JPS589801A - Preparation of mixed gas - Google Patents

Preparation of mixed gas

Info

Publication number
JPS589801A
JPS589801A JP56102249A JP10224981A JPS589801A JP S589801 A JPS589801 A JP S589801A JP 56102249 A JP56102249 A JP 56102249A JP 10224981 A JP10224981 A JP 10224981A JP S589801 A JPS589801 A JP S589801A
Authority
JP
Japan
Prior art keywords
gas
steam
catalyst
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56102249A
Other languages
Japanese (ja)
Inventor
Senji Takenaka
竹中 戦児
Tsutomu Toida
戸井田 努
Seiichi Matsuoka
誠一 松岡
Shuichi Ono
修一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Japan Gasoline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Japan Gasoline Co Ltd filed Critical JGC Corp
Priority to JP56102249A priority Critical patent/JPS589801A/en
Publication of JPS589801A publication Critical patent/JPS589801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain a mixed gas capable of being a raw material gas without the control of the variation in the composition of the produced gas from a converter and dilution, by passing the produced gas from the converter and steam recovered without combustion through the tube side of a tubular reactor filled with a heating medium in the shell side and a shift catalyst in the tube side. CONSTITUTION:A tubular reactor 21 has many reaction tubes 29 filled with a catalyst, and a produced gas 1 from a converter boosted by a compressor 2 and steam 25 are introduced into the tubes 29 and reacted to give a mixed gas 28 consisting of H2 gas and CO2 gas essentially. A heating medium 30 (high-temperature water and heating medium) is passed through the shell side of the reactor 21, and the heat of reaction is indirectly removed from the peripheries of the tubes 29. In this example, high-temperature water is used as the heating medium 30, and fed from a steam drum 22 through a line 26 to the reactor 21, and the generated steam is led through a line 27 to the drum 22, and then converted into the steam 25 for the reaction by a line 24.

Description

【発明の詳細な説明】 本発明社未燃焼で回収した転炉発生ガスを原料ガスとし
、管型反応器に充填した触媒上でCO転化反応を行わし
め、その際に発生する反応熱をスチームとして回収し、
回収スチームを前記反応に用いることにより、水素、二
酸化炭素を主成分とする混合ガスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Using the unburned and recovered converter generated gas as a raw material gas, a CO conversion reaction is carried out on a catalyst packed in a tubular reactor, and the reaction heat generated at that time is converted into steam. Collected as
The present invention relates to a method for producing a mixed gas containing hydrogen and carbon dioxide as main components by using recovered steam in the reaction.

製鋼−貫製鉄所では、その製造工程で水素ガス(H2ガ
ス)が広く使用されている。また、一般にH2ガスは製
油所において水添分解脱硫用1石油化学工業で合成原料
ガス止して大いに利用されているが、近年電子工業分野
で還元雰囲気ガスとしての需要も起こり、安価な高純度
水素の必要性は益益高まっている。
In steelmaking and steelworks, hydrogen gas (H2 gas) is widely used in the manufacturing process. In general, H2 gas is widely used in oil refineries for hydrocracking and desulfurization, and as a synthesis raw material gas in the petrochemical industry, but in recent years there has also been a demand for it as a reducing atmosphere gas in the electronics industry. The need for hydrogen is growing profitably.

このようなことから、従来、製鉄所の副生ガスであシ、
燃料として消費されていた転炉発生ガス(LOG )が
水素ガス原料として注目されるようになった。
For this reason, conventionally, by-product gas from steel plants was used.
Converter gas (LOG), which was previously consumed as fuel, is now attracting attention as a raw material for hydrogen gas.

LDGは一酸化炭素(coがス)を主成分とするガスで
あるが他に転炉炉口とLDG回収装置との開口部から混
入する空気によりLDGの一部が燃焼し生成される二酸
化炭素(co2がス)や窒素がス(N2がス)が含まれ
ている。す、なゎち、LDG回収において、転炉内圧調
整のため転炉炉口とLDG回収ダクトカバーの間隙を近
づける事に限界があシ、外気の侵入を防止するに、も自
ずと限度があった。なお、従来、空気混入によるLDG
の爆発防止のため回収装置の大気開放部にシール用ガス
としてN2がスを吹きこんでいた。このため、従来LD
Gの平均COfス濃度は65 vo1%前後であった。
LDG is a gas whose main component is carbon monoxide (CO gas), but it also contains carbon dioxide, which is produced when a portion of LDG is combusted by air that enters from the opening of the converter furnace and the LDG recovery device. (CO2 gas) and nitrogen gas (N2 gas) are included. In LDG recovery, there is a limit to how close the gap between the converter inlet and the LDG recovery duct cover can be to adjust the converter internal pressure, and there is also a limit to preventing outside air from entering. . In addition, conventionally, LDG due to air mixing
To prevent explosions, N2 gas was blown into the atmosphere-opening section of the recovery equipment as a sealing gas. For this reason, conventional LD
The average COf concentration of G was around 65 vol%.

このような組成のLDGを原料ガスとし、触媒の存在下
でスチームと反応させN2ガス* CO2ガスを主成分
とする混合ガスを製造し、このがスがらN2がスを分離
することによって高純度水素を得るとい技術は公知であ
り、概そミ下′記に説明するごとくである。
LDG with such a composition is used as a raw material gas and reacted with steam in the presence of a catalyst to produce a mixed gas containing N2 gas* and CO2 gas as main components. Techniques for obtaining hydrogen are well known and are generally described below.

この方法を第1図(、)および(b)に示すブロック・
フローによシ説明すh 先づ、LDG 1をコンプレッサー2にょす昇圧、必要
に応じ予熱して一酸化炭素変成触媒(以下シフト触媒と
言う。)粒子を充填した基型反応器4゜6でスチーム3
と反応せしめ脱炭酸フロセス8でCO2ガス9を分離回
収した後PSA水素回収装置10により高純度水素12
を回収するものである。
This method is explained by the block diagram shown in Fig. 1(,) and (b).
I will explain the flow first. First, LDG 1 is pressurized to the compressor 2, preheated if necessary, and heated in a basic reactor 4.6 filled with carbon monoxide shift catalyst (hereinafter referred to as shift catalyst) particles. steam 3
After separating and recovering CO2 gas 9 in a decarbonation process 8, high-purity hydrogen 12 is recovered in a PSA hydrogen recovery device 10.
The purpose is to collect

5.7は熱交換器、11は廃ガスを示す。この廃ガスは
低発熱量であるが燃料として利用できる。
5.7 is a heat exchanger, and 11 is a waste gas. Although this waste gas has a low calorific value, it can be used as fuel.

13はガス急冷の為に注入するボイラー給水である。水
性ガス反応は次式(1)で表わされる様に相当な発熱反
応である。
13 is boiler feed water injected for rapid cooling of gas. The water gas reaction is a considerably exothermic reaction as expressed by the following formula (1).

co + N20 ; N2+ co2+ 9.s4k
ayt7g−mot  (1)このため、これらの従来
方法ではいずれも急激な発熱を抑制する為に、多段の基
型反応器で徐々に反応を行い、適宜反応熱を熱交換器で
除去している。反応系に供給されるスチームは、基型反
応器に充填された触媒が蓄熱して高温になる結果、触媒
が焼結し触媒活性が短時間で失われるのを防止する役割
も併せ持つ。即ち、スチームは触媒層がら反応熱を除去
し、触媒の温度を緩和する。又、触媒上へのカーがン発
生を防止する役割をも有する。従って上記基型反応器を
多段とし反応熱を熱交換器で除去する方法は、触媒層か
ら熱除去する目的で添加するスチーム量を低減すること
を期待したものである。    □ 又、これらの方法では、反応生成がスの組成を可及的に
水素富化するため、従来高温(315〜480℃)で活
性を有jる高温シフト触媒と低温(175〜260℃)
で活性を有する低温シフト触媒とを併用している。これ
は低温シフト触媒の使用により可及的に低温での平衡組
成(H,CO2富化市れた組成)とするムである。又、
低温シフト触媒層iの場合、反応温度を触媒耐一温度以
下に押える為、多段の反応器にしそ、反応器毎の転化率
を小さくさせる結果、となり、触媒の充填量が高温轡゛
低温シフト触媒併用時と比較して相当量増える。高温・
′低温シフト触媒の併用はこれに依る建鰻費゛が一割高
となるの門避けるこ左゛を意図したものである。
co + N20; N2+ co2+ 9. s4k
ayt7g-mot (1) For this reason, in all of these conventional methods, in order to suppress rapid heat generation, the reaction is carried out gradually in a multi-stage basic reactor, and the reaction heat is removed as appropriate with a heat exchanger. . The steam supplied to the reaction system also has the role of preventing the catalyst packed in the base reactor from accumulating heat and becoming high temperature, which will cause the catalyst to sinter and lose its catalytic activity in a short period of time. That is, the steam removes the heat of reaction from the catalyst layer and moderates the temperature of the catalyst. It also has the role of preventing carbon from forming on the catalyst. Therefore, the method of using a multistage base reactor and removing the reaction heat using a heat exchanger is expected to reduce the amount of steam added for the purpose of removing heat from the catalyst layer. □ In addition, in these methods, in order to enrich the composition of the reaction product with hydrogen as much as possible, a high temperature shift catalyst that is conventionally active at high temperatures (315 to 480°C) and a low temperature (175 to 260°C) are used.
It uses a low-temperature shift catalyst that is active at This is to achieve an equilibrium composition (H, CO2 enriched composition) at as low a temperature as possible by using a low temperature shift catalyst. or,
In the case of low-temperature shift catalyst layer i, in order to suppress the reaction temperature below the catalyst temperature, multi-stage reactors are used, resulting in a reduction in the conversion rate for each reactor, and the amount of catalyst charged is shifted from high temperature to low temperature. The amount increases considerably compared to when a catalyst is used in combination. high temperature·
``The use of a low-temperature shift catalyst is intended to avoid the fact that the eel building cost increases by 10%.

近年、製鋼−貫製鉄所における製鋼工程でのLOG有効
利用は重要な課題である。昨今、上底吹転炉等転炉吹錬
技術の開発が進み、吹錬中の転炉内圧力の変動中を緩和
できるようにな、9、LDG回収装置のフード力・ぐ−
を転炉炉口に従来の40〜50%から’l 0〜30輪
まで近づけられる様になった。この結果外気の侵入が減
り、LDGの燃焼率も低減しCOガス濃度70〜90’
vo1%のLDGを回収できる様になった。
In recent years, the effective use of LOG in the steelmaking process in steelmaking and steelworks has become an important issue. Recently, the development of converter blowing technology such as top-bottom blowing converter has progressed, and it has become possible to alleviate fluctuations in the pressure inside the converter during blowing.
It is now possible to bring the 0 to 30 wheels closer to the converter mouth, compared to the conventional 40 to 50%. As a result, the intrusion of outside air is reduced, the combustion rate of LDG is also reduced, and the CO gas concentration is 70-90'.
It is now possible to collect VO1% LDG.

他方、LDG自身の回収量を向上させるため、従来より
も回収時間を延長して、吹錬開始直後ならびに終了直前
のLDGをも燃料ガスとして回収することが行われる様
になり、従来燃焼して大気放出していた低CO濃度でか
つ酸素を0.2〜1.’Ovo1%程度含む低品位のL
DG−も一時的に同門されるよう疼なった。
On the other hand, in order to improve the recovery amount of LDG itself, the recovery time is now longer than before, and LDG immediately after the start of blowing and just before the end of blowing is also recovered as fuel gas. The concentration of CO that was being released into the atmosphere was low, and the oxygen concentration was 0.2 to 1. 'Low quality L containing about 1% Ovo
DG- also felt a sense of being temporarily included.

上記事情−・ら、従来の塔門反応′器と熱交換または□
水゛急冷の組合せによる方法ではこれらガス組成の変動
や酸素の混入に追従するための運転操作が必要となる。
The above circumstances - heat exchange with the conventional column reactor or □
A method using a combination of water and quenching requires operational operations to follow these changes in gas composition and the mixing of oxygen.

具体晶には、゛反応器への原料ガス温度、添加スチーム
流量等の運転条件を遂時変え、触媒層温度を常に触媒の
耐熱温度以下に保つだめの制御システムが必要となる。
Specifically, it is necessary to have a control system that can constantly change operating conditions such as the temperature of the raw material gas to the reactor and the flow rate of added steam to keep the catalyst layer temperature below the heat-resistant temperature of the catalyst.

本発明はこれらLDGの組成変動、即ちCOガス濃度の
変動や02がスの混入に複雑な制御システムなしに対応
可能で、しかも70〜90 vot%の高濃度COガス
を含有するLDGを希釈することなく、原料ガスとして
使用可能なLDGからのH2ガスおよびC02ガスを主
成分とする混合ガスの製造方法を提供することを目的と
する。
The present invention can cope with these compositional changes in LDG, that is, changes in CO gas concentration and incorporation of 02 gas without a complicated control system, and can dilute LDG containing a high concentration of CO gas of 70 to 90 vot%. It is an object of the present invention to provide a method for producing a mixed gas whose main components are H2 gas and CO2 gas from LDG, which can be used as a raw material gas without any problems.

本発明者等は前記目的に・沿って鋭意研究の結果、本発
明に到達した。
The present inventors have arrived at the present invention as a result of intensive research in accordance with the above-mentioned objective.

本発明は、未燃焼で回収した転炉発生がスとスチームと
を、胴側に熱媒体を満たし、管側にシフト触媒を充填し
た前型反応器の管側に通すことにより得られる水素、二
酸化炭素を主成分とする混合ガスの製造方法である。
The present invention deals with hydrogen, which is obtained by passing unburned recovered converter generated steam through the tube side of a front-type reactor whose shell side is filled with a heating medium and whose tube side is filled with a shift catalyst. This is a method for producing a mixed gas whose main component is carbon dioxide.

本発明において、使用されるLDGの組成に制限はない
が、COガスを70〜90 voL%、02ガスを0.
01〜0.05 vo1%含有することが好ましい。
In the present invention, there is no restriction on the composition of LDG used, but CO gas is 70 to 90 voL%, and 02 gas is 0.
It is preferable to contain 01 to 0.05 vol%.

また、LDGと反応するスチームはその一部または全部
が前型反応器の胴側で発生し、スチームドラムに貯溜さ
れたスチームであることが望ましく同時に該前型反応器
の胴側に満たされる熱媒体は該スチームドラムよシ供給
された高温水であることが望ましい。
In addition, it is preferable that some or all of the steam that reacts with LDG is generated on the shell side of the front reactor and is stored in a steam drum. Preferably, the medium is hot water supplied from the steam drum.

さらに本発明における前型反応器の管側に充填されるシ
フト触媒としては酸化鋼−酸化亜鉛系等の低温シフト触
媒が好ましい。
Further, as the shift catalyst filled in the tube side of the front reactor in the present invention, a low temperature shift catalyst such as a steel oxide-zinc oxide system is preferable.

以下、本発明を図面を用いて説明する。Hereinafter, the present invention will be explained using the drawings.

第2〜3′図は本発明の方法を実施する概略フローであ
る。
Figures 2-3' are schematic flows for carrying out the method of the present invention.

前型反応器21は触媒が充填された多数の反応管(触媒
充填層)i9を有し、管内にコンプレッサー2で昇圧さ
れたLDG 1とスチーム25とを導入せしめ、反応さ
せH2がスとC02がスを主成分とし午混合“−8を得
る・該前型反応器の胴体側には熱媒体(高温水および熱
媒)30を通過させることKよシ反応管の周囲よシ反、
応熱を間接的に除去するように構成されている。
The front reactor 21 has a large number of reaction tubes (catalyst packed beds) i9 filled with catalyst, into which LDG 1 pressurized by the compressor 2 and steam 25 are introduced and reacted to convert H2 to steam and C02. Obtain a mixture of "-8" with gas as the main component. A heat medium (high temperature water and heat medium) 30 is passed through the body side of the front reactor, and around the reaction tube.
Configured to indirectly remove heat response.

前型反応器21の要部断面図を第4図に示す。A cross-sectional view of the main parts of the front reactor 21 is shown in FIG.

通常、反応管下部には触媒を支持する充填材31が充填
されて使用される。
Usually, the lower part of the reaction tube is filled with a filler 31 that supports the catalyst.

、第2図は熱媒体30とし”て高温水を用6た場合の実
施例であり、スチームドラム22と前型反応器21の胴
側との間は高温泉を供給するライン26およびスチーム
を移送するライン27により連結されている。発1した
スチームはライン27ムドラムに導かれ、さらにライン 24を経て、反応用スチーム25とされる。
2 shows an example in which high-temperature water is used as the heat medium 30, and a line 26 for supplying high-temperature springs and a line 26 for supplying steam are connected between the steam drum 22 and the shell side of the front reactor 21. They are connected by a transfer line 27. The emitted steam is led to the line 27 mudram, further passes through the line 24, and is turned into reaction steam 25.

一方、第3図においては熱媒体30として熱媒□ 油等の熱媒を用いた例であり、熱媒はポンプ′33の設
置された熱媒ライン32によりスチームドラム22と管
径反応器21の胴側との間を循環する。
On the other hand, FIG. 3 shows an example in which a heat medium such as oil is used as the heat medium 30, and the heat medium is connected to the steam drum 22 and the tube diameter reactor 2 through a heat medium line 32 in which a pump '33 is installed. It circulates between the torso side of the body.

スチームドラム22中の水は高温の熱媒によりスチーム
となり、ライン24を経て反応用哀チームとされる。ま
た第2〜′3歯においてスチームドラム22にはそれぞ
れボイラー給水ライン23が設けられ給水が行われる。
The water in the steam drum 22 is turned into steam by a high-temperature heating medium, and then passed through a line 24 to become a reaction steam. Moreover, boiler water supply lines 23 are provided in the steam drums 22 at the second to '3rd teeth, respectively, and water is supplied thereto.

        ′ −1、□ 実施例1 高濃度COガスを含有するLDGを第2図に示す方法で
下記のごとく水性ガス反応(シフト反応)を行った。
'-1, □ Example 1 LDG containing high concentration CO gas was subjected to a water gas reaction (shift reaction) by the method shown in FIG. 2 as described below.

先ず、純酸素上底吹転炉でその炉底羽口から酸素と羽口
周辺材質の冷却を目的として炭酸ガスを吹き込む形式の
転炉から発生するガスを非燃焼型転炉ガス回収装置で回
収したところ、その組成は平烏値として薦1表の2とく
であった。
First, a pure oxygen top-bottom blowing converter is used to blow oxygen through the bottom tuyere and carbon dioxide gas is blown into the converter for the purpose of cooling the materials around the tuyere.The gas generated from the converter is recovered using a non-combustion type converter gas recovery device. As a result, the composition was found to be 2 in Table 1 of the recommended Hiragarasu value.

第  1  表 このLDG 3. OOONm”/:Hをコンプレッサ
ーで15匂/cm”で昇圧した。      ゛−ザイ
ズ1/’8’ X l/8 #の市販低温シフト触媒3
.6女3を管内に充填した多管式一応益の胴体側には、
圧力20h/cyn” 、211℃の高温水がスチーム
ドラム□より常時供iセにており、反応器内は2−11
′℃に保たれている。反応用チームとして、スチームド
ラムで得られたスチーム2,200Kf/Hを含む合計
2,360V4のスチームを使用した。
Table 1 This LDG 3. The pressure of OOONm''/:H was increased to 15 odor/cm'' using a compressor. Commercially available low temperature shift catalyst 3 with size 1/'8' X l/8#
.. On the body side of the multi-tube type tentatively filled with 6 girls 3 inside the tube,
High-temperature water at 211℃ and a pressure of 20h/cyn'' is constantly supplied from the steam drum □, and the temperature inside the reactor is 2-11.
It is kept at ’°C. A total of 2,360 V4 of steam including 2,200 Kf/H of steam obtained from a steam drum was used as the reaction team.

反応ガスのCO転化率(反応器出口CO@度/入口CO
濃度の百分率)Fi90%であシ、その組成II′i第
2表のごとくであった。
CO conversion rate of reaction gas (reactor outlet CO@degrees/inlet CO
The concentration (percentage) was 90% Fi, and the composition II'i was as shown in Table 2.

第  2  表 この時の添加スチーム量は平衡温度230℃で90係の
CO転化率を毎るのに必要な理論スチーム量の1.2倍
、スチーム/乾ガス(モル)比0.98に相当する。
Table 2 The amount of steam added at this time is 1.2 times the theoretical amount of steam required to achieve a CO conversion rate of factor 90 at an equilibrium temperature of 230°C, equivalent to a steam/dry gas (mol) ratio of 0.98. do.

実施例2 反応用スチームを増すことによって更に触媒充填量を減
らし反応器を小型化する目的で実施例1と同じ反応器に
実施例1と同一組成かつ同量のLDGとスチーム4,0
50Kf/Hを添加した。このスチーム量はスチーム/
乾ガス(モル)比1.6Bに相当する。その結果、90
チのCO転化に必要な触媒量2 M3で充分であること
がわかった。
Example 2 The same composition and the same amount of LDG and steam as in Example 1 were added to the same reactor as in Example 1 in order to further reduce the catalyst loading amount and downsize the reactor by increasing the amount of reaction steam.
50Kf/H was added. This amount of steam is steam/
This corresponds to a dry gas (mole) ratio of 1.6B. As a result, 90
It was found that the amount of catalyst required for the CO conversion of 2 M3 was sufficient.

第1図(a)の方式即ち断熱型反応器と管式熱交換器の
組合せで実施例1と同じ組成のLDG300ONm 3
 / Hを15Kf/cIIL2で90%転化すル為ノ
触媒充填量を公知データから算出した。
LDG300ONm3 with the same composition as Example 1 using the system shown in Figure 1(a), that is, a combination of an adiabatic reactor and a tubular heat exchanger.
The loading amount of the catalyst to convert 90% of /H at 15 Kf/cIIL2 was calculated from known data.

本LDGを90%転化するには反応熱量が大きく反応器
1段では反応器出口ガス温度が高温シフト触媒の耐熱温
度を越えてしまうので、水蒸気/乾ガス(モル)比を最
小2.0、反応器を直列で3段並べる様に設計せざるを
得ない。即ち、スチーム/乾ガス比2.0のとき各段反
応益のガス温度を第3表のように設計すると174’X
 1/4’サイズの高温シフト触媒の各段充填量は第3
表の様になる。この時、1段目、2段目反応器の出口反
応ガスは廃熱ボイラーで350℃に冷却するものとした
In order to convert this LDG to 90%, the reaction heat is large and in the first stage of the reactor, the reactor outlet gas temperature exceeds the heat resistance temperature of the high temperature shift catalyst, so the steam/dry gas (molar) ratio is set to a minimum of 2.0 There is no choice but to design the reactors in three stages in series. That is, when the steam/dry gas ratio is 2.0 and the gas temperature of each stage reaction gain is designed as shown in Table 3, it is 174'X.
The filling amount of each stage of 1/4' size high temperature shift catalyst is 3.
It will look like the table. At this time, the reaction gases at the outlets of the first and second stage reactors were cooled to 350°C by a waste heat boiler.

第  3  表 以上、実施例1〜2と比較例1との比較から比較例tF
iスチーム/乾ガス(モル)比、触媒量のいずれの点に
おいても実施例1〜2よシも不利である。更に、比較例
1の触媒充填量は反応器出口ガス温度が高温触媒の温度
を越えない様に配慮したものである。
Table 3 From the comparison between Examples 1 and 2 and Comparative Example 1, Comparative Example tF
Examples 1 and 2 are also disadvantageous in terms of the steam/dry gas (mol) ratio and the amount of catalyst. Further, the catalyst loading amount in Comparative Example 1 was determined so that the reactor outlet gas temperature did not exceed the temperature of the high temperature catalyst.

工業装置では連続した運転期間中目的とする製品ガス組
成が得られる様、運転開始〜停止までの期間に於る触媒
の活性劣化を見込み、運転停止時の触媒活性値で充填量
を決定する。従って活性の良い運転開始腔設計条件でス
応を行わせると反応率が高くなシ、その結果触媒温度が
その耐熱温度を越えてします、これを防止する為従来方
式の反応器では運転開始直後に■添加スチーム量を設計
条件よシ増して触媒からガスへの熱移動を促進する■入
口温度を下げて反応器出口ガス温度が触媒耐熱温度に近
づかない様にする等の運転操作を必要とする。これらの
操作を行っても1段目反応器に充填された触媒上でのシ
フト反応を任意に抑制することができず500〜600
℃に触媒の温度が上昇するので劣化が著しく、1段目の
触媒は度々交換する事を余儀なくされる。この反面多管
式反応器においては充分な熱媒体が反応管周囲にあり、
反応熱を直ちに除去することができるので運転開始時点
でスチームの回収量が増えることがあっても触媒層温度
がその耐熱温度を上回ることがないので上記運転操作を
必要としない。以上の結果、実施例1〜2のような本発
明の方法におけるスチームの添加量は比較例1のような
従来法におけるスチームの添加量に比べて少なく、運転
コストが安価となる。
In industrial equipment, in order to obtain the desired product gas composition during continuous operation, the charging amount is determined based on the catalyst activity value at the time of operation stop, taking into account the deterioration of catalyst activity during the period from start to stop of operation. Therefore, if the reaction is carried out under the design conditions of the start-up cavity with good activity, the reaction rate will be high, and as a result, the catalyst temperature will exceed its heat-resistant temperature.To prevent this, conventional reactors are used when starting the reactor. Immediately afterward, operation operations such as ■ increasing the amount of added steam to the design condition to promote heat transfer from the catalyst to the gas, and lowering the inlet temperature to prevent the reactor outlet gas temperature from approaching the catalyst heat resistance temperature are required. shall be. Even if these operations were performed, the shift reaction on the catalyst packed in the first stage reactor could not be arbitrarily suppressed, and the
As the temperature of the catalyst rises to 10°C, the deterioration is significant and the first stage catalyst has to be replaced frequently. On the other hand, in a shell-and-tube reactor, there is sufficient heat medium around the reaction tube.
Since the heat of reaction can be removed immediately, even if the amount of steam recovered may increase at the start of operation, the temperature of the catalyst layer will not exceed its allowable temperature, so the above operation is not required. As a result, the amount of steam added in the method of the present invention such as Examples 1 and 2 is smaller than the amount of steam added in the conventional method such as Comparative Example 1, and the operating cost is low.

実施例3 1O〜16 meshに粉砕篩別した市販の低温触媒1
CCiステンレスビーズ(商標名:ヘリ・ぐツク)49
CCで50倍に希釈し外径21%内径16′Xのステン
レス管に充填して反応管とした。これを250℃を維持
する様に調整した流動砂浴槽に設置し定温反応器とした
Example 3 Commercially available low temperature catalyst 1 pulverized and sieved into 10 to 16 mesh
CCi stainless steel beads (trade name: Heli Gutsuku) 49
It was diluted 50 times with CC and filled into a stainless steel tube with an outer diameter of 21% and an inner diameter of 16'X to prepare a reaction tube. This was placed in a fluidized sand bath adjusted to maintain the temperature at 250°C to form a constant temperature reactor.

この反応器に圧力15Kf/σ2Gで純C0yyンベか
らのco i 07z乍とスチーム/CO(モル)比が
2.0となる様16a−の水(管内で予熱されスチーム
となる)を通じた。この時触媒要約220Xは250℃
に一定に保たれ、反応ガスとしてCo□6.0vo1%
dry :H26,0volチdryのガスが得られた
16a- of water (preheated to steam in the tube) was passed into the reactor at a pressure of 15Kf/σ2G with coi 07z from a pure C0yy tank and a steam/CO (mol) ratio of 2.0. At this time, the catalyst summary 220X is 250℃
Co□6.0vo1% is kept constant as the reaction gas.
Dry: H26, 0 vol dry gas was obtained.

比較例2 実施例3で用いた反応管に純CO+t”ンベからのCO
とAirポンベからの空気を混合し02がCOに対して
0.5 vo1%dryになる様に調製し、模擬ガスと
した。この模擬ガス13.5 A、乍にスチーム/CO
(モル)比が2.0となる様21CHの水を上記反応管
を通して加えたところCO26,2vo1%dry +
 H25,2vo1% dryの反応ガスが得られた。
Comparative Example 2 The reaction tube used in Example 3 was charged with pure CO + CO from the
A simulated gas was prepared by mixing the air from the air pump and the air from the air pump so that 02 was 0.5 vol% dry with respect to CO. This simulated gas is 13.5 A, while steam/CO
When 21CH of water was added through the reaction tube so that the (mole) ratio was 2.0, CO26.2vo1% dry +
A reaction gas containing H25, 2vol% dry was obtained.

この時、触媒層の温度は実施例3と同じ条件に維持して
いるにも拘らず、最高4℃の温度差を示した。また、出
口ガスの酸素濃度は450 ppmdryであった。
At this time, although the temperature of the catalyst layer was maintained at the same conditions as in Example 3, a maximum temperature difference of 4° C. was observed. Further, the oxygen concentration of the outlet gas was 450 ppmdry.

実施例3および比較例2の比較から、熱除去効果の極め
て大きい流動砂浴槽を使用し、50倍に希釈された低温
シフト触媒層に空間速度40,400Hr  (NTP
 1湿ベース)と、実際の触媒使用条件よシも緩やかな
条件でガスを通じたにも拘らず模擬ガス中の02による
発熱が大きいことがわかる。
From the comparison between Example 3 and Comparative Example 2, a fluidized sand bath with extremely high heat removal effect was used, and a space velocity of 40,400 Hr (NTP
It can be seen that the heat generated by 02 in the simulated gas is large even though the gas was passed under conditions that were gentler than the actual catalyst usage conditions.

酸素を0.01〜0.5 vo1%dry 、通例0.
2vo1%dry含む、LDGを原料としてH2ガス、
co2ガスを主成分とする混合ガスを製造する工業装置
に於いては■と優先して反応する酸素の影響、即ち、脱
酸素反応Co + HO2−+ CO2+ 135.3
00 klI114/ノーmolによる発熱の結果生ず
る触媒層の急激な温度上昇、を押える為に充分な伝熱面
積が必要な事が理解される。
Oxygen is 0.01 to 0.5 vol% dry, usually 0.
H2 gas using LDG as raw material, including 2vo1% dry,
In industrial equipment that produces a mixed gas containing CO2 gas as the main component, the influence of oxygen, which reacts preferentially with ■, i.e., the deoxygenation reaction Co + HO2- + CO2+ 135.3
It is understood that a sufficient heat transfer area is required to suppress the rapid temperature rise in the catalyst layer that occurs as a result of heat generation due to 00 klI114/no mol.

実施例4 充分な伝熱面積を持った管型反応器の内部にl!の低温
シフト触媒(押出成型品)を充填し、その周囲を熱媒油
で200℃に保った。これに昇圧した第4表に示す組成
のLDG (圧力5 Kg!/cpn2− a 。
Example 4 Inside a tubular reactor with sufficient heat transfer area, l! A low-temperature shift catalyst (extrusion molded product) was filled, and the surrounding area was maintained at 200°C with heat transfer oil. LDG with the composition shown in Table 4 was pressurized to this (pressure 5 Kg!/cpn2-a).

bn&200℃) 1 )bn”/Hfts/G=2”
t’供iL&。
bn & 200℃) 1) bn”/Hfts/G=2”
t'offiL&.

第  4  表 反応管内の触媒温度を流れ方向に沿って測定したところ
第5図に示す様な温度分布を示した。
Table 4 When the catalyst temperature inside the reaction tube was measured along the flow direction, it showed a temperature distribution as shown in FIG.

即ち、管型反応器は熱媒体、反応管内径、管内ガスの流
速、触媒粒径を適宜選択することにより、触媒層の温度
をその耐熱温度(低温シフト触媒の場合300℃以下)
に維持できる。その結果、触媒担体の焼結、活性金属の
結晶構造変化等に起因する活性の急激な低下を防止でき
、従来よりも触媒量が少くて済みライフも長いので反応
器としては最適である。なおこの時の製品ガスの組成を
第5表に示す。
In other words, in a tubular reactor, the temperature of the catalyst layer can be adjusted to its allowable temperature (300°C or less in the case of a low-temperature shift catalyst) by appropriately selecting the heat medium, the inner diameter of the reaction tube, the flow rate of gas in the tube, and the catalyst particle size.
can be maintained. As a result, it is possible to prevent a sudden drop in activity due to sintering of the catalyst carrier, changes in the crystal structure of the active metal, etc., and it is optimal as a reactor because it requires less catalyst than before and has a longer life. The composition of the product gas at this time is shown in Table 5.

以上説明した本発明の効果を列挙すれば次の通りである
The effects of the present invention explained above are listed below.

(1)  CO転化反応熱、混入酸素によるcoの酸化
反応熱を速やかに除去する機能を有するので反応温度を
最適な温度に一定に保つことができ、その結果従来に比
べて高いCO転化率(高いCO2’ H2濃度の混合ガ
ス)を少ない触媒量で得ることができる。
(1) Since it has the function of quickly removing the heat of CO conversion reaction and the heat of CO oxidation reaction caused by mixed oxygen, the reaction temperature can be kept constant at the optimum temperature, resulting in a higher CO conversion rate than before ( A mixed gas with a high CO2' H2 concentration can be obtained with a small amount of catalyst.

(2)反応管内に充填された触媒層の温度を触媒の耐熱
温度以下に一定に維持する也とができる。従って触媒担
体が焼結したシ、活性金属の結晶構造が変化するのを防
止し、触媒の活性を従来に比べて長く維持することがで
きる。
(2) The temperature of the catalyst layer filled in the reaction tube can be maintained constant below the allowable temperature limit of the catalyst. Therefore, when the catalyst carrier is sintered, the crystal structure of the active metal is prevented from changing, and the activity of the catalyst can be maintained for a longer period than before.

(3)  多数の反応管内に触媒を充填しているので原
料ガスの均一分散が得られ、触媒の性能を均一に発揮さ
せることができる。とれにより原料ガス流量やスチーム
添加量が変ってもガスの偏流が起こらず触媒の局部的温
度上昇を防止できる。
(3) Since a large number of reaction tubes are filled with catalyst, the raw material gas can be uniformly dispersed, and the performance of the catalyst can be exhibited uniformly. Due to this, even if the flow rate of the raw material gas or the amount of steam added changes, the gas will not flow unevenly, and a local temperature rise in the catalyst can be prevented.

(4)  熱媒体(除熱剤)として加圧高温水を使用す
る場合には発生するスチームの圧力を維持するだけで熱
媒の場合にはその流量を制御するだけで反応管における
反応温度を一定に保つことができる。これにより計装機
器が他の方法よシも少なくなシ装置コストを低減するこ
とができる。
(4) When pressurized high-temperature water is used as a heat medium (heat removal agent), the reaction temperature in the reaction tube can be controlled simply by maintaining the pressure of the generated steam. can be kept constant. This allows instrumentation to be performed with less equipment cost than would otherwise be possible.

(5)  LDGの如く高濃度のCOガスを含む原料ガ
スをCO転化する場合従来は触媒の耐熱温度から反応器
を多段とし各反応器出口ガスを冷却することで装置を設
計していた。この為、反応器や熱交換器(又はガス急冷
装置)が複数必要となって運転操作が緊線になっていた
が、本発明では■発生スチームの圧力全維持する■熱媒
体の循環量を制御する、等の単純な操作で各種運転条件
に対応することができる。
(5) When converting raw material gas containing a high concentration of CO gas, such as LDG, to CO, conventionally the equipment was designed by using multiple reactors and cooling the gas at the outlet of each reactor based on the allowable temperature limit of the catalyst. For this reason, multiple reactors and heat exchangers (or gas quenching devices) were required, which made operation difficult.However, in the present invention, we can: 1) maintain the full pressure of the generated steam; and 2) reduce the circulation amount of the heat medium. It is possible to respond to various operating conditions with simple operations such as controlling.

(6)  CO転化において添加するスチームの量は反
応を行わせるのに必要なスチーム量と、触媒で発生する
熱を除去する目的で淫加するスチーム量とによって決定
される。本発明の方法では後者の目的で添加するスチー
ムの量が少チームの総量が大いに低減される。
(6) The amount of steam added in CO conversion is determined by the amount of steam required to carry out the reaction and the amount of steam added for the purpose of removing heat generated by the catalyst. In the method of the present invention, the amount of steam added for the latter purpose is reduced, and the total amount of steam is greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b) FiLDGからH2ガスお
よびC02Iスを主成分とする混合ガスを製造する従来
の方法の10ツク・フロー、 第2図および第3図はLDGからH2ガスおよびCOガ
スを主成分とする混合ガスを製造する本発明の一実施例
の概略フロー、 第4図は第2図および第3図における管型反応器の部分
拡大図並びに 第5図は実施例4における反応管内の触媒温度を流れ方
向に沿って測定した温度分布である。 1、:LDG、2:コンプレッサー、3ニスチーム、4
.6:基型反応器、5,7:熱交換器、8:脱炭酸装置
、9:C02ガス、10 : PSAH2装置、11:
廃ガス、12 : H2ガス、21:管型反応器、22
ニスチームドラム、23:yyイラー給水ライン、24
:発生スチームライン、25:スチルムライン、26:
高温水供給ライン、27:発生スチームライy 、28
 :反応ガス、29:反応管(触媒充填層)、30:熱
媒体、31:充填材、32:熱媒ライン、33:ポンプ
。 特許出願人 日揮株式会社 代理人 弁理士  伊 東 辰 雄 〃   〃   伊 東 −哲 也
Figures 1 (a) and (b) are 10 step flows of the conventional method for producing a mixed gas mainly composed of H2 gas and CO2I gas from FiLDG. A schematic flowchart of an embodiment of the present invention for producing a mixed gas mainly composed of gas, FIG. 4 is a partially enlarged view of the tubular reactor in FIGS. 2 and 3, and FIG. This is a temperature distribution of the catalyst temperature in the reaction tube measured along the flow direction. 1, :LDG, 2: Compressor, 3 Nisteam, 4
.. 6: Basic reactor, 5, 7: Heat exchanger, 8: Decarboxylation device, 9: C02 gas, 10: PSAH2 device, 11:
Waste gas, 12: H2 gas, 21: Tubular reactor, 22
Nissteam drum, 23:yyiller water supply line, 24
: Generation steam line, 25: Steam line, 26:
High temperature water supply line, 27: Generated steam dryer, 28
: Reaction gas, 29: Reaction tube (catalyst packed bed), 30: Heat medium, 31: Filler, 32: Heat medium line, 33: Pump. Patent Applicant JGC Corporation Agent Patent Attorney Tatsuo Ito 〃 Tetsuya Ito

Claims (1)

【特許請求の範囲】 1、未燃焼で回収した転炉発生ガスとスチームとを、胴
側に熱媒体を満たし、管側にシフト触媒を充填した管型
反応器の管側に通すことを特徴とする水素、二酸化炭素
を主成分とする混合ガスを製造する方法。 2、前記転炉発生ガスの組成中にCOガスが70〜90
vot1.02ガスが0.01〜0.5 voL f&
含まれる前記特許請求の範囲第1項記載の混合ガスを製
造する方法。 36  前記シフト触媒が低温シフト触媒である前記特
許請求の範囲第1項または第2項記載の混合ガスを製造
する方法。 4、・前記熱媒体が高温水である前記特許請求の範囲第
1項、第2項または第3項記載の混合ガスを製造する方
法。 5、前記高温水が前記管型反応器の胴側でスチームとな
り、該スチームがスチームドラムを醜て反応用スチーム
とされる前記特許請求の範囲第4項記載の混合ガスを製
造する方法。
[Scope of Claims] 1. The converter generated gas and steam recovered without combustion are passed through the tube side of a tubular reactor whose shell side is filled with a heat medium and whose tube side is filled with a shift catalyst. A method for producing a mixed gas whose main components are hydrogen and carbon dioxide. 2. CO gas in the composition of the converter generated gas is 70 to 90%
vot1.02 gas is 0.01~0.5 voL f&
A method for producing a mixed gas as claimed in claim 1. 36. The method for producing a mixed gas according to claim 1 or 2, wherein the shift catalyst is a low temperature shift catalyst. 4. The method for producing a mixed gas according to claim 1, 2, or 3, wherein the heat medium is high-temperature water. 5. The method for producing a mixed gas according to claim 4, wherein the high-temperature water becomes steam on the body side of the tubular reactor, and the steam disturbs the steam drum and becomes reaction steam.
JP56102249A 1981-07-02 1981-07-02 Preparation of mixed gas Pending JPS589801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102249A JPS589801A (en) 1981-07-02 1981-07-02 Preparation of mixed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102249A JPS589801A (en) 1981-07-02 1981-07-02 Preparation of mixed gas

Publications (1)

Publication Number Publication Date
JPS589801A true JPS589801A (en) 1983-01-20

Family

ID=14322325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102249A Pending JPS589801A (en) 1981-07-02 1981-07-02 Preparation of mixed gas

Country Status (1)

Country Link
JP (1) JPS589801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721611A (en) * 1984-03-02 1988-01-26 Imperial Chemical Industries Plc Hydrogen production
CN109385293A (en) * 2017-08-02 2019-02-26 中国石油化工股份有限公司 Hydrocarbon steam conversion acid water recycle device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721611A (en) * 1984-03-02 1988-01-26 Imperial Chemical Industries Plc Hydrogen production
CN109385293A (en) * 2017-08-02 2019-02-26 中国石油化工股份有限公司 Hydrocarbon steam conversion acid water recycle device and method
CN109385293B (en) * 2017-08-02 2020-12-08 中国石油化工股份有限公司 Hydrocarbon steam conversion acidic water recycling device and method

Similar Documents

Publication Publication Date Title
TWI732818B (en) A process for producing an ammonia synthesis gas, a process for producing ammonia from such gas, and a plant arranged to carry out such process
US4337170A (en) Catalytic steam reforming of hydrocarbons
EA035718B1 (en) Integrated process for the production of formaldehyde-stabilised urea
JP2828275B2 (en) Hydrogen
EP2421941B1 (en) Method for sequestering carbon dioxide from a spent gas
JP2001509582A (en) Thermal integration method of self-heat exchange reformer and cogeneration power plant
US11124423B2 (en) Ammonia process using advanced shift process
EA034603B1 (en) Process for the production of formaldehyde
JP3748899B2 (en) Syngas production method and equipment and its application
CN107223114A (en) The method for manufacturing ammonia
WO1996016898A1 (en) Process for producing phosgene
US4442020A (en) Catalytic steam reforming of hydrocarbons
JPS589801A (en) Preparation of mixed gas
JP2001514155A (en) Thermal integration method of self-heat exchange type reformer replenishing oxidant and co-generation power plant
JPS62263910A (en) Method and apparatus for producing high carbon reduced iron in vertical direct reducing furnace
US4198379A (en) Nitrogen oxide pollution abatement using catalytic combustion
TWI775216B (en) Blast furnace operation method and blast furnace accessory equipment
EP1098839A2 (en) Methane-steam reforming
KR102118318B1 (en) Integrated multi-stage reactor for methanation of carbon oxides
JPS58152093A (en) Reduction of carbon monoxide content in town gas
GB2546867A (en) Methanol process
JP2000178625A (en) Method and apparatus for producing iron
JP3025253B1 (en) Manufacturing method of iron carbide
CN116978469A (en) Modeling method of oxygen-enriched regeneration system of light hydrocarbon cracking catalyst
JP2018154722A (en) Reactor and gas producing equipment