the uranium concentration in the desorption solution can be increased.

本発明における有機物吸着用吸着剤は特に限定されない
が、前記特願昭56−10169号明細書に示された有
機高分子化合物(−0H,−8O3H−NH2及び−C
OOH☆オン交換基を有しないもの)を好適に使用する
ことができ、この種の化合物は有機物を選択的に吸着す
る(ウランを吸着しい)。 このような化合物としては
、スチレン−ジビニルぢンゼン共重合体及びアクリル駿
エステル系重合体等があり、いずれもその多孔体を市販
品として入手することができ、例えばスチレン−ジビニ
ルベンゼン共重合体(オルガノ社製、アンパライトXA
D −1、XAD −2及びXAD −4又は三菱化成
社製、HP樹脂)又はアクリル酸エステル系重合体(オ
ルガノ社製、アンバライ) XAD −7及びXAD 
−8)等を適用することができる。
The adsorbent for adsorbing organic matter in the present invention is not particularly limited, but may include the organic polymer compounds (-0H, -8O3H-NH2 and -C
A compound having no OOH*one exchange group can be preferably used, and this type of compound selectively adsorbs organic substances (but does not adsorb uranium). Examples of such compounds include styrene-divinylbenzene copolymer and acrylic ester polymer, both of which are commercially available in porous form.For example, styrene-divinylbenzene copolymer ( Manufactured by Organo, Amparite XA
D-1, XAD-2 and XAD-4 or Mitsubishi Kasei Co., Ltd., HP resin) or acrylic acid ester polymer (Organo Co., Ltd., Anbarai) XAD-7 and XAD
-8) etc. can be applied.

海水中のウランの吸着及びその脱着技術並びtこHGM
Sに関する技術は既知であるので、その概説は省略し、
本発明のウラン脱着方法を図面を参照して説明【7、又
、その手法を下記実施例りでおいて具体的に示す。
Uranium adsorption and desorption technology in seawater and HGM
Since the technology related to S is already known, its overview will be omitted.
The uranium desorption method of the present invention will be explained with reference to the drawings [7], and the method will be specifically illustrated in the following examples.

すなわち、第1図は本発明によるウランの脱着システム
の一具体例を示した系統図であり、1はHGMBフィル
タ′−12は洗浄液貯漕、3は脱着液貯槽、4は洗浄排
水貯槽、5は有機物除去塔、6は洗浄水ポンプ、7は脱
着液ポンプ、8〜+9i”iバルブ 20はスラリー液
導入口、21はスラリー液排出口を示す。
That is, FIG. 1 is a system diagram showing a specific example of the uranium desorption system according to the present invention, in which 1 indicates the HGMB filter'-12 is a cleaning liquid storage tank, 3 is a desorption liquid storage tank, 4 is a cleaning waste water storage tank, and 5 6 is an organic matter removal column, 6 is a washing water pump, 7 is a desorption liquid pump, 8 to +9i''i valves, 20 is a slurry liquid inlet, and 21 is a slurry liquid outlet.

HGMSフィルター1は海水から吸着剤を分離し、洗浄
液はHGMSフィルター1に捕そくされた吸着剤を洗浄
し、且つ脱着後の吸着剤を洗浄する役目を果す。第1図
に示すように、脱着液の循環流路系内には有機物除去塔
5が配置される。
The HGMS filter 1 separates the adsorbent from seawater, and the cleaning liquid serves to wash the adsorbent captured by the HGMS filter 1 and to wash the adsorbent after desorption. As shown in FIG. 1, an organic matter removal column 5 is disposed within the desorption liquid circulation channel system.

運転に際しては、バルブ8〜19及び洗浄水ポンプ6並
びに脱着液ポンプ7を各工程に応じて開閉、作動させる
。ウラン脱着の一連の−[程及びバルブの開閉状況を下
表に示す。なお表中の○はオン、×はオフを示す。
During operation, the valves 8 to 19, the wash water pump 6, and the desorption liquid pump 7 are opened and closed and operated according to each process. The series of uranium desorption steps and valve opening/closing conditions are shown in the table below. Note that ○ in the table indicates on, and × indicates off.

以りの工程を経て、有機物除去塔5の作用により、脱着
液中の有機物を効率的に吸着除去し、脱着液中のウラン
濃度を高く維持することができる。
Through the above steps, organic substances in the desorption liquid can be efficiently adsorbed and removed by the action of the organic substance removal column 5, and the uranium concentration in the desorption liquid can be maintained at a high level.

又、本発明においては、前記したように、有機物除去塔
5の設置の代わりに、脱着液貯槽3中に有機物吸着除去
剤を封入し元手段〔バッグ又は布製袋等〕を投入しても
、上記とほぼ同様の効果を得ることができる。(図面は
第1図とほとんど同゛じてよいので記載は省略する)次
に、本発明及びその効果を実施例により説明するが、本
発明はこれらによりなんら限定されるも・のではない。
Furthermore, in the present invention, as described above, instead of installing the organic matter removal tower 5, an organic matter adsorption and removal agent may be sealed in the desorption liquid storage tank 3 and a source means (bag or cloth bag, etc.) may be introduced. Almost the same effect as above can be obtained. (The drawings may be almost the same as FIG. 1, so the description will be omitted.) Next, the present invention and its effects will be explained by examples, but the present invention is not limited by these in any way.

実施例1 第1図に従い、ウランを吸着した磁性吸着剤(チタンと
鉄のモル比; Ti/F8= 2.9の含水酸化物、粒
径20〜40μm)520 tを含む海水を(吸着剤濃
度400ppm)、 HGMSフィルター(内容積10
.5 /のハウジングに空間率0.85になるように磁
性細線を充てんしたもの)に流通さ′せて吸着剤分捕そ
くした。次いで、画表りこ示した工程番号順に操作を行
った。脱着液としてu、O−,5モルの炭酸ナトリウム
と0.5モルの重炭酸ナトリウムの混合溶液40/を使
用シフ<脱着液の温度’148−52°Cに保ち、0.
8ms/時の流速で循環させた。有機物除去塔としては
、内径16cm、高さ50Cmのもの吟、有機物吸着剤
としてスチレン−ジビニルベンゼン共重合体(オルガノ
゛社製、アンパライトXAD −2)  4.’51を
充てん11、前記の脱着条件で繰返し脱着を行った。
Example 1 According to FIG. concentration 400 ppm), HGMS filter (inner volume 10
.. The adsorbent was collected by passing the adsorbent through a housing of 1.5 mm (1.5 cm) filled with magnetic fine wires so that the void ratio was 0.85. Next, the operations were performed in the order of the step numbers shown on the screen. As the desorption liquid, a mixed solution of u, O-, 5 mol of sodium carbonate and 0.5 mol of sodium bicarbonate was used.
It was circulated at a flow rate of 8 ms/h. 4. The organic matter removal column has an inner diameter of 16 cm and a height of 50 cm, and the organic matter adsorbent is a styrene-divinylbenzene copolymer (manufactured by Organo Co., Ltd., Amparite XAD-2). '51 was filled and desorption was performed repeatedly under the above-mentioned desorption conditions.

又、本発鳴の変形としてぐ上記有機物除去塔を設置せず
、その代わりに、第1図の系統図における脱着液貯槽に
有機物除去用吸着剤として脱yfi淑a2tにスチレン
−ジビニルベンゼン共重合体(オルガノ社製、アンバラ
イ) XAD −2)1.5に9をバッグ(布製袋)に
入れ、これを脱着液貯槽中に投入して、前記と同様の繰
返し脱着  ゛を行った。得られた結果を第2図に示す
2、すなわち、第2図は本発明により有機物を除去した
場合における脱着回数と脱着液中のウラン濃度との関係
を示したグラフであり、Aは有機物除去塔を用いた場合
、Bは有機物除去用バッグを用いた場合を示す。
In addition, as a modification of the present invention, the above-mentioned organic matter removal tower is not installed, and instead, styrene-divinylbenzene copolymer is added to the desorption solution A2T as an adsorbent for removing organic matter in the desorption liquid storage tank in the system diagram of Fig. 1. Combined (manufactured by Organo Corporation, Anbarai) The obtained results are shown in Fig. 2. That is, Fig. 2 is a graph showing the relationship between the number of times of desorption and the uranium concentration in the desorption liquid when organic substances are removed by the present invention, and A is a graph showing the relationship between the number of desorptions and the uranium concentration in the desorption liquid when organic substances are removed by the present invention. When a column is used, B indicates a case where an organic matter removal bag is used.

第2図のグラフから明らかなように、Aの場合、繰返し
脱着回数8回目までは脱着液中のウラン濃度はほぼ直線
的に増大する。又、Bの場合もほは同様の傾向を示し、
繰返し脱着回数3回目まではAの場合と同じ脱着性能を
有するが、それ以降においては若干脱着性能は低下して
いる。しかし、後記比較例に示す有機物除去処理を行わ
ない場合と比べるとその効果は非常に大きい。
As is clear from the graph in FIG. 2, in case A, the uranium concentration in the desorption liquid increases almost linearly until the 8th repeated desorption. Also, in the case of B, the same tendency is shown,
The desorption performance is the same as in case A up to the third repetition of desorption, but after that, the desorption performance slightly decreases. However, the effect is much greater than when no organic substance removal treatment is performed as shown in Comparative Example below.

比較例 有機物除去手段(有機物除去塔又は脱着液貯槽への有機
物吸着剤入りバッグの投入)を用いなかった以外は、実
施例と同様の脱着条件でつ、ランの脱着を行った。得ら
れた結果を第6図に示す。すなわち、第3図は、有機物
を除去しない場合における脱着回数と脱着液中のウラン
濃度との関係を示したグラフであり、本比較例の場合を
Cで示す。(なおりは後記参照)第3図のグラフから明
らかなように、Cの場合、脱着液の繰返し使用により脱
着液中のウラン濃度は−L昇するが、脱着回数3回目以
降のウラン濃度の上昇は小さく、6回目以降ではウラン
は全く脱着されない。本条件下では脱着によた。
Comparative Example Run desorption was carried out under the same desorption conditions as in the example, except that no organic matter removal means (injection of an organic matter adsorbent bag into an organic matter removal tower or a desorption liquid storage tank) was used. The results obtained are shown in FIG. That is, FIG. 3 is a graph showing the relationship between the number of times of desorption and the uranium concentration in the desorption liquid when organic matter is not removed, and the case of this comparative example is indicated by C. (See below for details) As is clear from the graph in Figure 3, in case C, the uranium concentration in the desorption liquid increases by -L due to repeated use of the desorption liquid, but the uranium concentration increases after the third desorption cycle. The increase is small, and no uranium is desorbed after the sixth time. Under these conditions, it depended on desorption.

この脱着液全別個(c隘イオン交換樹脂(ダウケミカル
社製、ダウエックス1x8)塔で処理し1.再度脱着液
(再生脱着液)に供して脱着性能を検討した。その脱着
回数と脱着液中のウラン濃度の関係を上記第514のグ
ラフDに示す。
This desorption solution was completely treated in a separate column (using ion exchange resin (manufactured by Dow Chemical Co., DOWEX 1x8)) and then subjected to the desorption solution (regenerated desorption solution) again to examine the desorption performance.The number of times of desorption and the desorption solution The relationship between the uranium concentration inside is shown in the 514th graph D above.

ウラン濃度の変化はほぼ一ヒ記Cの脱着液の場合と態様
であったが、6回目以降もウランの脱着がみられた3、 以上述べた実施例及び比較例における脱着回数による3
00nmの吸光度の変化を調べた4、得られた結果を第
4図に示す。すなわち、第4図は、脱着回数と300 
nmの吸光度との関係を示したグラフであり、Eは有機
物を除去しない場合(比較例)、Fは本発明による有機
物除去塔使用の場合(実施例)を示す。第4図のグラフ
から明らかなように4、両者の場合共に脱着回数により
300nmの吸光度の増大は認められるが、有機物除去
塔使用のFの場合、VCは、その値は、Eの場合の1/
2以下である。E、(p場合、脱着1回目以降吸゛光度
はほぼ直線的に増大しており、ちなみに、脱着液は当初
は無色透明であったものが脱着回数を重ねるごとに黄色
味を帯びていることが観察された。1なお、前記陰イオ
ン交換樹脂塔で処理した後の脱着液は無色透明であった
。このように、脱着回数を重ねると、脱着液が黄色に着
色して吸光度が増大すること、及びこれを陰イオン交換
樹脂で処理すると着色が消失し、再度脱着に使用すると
初期の脱着回数では新しい脱着液と同様の性能があるこ
とから、脱着回数を重ねるとウラン濃度が飽和に達する
のは脱着液中の有機物質が原因しているものと考えられ
る。
The change in uranium concentration was almost in the same manner as in the case of the desorption solution described in Section C, but desorption of uranium was observed even after the 6th time3.
The change in absorbance at 00 nm was investigated4, and the obtained results are shown in FIG. In other words, Fig. 4 shows the relationship between the number of attachment and detachment and 300
It is a graph showing the relationship with the absorbance in nm, where E shows the case where organic matter is not removed (comparative example), and F shows the case where the organic matter removal column according to the present invention is used (example). As is clear from the graph in Figure 4, in both cases, the absorbance at 300 nm increases with the number of desorptions, but in the case of F using an organic matter removal column, the value of VC is 1 compared to that of E. /
2 or less. In the case of E, (p, the absorbance increases almost linearly after the first desorption, and by the way, the desorption liquid, which was initially colorless and transparent, becomes yellowish as the number of desorption increases. was observed. 1 The desorption liquid after being treated in the anion exchange resin column was colorless and transparent.As shown above, as the number of desorptions is repeated, the desorption liquid becomes yellow and the absorbance increases. Furthermore, when this is treated with an anion exchange resin, the coloring disappears, and when used for desorption again, it has the same performance as a new desorption solution at the initial number of desorptions, so the uranium concentration reaches saturation as the number of desorptions increases. This is thought to be caused by organic substances in the desorption solution.

以上説明したように、本発明によれば、H[’)M、S
 フィルターC−吸着剤全捕そくした状態でウランを脱
着させる方法において、ウランを脱着している間に一方
では吸着剤から脱離してくる有機物を除去することによ
り、ウランの脱着を効率よく行い、脱着液中のウラン濃
度金高めることができる。これは、後に続く二次濃縮i
f(おける濃縮率の向上に効果があり、従来におけるよ
うな有機物除去の前処理操作を必要としなくなる。
As explained above, according to the present invention, H[')M, S
Filter C - In a method of desorbing uranium with the adsorbent completely captured, uranium is efficiently desorbed by removing organic matter desorbed from the adsorbent while desorbing uranium. The uranium concentration in the desorption solution can be increased. This is followed by a secondary enrichment i
This method is effective in improving the concentration ratio in f(), and eliminates the need for pre-treatment operations for removing organic matter as in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるウランの脱着ンステムの一具体例
を示した系統図、第2図は本発明1・こより有機物を除
去した場合における脱着回数と脱着液中のウラン濃度と
の関係を示したグラフ、第5図は有機物を除去しない場
合における脱a、、′ 回数と脱着液中のウラレ濃度との関係金子したグラフ、
第4図1は脱着回数と300nmの吸光度との関係を示
したグラフである。 第2図 脱着回数(回) 第 3 図 脱着回数(回)
Fig. 1 is a system diagram showing a specific example of the uranium desorption system according to the present invention, and Fig. 2 shows the relationship between the number of times of desorption and the uranium concentration in the desorption liquid when organic matter is removed from the uranium desorption system according to the present invention. Figure 5 is a graph showing the relationship between the number of times of desorption and the urea concentration in the desorption solution when organic matter is not removed.
FIG. 4 1 is a graph showing the relationship between the number of desorptions and the absorbance at 300 nm. Figure 2 Number of times of attachment and detachment (times) Figure 3 Number of times of attachment and detachment (times)

Claims (2)

【特許請求の範囲】[Claims] (1)  ウランを吸着した吸着剤を高勾配磁気分離機
で捕そく1−1これに脱着液を流通させてウランを脱着
させる方法において、該脱着液の循環流路系内に該脱着
液を吸着剤処理する手段を設けて該脱着液中の有機物を
吸着除去することを特徴とするウランの脱着方法。
(1) In the method of capturing the adsorbent that has adsorbed uranium using a high gradient magnetic separator 1-1 and desorbing uranium by passing a desorption liquid through the adsorbent, the desorption liquid is introduced into the circulation channel system of the desorption liquid. 1. A method for desorbing uranium, the method comprising: providing means for treating with an adsorbent to adsorb and remove organic matter in the desorption liquid.
(2)  ウランを吸着した吸着剤を高勾配磁気分離機
で捕そくシ、これに脱着液を流通させてウランを脱着さ
せる方法において、該脱着液貯槽内に該脱着液を吸着剤
処理する手段を設けて該脱着液中の有機物を吸着除去す
ることを特徴とするウランの脱着方法。
(2) In a method for desorbing uranium by capturing an adsorbent that has adsorbed uranium in a high gradient magnetic separator and passing a desorption liquid through the separator, means for treating the desorption liquid with an adsorbent in the desorption liquid storage tank. 1. A method for desorbing uranium, the method comprising: providing a uranium desorption solution to adsorb and remove organic matter in the desorption solution.
JP10569381A 1981-07-08 1981-07-08 Desorption of uranium Pending JPS589822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10569381A JPS589822A (en) 1981-07-08 1981-07-08 Desorption of uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10569381A JPS589822A (en) 1981-07-08 1981-07-08 Desorption of uranium

Publications (1)

Publication Number Publication Date
JPS589822A true JPS589822A (en) 1983-01-20

Family

ID=14414467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10569381A Pending JPS589822A (en) 1981-07-08 1981-07-08 Desorption of uranium

Country Status (1)

Country Link
JP (1) JPS589822A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249280B2 (en) 2009-09-25 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8259967B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8259968B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8292436B2 (en) 2009-07-03 2012-10-23 Tsinghua University Projection screen and image projection system using the same
US8300854B2 (en) 2008-10-08 2012-10-30 Tsinghua University Flexible thermoacoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8300856B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8331586B2 (en) 2008-12-30 2012-12-11 Tsinghua University Thermoacoustic device
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
US8532316B2 (en) 2009-05-19 2013-09-10 Tsinghua University Flat panel piezoelectric loudspeaker

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259967B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8259968B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
US8300854B2 (en) 2008-10-08 2012-10-30 Tsinghua University Flexible thermoacoustic device
US8311245B2 (en) 2008-12-30 2012-11-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8315415B2 (en) 2008-12-30 2012-11-20 Beijing Funate Innovation Technology Co., Ltd. Speaker
US8300856B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8306246B2 (en) 2008-12-30 2012-11-06 Beijing FUNATE Innovation Technology Co., Ld. Thermoacoustic device
US8311244B2 (en) 2008-12-30 2012-11-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8345896B2 (en) 2008-12-30 2013-01-01 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8315414B2 (en) 2008-12-30 2012-11-20 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325948B2 (en) 2008-12-30 2012-12-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325947B2 (en) 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device
US8325949B2 (en) 2008-12-30 2012-12-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8331586B2 (en) 2008-12-30 2012-12-11 Tsinghua University Thermoacoustic device
US8331587B2 (en) 2008-12-30 2012-12-11 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8532316B2 (en) 2009-05-19 2013-09-10 Tsinghua University Flat panel piezoelectric loudspeaker
US8292436B2 (en) 2009-07-03 2012-10-23 Tsinghua University Projection screen and image projection system using the same
US8249280B2 (en) 2009-09-25 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device

Similar Documents

Publication Publication Date Title
JPS589822A (en) Desorption of uranium
CN104876354A (en) Process for treatment of PTA refining wastewater through high-selectivity adsorbent
CN111517530A (en) Waste acid liquid regeneration pretreatment method and system
JP5294180B2 (en) Method and apparatus for separating and purifying technetium from molybdenum containing technetium, and method and apparatus for recovering molybdenum
CN109364659A (en) The purification of thallium and recovery method and device in a kind of flue gas during smelting
Yamashita et al. Extraction of uranium from seawater using magnetic adsorbents
CN110808111A (en) Method for treating activated corrosion product wastewater by using metal sulfide adsorbent
JPH0319520B2 (en)
EP0289543A1 (en) A method for cleansing metal-containing solutions, and apparatus herefor.
JPH09308811A (en) Method for concentration of krypton in mixed gas of oxygen-nitrogen
CN205177419U (en) Use waste gas treatment system of pond formula ordinary pressure heat supply heap of spentnuclear fuel
JP2005008455A (en) Method for separating and recovering iron and manganese which coexist in water
JPH02112796A (en) Device for treating radioactive gaseous waste
CN220194053U (en) Purifying device for byproduct hydrochloric acid in production of regenerated zinc
CN202876434U (en) Separating and purifying device for amino acid processing
JPS5815033A (en) Desorbing method for uranium in fluidized state
JPS6213053B2 (en)
KR100376082B1 (en) Regeneration unit and its method of the impregnated activated carbon used for removing radioactive organic iodides
JPS555732A (en) Treating method for sewage
TWI704008B (en) Separating method of protein
RU2159216C1 (en) Method of sorption recovery of uranium from silicon-containing solutions and pulse
JPS5934135B2 (en) Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution
EP4384645A1 (en) Method for lithium sorption extraction from lithium-containing brines
JPS62180710A (en) Method for regenerating oil adsorbent
JPH0410368B2 (en)