JPS5897272A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS5897272A
JPS5897272A JP56192841A JP19284181A JPS5897272A JP S5897272 A JPS5897272 A JP S5897272A JP 56192841 A JP56192841 A JP 56192841A JP 19284181 A JP19284181 A JP 19284181A JP S5897272 A JPS5897272 A JP S5897272A
Authority
JP
Japan
Prior art keywords
cooling
tubes
cooling system
systems
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56192841A
Other languages
Japanese (ja)
Inventor
Toshiaki Takemoto
嶽本 俊明
Seiichiro Ono
小野 征一郎
Masamitsu Nakazawa
中沢 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56192841A priority Critical patent/JPS5897272A/en
Publication of JPS5897272A publication Critical patent/JPS5897272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a highly reliable fuel cell, in which control of the flow amount of a refrigerant at low load, supply and exhaustion of a fuel or an oxidant gas, and work of joining cooling tubes and each cooling mother tube can be performed in an excellent manner, by positioning the cooling mother tubes of the cooling systems separately in different manifolds so as to enlarge the distance between the cooling mother tubes. CONSTITUTION:A cooling system is divided into two systems, the first cooling system consisting of a cooling mother tube 5A and cooling tubes 4A and the second cooling system consisting of a cooling mother tube 5B and cooling tubes 4B. The cooling mother tubes 5A and 5B of the first and the second cooling systems are separately positioned in different manifolds 2 which cover side surfaces which face to one another. Besides, the cooling tubes 4A and 4B of the first and the second cooling systems are alternately positioned over a cooler cell 3. In the figure, the symbol 8 represents a refrigerant which circulates through the cooling system. Therefore, when one of the cooling systems becomes out of order, cooling can be performed with the other cooling system. As a result, a battery can be prevented from coming to have unusually high temperature.

Description

【発明の詳細な説明】 本発明は燃料電池に係り、特にその冷却装置に関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to a fuel cell, and more particularly to a cooling device for the fuel cell.

燃料電池は反応によって熱を発生するので、この熱を外
部に取出す必要があり、このため第1甲および第2図に
示すような冷却装置が設けらnている。これら図におい
て、lは空気極、燃料極およびこれらの間に介挿さ扛た
電解質からなる単位電池で、この単位電池lが複数個積
層され、その各側面を覆うように、燃料または酸化剤ガ
ス(空気、酸素など)を供給または排出するだめのマニ
ホールド2が配設されている。また、単位電池1の適数
個毎にクーラーセル3が介挿されており、このクーラー
セル3の溝内に配置さnた各冷却管4は、マニホールド
2内に配置された冷却母管5に接続され、この冷却母管
5を介して外部の熱交換器6に接続さnている。
Since fuel cells generate heat through reactions, it is necessary to extract this heat to the outside, and for this reason a cooling device as shown in Figures 1A and 2 is provided. In these figures, l is a unit cell consisting of an air electrode, a fuel electrode, and an electrolyte interposed between them. A manifold 2 for supplying or discharging (air, oxygen, etc.) is provided. In addition, a cooler cell 3 is inserted for every appropriate number of unit batteries 1, and each cooling pipe 4 arranged in the groove of the cooler cell 3 is connected to a cooling main pipe 5 arranged in the manifold 2. It is connected to an external heat exchanger 6 via this cooling main pipe 5.

しかし、このような従来の冷却装置では、冷却母管5お
よび冷却管4からなる冷却系統が1つでるるため、冷却
系統の故障に対する信頼性が低いとともに、低負荷時、
すなわち発熱量の少ないときの冷媒流量制御を全層のセ
ルにわたって効率よく行うのは困難である。−また、冷
却管4がすべて1つのマニホールド2内に引出され、こ
こで冷却母管5と接続されているため、各冷却母管5間
の間隔が狭くなり、第2図に示すように、マニホールド
2全通して供給または排出される燃料または酸化剤ガス
7の流れがこの冷却母管5に邪魔されて乱れるばかりで
なく、冷却管4と冷却母管5との接続作業性が悪いとい
う欠点があった。
However, in such a conventional cooling system, since there is only one cooling system consisting of the cooling main pipe 5 and the cooling pipe 4, the reliability against failure of the cooling system is low, and at low load,
That is, it is difficult to efficiently control the refrigerant flow rate across all layers of cells when the amount of heat generated is small. -Also, since all the cooling pipes 4 are drawn out into one manifold 2 and connected to the cooling main pipes 5 there, the intervals between the cooling main pipes 5 are narrowed, as shown in FIG. The disadvantage is that not only the flow of fuel or oxidant gas 7 that is supplied or discharged through the manifold 2 is disturbed by the cooling bus pipe 5, but also the workability of connecting the cooling pipe 4 and the cooling bus pipe 5 is poor. was there.

本発明の目的は、上記した従来技術の欠点をなりシ、低
負荷時の冷媒流量制御、燃料または酸化剤ガスの給排、
および冷楓管と冷却母管との接続作業を良好に行い得る
信頼性の高い燃料電池を提供することにある。
An object of the present invention is to overcome the drawbacks of the prior art described above, to control the flow rate of refrigerant at low loads, to supply and discharge fuel or oxidizing gas, and to
Another object of the present invention is to provide a highly reliable fuel cell in which connection work between a cold maple pipe and a cooling main pipe can be performed satisfactorily.

この目的を達成するだめ、本発明は、冷却母管および冷
却管からなる冷却系統を少なくとも2つに分け、こ1ら
各冷却系統の冷却母管全各別のマニホールド内に分割し
て配置することにより、各冷却母管間の間隔を犬さくし
たこと全特徴とする。
In order to achieve this object, the present invention divides a cooling system consisting of a cooling bus pipe and a cooling pipe into at least two parts, and all of the cooling bus pipes of each cooling system are divided and arranged in separate manifolds. As a result, the space between each cooling main pipe is narrowed.

以下、本発明の一実施例を第3図および第4図について
説明する。なおこれら図中、第1図および第2図と同一
符号は同一物または相当物を示す。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In these figures, the same reference numerals as in FIGS. 1 and 2 indicate the same or equivalent parts.

この実施例が前記した従来例と異なる点は、冷却母管お
よび冷却管からなる冷却系統が、冷却母管5Aおよび冷
却管4Aからなる第1の冷却系統と、冷却母管5Bおよ
び冷却管4Bからなる第2の冷却系統の2つに分けられ
ており、第1.第2の冷却系統の各冷却母管5A、5B
が互に対向する側面を覆うマニホールド2内に分割して
配置され、かつ第1.第2の冷却系統の冷却管4A。
The difference between this embodiment and the conventional example described above is that the cooling system consisting of a cooling bus tube and a cooling tube is different from the first cooling system consisting of a cooling bus tube 5A and a cooling tube 4A, and a first cooling system consisting of a cooling bus tube 5B and a cooling tube 4B. The second cooling system is divided into two parts, the first and second cooling systems. Each cooling bus pipe 5A, 5B of the second cooling system
are arranged separately in the manifold 2 covering mutually opposing sides, and the first . Cooling pipe 4A of the second cooling system.

4Bが同一クーラーセル3上において交互に配置さnて
いることである。図中、8は冷却系統を循環する冷媒で
ある。
4B are arranged alternately on the same cooler cell 3. In the figure, 8 is a refrigerant that circulates in the cooling system.

したがって、本実施例によれば、一方の冷却系統が故障
しても、他方の冷却系統で冷却することができ、電池が
異常高温になるのを防ぐことができる。また、同一クー
ラーセル3上に位置する冷却管4A、4Bに対して両側
の冷却母管5A。
Therefore, according to this embodiment, even if one cooling system fails, the other cooling system can provide cooling, and it is possible to prevent the battery from becoming abnormally high temperature. Moreover, the cooling main pipe 5A is located on both sides of the cooling pipes 4A and 4B located on the same cooler cell 3.

5Bより冷媒を供給するようになっているため、1つの
冷却母管5A、5B内を流通させる冷媒流量が少なくて
よく、冷却母管5A、5Bの管径を従来より細くするこ
とができる。その結果、各冷却母管5A、5B間の間隔
を広くとることができるため、冷却母管5A、5Bによ
って燃料または酸化剤ガス7の流nが邪魔きれることが
なく、こnAk良好に流通させ得るとともに、冷却管4
A。
Since the refrigerant is supplied from the cooling bus tubes 5B, the flow rate of the refrigerant flowing through each cooling bus tube 5A, 5B may be small, and the pipe diameter of the cooling bus tubes 5A, 5B can be made smaller than before. As a result, the space between each cooling bus tube 5A, 5B can be widened, so that the flow n of the fuel or oxidizing gas 7 is not obstructed by the cooling bus tubes 5A, 5B, and this nAk can be circulated well. At the same time, the cooling pipe 4
A.

4Bと冷却母管5A、5Bの接続作業が容易になる。さ
らに、低負荷時には、一方の冷却系統を閉鎖し、他方の
冷却系統のみで冷却することにより、負荷変動に応じて
効率よく冷却することができる。
4B and the cooling bus pipes 5A and 5B become easier to connect. Furthermore, when the load is low, one cooling system is closed and cooling is performed only by the other cooling system, thereby allowing efficient cooling in response to load fluctuations.

第5図は本発明の他の実施例を示す。この実施例では、
第1.第2の冷却系統の冷却管4A。
FIG. 5 shows another embodiment of the invention. In this example,
1st. Cooling pipe 4A of the second cooling system.

4Bが互に異なりクーラーセル3上に配置されている。4B are different from each other and arranged on the cooler cell 3.

その他の構造は第3図および第4図の実施例と同じであ
る。したがって、冷却母管4A。
The rest of the structure is the same as the embodiment shown in FIGS. 3 and 4. Therefore, the cooling main pipe 4A.

4Bの管径は従来と同じであるが、両側のマニホールド
2内に分割して配置されるため、1つのマニホールド2
内に配置される冷却母管4A、4Bの数が1/2に減少
し、その間隔を広くとることができる。その結果、前記
実施例と同様に、燃料または酸化剤ガスの流通が良好に
なるとともに、冷却管と冷却母管の接続作業も容易とな
る。また、冷却系統が2重系でろるため、故障に対する
信頼性を向上し、かつ低負荷時に効率よく冷却し得るこ
とも、前記実施例と同様である。
The pipe diameter of 4B is the same as before, but it is divided into manifolds 2 on both sides, so one manifold 2
The number of cooling bus tubes 4A and 4B disposed within the cooling head tubes 4A and 4B is reduced to 1/2, and the interval between them can be widened. As a result, as in the embodiment described above, the flow of fuel or oxidant gas is improved, and the work of connecting the cooling pipe and the cooling main pipe becomes easy. Further, since the cooling system is a double system, reliability against failure is improved and cooling can be performed efficiently at low loads, as in the previous embodiment.

以上説明したように、本発明によれば、低負荷時の冷媒
流量制御、燃料または酸化剤ガスの給排を良好に行い得
るとともに、冷却管と冷却母管の接続作業が容易となり
、かつ冷却系統の故障に対する信頼性を向上することが
できる。
As explained above, according to the present invention, it is possible to control the refrigerant flow rate at low loads, to supply and discharge fuel or oxidizer gas well, to facilitate the connection work between the cooling pipe and the cooling main pipe, and to improve cooling efficiency. Reliability against system failures can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の燃料電池の分解斜視図およ
び要部断面図、第3図および第4図は本発明の一実施例
に係る燃料電池の冷却系統図および要部断面図、第5図
は本発明の他の実施例に係る燃料電池の要部断面図でる
る。 l・・・単位電池、2・・・マニホールド、4A、4B
・・・第 1  図 揶 J 図
1 and 2 are exploded perspective views and sectional views of essential parts of a conventional fuel cell, FIGS. 3 and 4 are cooling system diagrams and sectional views of essential parts of a fuel cell according to an embodiment of the present invention, FIG. 5 is a sectional view of essential parts of a fuel cell according to another embodiment of the present invention. l... Unit battery, 2... Manifold, 4A, 4B
...Figure 1 Figure J

Claims (1)

【特許請求の範囲】[Claims] 1、複数個の単位電池を積層し、その側面を燃料および
酸化剤ガスの給排用マニホールドで覆い、このマニホー
ルド内に冷却母管を配置するとともに前記単位電池間に
前記冷却母管に接続された複数個の冷却管を配置した燃
料電池において、前記冷却母管および冷却管からなる冷
却系統を少なくとも2つに分け、各冷却系統の冷却母管
を各別の前記マニホールド内に配置したことを特徴とす
る燃料電池。
1. A plurality of unit cells are stacked, their sides are covered with a manifold for supplying and discharging fuel and oxidizing gas, and a cooling bus pipe is disposed within this manifold, and the unit cells are connected to the cooling bus pipe. In a fuel cell in which a plurality of cooling pipes are arranged, the cooling system consisting of the cooling bus pipe and the cooling pipe is divided into at least two, and the cooling bus pipe of each cooling system is arranged in a separate manifold. Characteristic fuel cells.
JP56192841A 1981-12-02 1981-12-02 Fuel cell Pending JPS5897272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192841A JPS5897272A (en) 1981-12-02 1981-12-02 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192841A JPS5897272A (en) 1981-12-02 1981-12-02 Fuel cell

Publications (1)

Publication Number Publication Date
JPS5897272A true JPS5897272A (en) 1983-06-09

Family

ID=16297864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192841A Pending JPS5897272A (en) 1981-12-02 1981-12-02 Fuel cell

Country Status (1)

Country Link
JP (1) JPS5897272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557373A1 (en) * 1983-12-23 1985-06-28 United Technologies Corp COOLING SYSTEM FOR AN ELECTROCHEMICAL FUEL CELL
WO2004045013A2 (en) * 2002-11-14 2004-05-27 3M Innovative Properties Company Liquid cooled fuel cell stack
KR100970336B1 (en) 2003-02-10 2010-07-15 한라공조주식회사 A Thermal Management System of a Fuel Cell Vehicle
EP2650960A4 (en) * 2011-01-26 2016-09-21 Lg Chemical Ltd Cooling element having improved assembly productivity and battery modules including same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557373A1 (en) * 1983-12-23 1985-06-28 United Technologies Corp COOLING SYSTEM FOR AN ELECTROCHEMICAL FUEL CELL
WO2004045013A2 (en) * 2002-11-14 2004-05-27 3M Innovative Properties Company Liquid cooled fuel cell stack
WO2004045013A3 (en) * 2002-11-14 2005-07-28 3M Innovative Properties Co Liquid cooled fuel cell stack
KR100970336B1 (en) 2003-02-10 2010-07-15 한라공조주식회사 A Thermal Management System of a Fuel Cell Vehicle
EP2650960A4 (en) * 2011-01-26 2016-09-21 Lg Chemical Ltd Cooling element having improved assembly productivity and battery modules including same

Similar Documents

Publication Publication Date Title
US4623596A (en) Cell stack for fuel cells
US10273961B2 (en) Fuel cell system including a fuel cell assembly and centrifugal blower system
US4342816A (en) Fuel cell stack arrangements
JPS61173470A (en) Positively cooling type cooler for electrochemical battery
US5069985A (en) Plaque fuel cell stack
US5041344A (en) Fuel cell cooling device
JP4507451B2 (en) Fuel cell manifold
US8298710B2 (en) Humidifier for fuel cell and process for warming the same
JPS5897272A (en) Fuel cell
JPS6240832B2 (en)
JP3426701B2 (en) Fuel cell
US20230238553A1 (en) Fuel cell stack
US6368739B1 (en) Joined solid oxide fuel cell stacks and method for fabricating same
JP2803288B2 (en) Cooling method of phosphoric acid type fuel cell
JPS61161668A (en) Fuel cell
JPH0622149B2 (en) Fuel cell
CN116885234B (en) Air flow distribution base suitable for multiple SOFC (solid oxide Fuel cell) pile modules
JPH0227503Y2 (en)
JP2865025B2 (en) Molten carbonate fuel cell
JPH0782874B2 (en) Fuel cell
JPS599869A (en) Air cooling type fuel cell
JPH1154140A (en) Fuel cell power generating device
JPH0624136B2 (en) Fuel cell power generation system
JPH03261073A (en) Cooling body of fuel cell
JPH08306370A (en) Laminated phosphoric acid type fuel cell