JPS5896857A - Fiber reinforced metallic composite material - Google Patents

Fiber reinforced metallic composite material

Info

Publication number
JPS5896857A
JPS5896857A JP19412681A JP19412681A JPS5896857A JP S5896857 A JPS5896857 A JP S5896857A JP 19412681 A JP19412681 A JP 19412681A JP 19412681 A JP19412681 A JP 19412681A JP S5896857 A JPS5896857 A JP S5896857A
Authority
JP
Japan
Prior art keywords
composite material
fibers
fiber
frm
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19412681A
Other languages
Japanese (ja)
Other versions
JPH0447016B2 (en
Inventor
Koji Yamatsuta
山蔦 浩治
Kenichi Nishio
西尾 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19412681A priority Critical patent/JPS5896857A/en
Priority to CA000410521A priority patent/CA1202553A/en
Priority to US06/413,253 priority patent/US4444603A/en
Priority to DE8282108013T priority patent/DE3268826D1/en
Priority to EP82108013A priority patent/EP0074067B1/en
Publication of JPS5896857A publication Critical patent/JPS5896857A/en
Publication of JPH0447016B2 publication Critical patent/JPH0447016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To considerably enhance the shearing strength of a composite material consisting of an Al alloy contg. Cu or Zn as a matrix and inorg. fibers as a reinforcing material by subjecting the composite material to soln. treatment at a specified temp. or above, quenching and tempering at a specified temp. CONSTITUTION:A fiber reinforced metallic composite material is manufactured using an Al alloy as a matrix and inorg. fibers as a reinforcing material. The Al alloy contains Cu or Zn as a secondary component and can be treated under heating. Fibers of carbon, silica, silicon carbide, boron or alumina are used as the inorg. fibers. The fiber reinforced metallic composite material is subjected to soln. treatment at >=400 deg.C, quenching and tempering at 100-250 deg.C.

Description

【発明の詳細な説明】 本発明は、繊維強化金属複合材料(以下、FRMと略称
する。)の新規な製造方法に関するものであシ、更に許
しくはFRMの剪断強度を大巾に向上させる製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing a fiber reinforced metal composite material (hereinafter abbreviated as FRM), and furthermore, it relates to a method for greatly improving the shear strength of FRM. This relates to a manufacturing method.

近年無機質繊維にアルミナ繊維、炭素繊維、シリカ繊維
、シリコンカーバイド繊維、ポロン繊維などを用い、マ
トリックスにアルミニウムまたはアルミニウム合金(以
下アルミニウム合金類と呼ぶ)を用いた軽量複合材料が
開発され多くの産業分野で使用され始めつつある。航空
宇宙産業、自動車産業等においては特に耐熱性と高強度
が要求される部位への使用が考えられている。
In recent years, lightweight composite materials have been developed that use alumina fibers, carbon fibers, silica fibers, silicon carbide fibers, poron fibers, etc. as inorganic fibers, and aluminum or aluminum alloys (hereinafter referred to as aluminum alloys) for the matrix, and are used in many industrial fields. It is beginning to be used in In the aerospace industry, automobile industry, etc., use is being considered especially in areas where heat resistance and high strength are required.

本発明者らは先に特願昭j 6− /311ざ?7 に
て示されるようにFRM威形鉢形体体化処理後、急冷す
ることによりFRMの機械的強度を大巾に向上させる方
法を発明した。しかるに強度部材として用いられる材料
には引張り強度、曲げ強度などと共に剪断強度の高いこ
とを要求されるものが多く特願昭j A−1341g9
7 に示される発明ではこの場合不満足なことが判った
The inventors first filed a patent application in Shoj 6-/311. As shown in No. 7, we have invented a method for greatly improving the mechanical strength of FRM by rapidly cooling it after the FRM is processed to form a large bowl-shaped body. However, many materials used as strength members are required to have high tensile strength, bending strength, and shear strength.
The invention shown in No. 7 was found to be unsatisfactory in this case.

本発明者らはFRMの引張シ、曲は強度を高く保ちつつ
かつ剪断強度を高める方法について鋭意検討した結果本
発明を完成するに至った。
The present inventors have completed the present invention as a result of intensive studies on a method for increasing the shear strength while maintaining high tensile and bending strength of FRM.

即ち、第一成分として銅または亜鉛を含み、かつ熱処理
可能なアルミニウム合金をマトリックスとし、無機質醸
雑を強化材とした繊維強化金属複合材料・を900℃以
上にて溶体化処理した稜急冷ついで/θθ℃以上Jθ°
C以下にて焼もどすことによって寓い剪断強度を有する
繊維強化金sit*合材料が得られることを見い出した
That is, a fiber-reinforced metal composite material containing copper or zinc as a first component, a heat-treatable aluminum alloy as a matrix, and an inorganic impurity as a reinforcing material is solution-treated at 900°C or higher, then quenched. θθ℃ or more Jθ°
It has been found that a fiber-reinforced gold composite material having a high shear strength can be obtained by tempering at a temperature below C.

以下に本発明の詳細な説明する0 本発明に用いられる無機質繊維は、炭素繊維シリカlI
kM、シリコンカーバイド繊維、ボロン−維およびアル
ミナ質繊維であるO無機質繊維に求められるP:能とし
ては高強度である事はもとよりでおるが、ilI融アル
アルミニウム合金触した時に)Mliに反応して劣化し
ない方が好ましい◇一方過度゛な反応が起こり、繊維の
強度は余り低下しないが、繊維とマトリックス界面で応
力の伝達が達成され強化効果を十分発揮できることが望
ましい0この理由からこれらの無機質##のうち本発明
の効果を最もJl!1着に示し得る一―は特公昭3 /
 −73741号に記載されているアルミナ’Jll&
轍であるO 即ち一般式 %式% (式中、Yは有機残基、ハロゲン、水酸基の−Sまたは
二種以上を示す。) で表わされる構造単位を有するポリアル違ツキサンを原
料とし、これに得られるシリカアルミナ線維中のシリカ
含有が2gチ以下であるような量のケイ素を含む化合物
を一種または二種以上混合し、腋混合物を紡糸して得ら
れる前駆体繊維を焼成してなるアルミナ質繊維であり、
好ましくはシリカ(8102)  含有量が2重′Ik
−以上25重量嗟以下のものであり、XM的構造におい
てα−届20.の反射を実質的に示さないアルミナ繊維
である0このアルミナ質繊維は本発明の効果を損なわな
い範囲でリチウム、ベリリウムホウ素、ナトリウム、マ
グネシウム、リン、カリウム、カルシウム、チタン、ク
ロム、マンガン、イツトリウム、ジルコニウム、ランタ
ン、タングステン、バリウムなどの一種またL二種以上
の酸化物などのような耐化性化合物を含有することがで
きる0 本発明FRMに用いられる無機質繊維の蓋は特に限定さ
れるものではなく強化効果の発現する範囲であれば特K
IIIIJIIIはない。
The present invention will be described in detail below. The inorganic fiber used in the present invention is carbon fiber silica lI
kM, P required for O inorganic fibers such as silicon carbide fibers, boron fibers, and alumina fibers: Not only do they have high strength, but they react with Mli (when contacted with molten aluminum alloy). ◇On the other hand, an excessive reaction occurs and the strength of the fiber does not decrease much, but it is desirable that stress transmission be achieved at the interface between the fiber and the matrix and the reinforcing effect can be fully exerted.For this reason, these inorganic materials ## The effect of the present invention is the most Jl! The one that can be shown in 1st place is Tokuko Sho 3 /
Alumina 'Jll&' described in No.-73741
O which is a rut, that is, the general formula % formula % (wherein, Y represents -S or two or more types of organic residues, halogens, and hydroxyl groups) is used as a raw material, and polyallic tuxane having a structural unit represented by An alumina material obtained by mixing one or more compounds containing silicon in an amount such that the silica content in the obtained silica-alumina fiber is 2 g or less, and firing a precursor fiber obtained by spinning the axillary mixture. fiber,
Preferably silica (8102) content is 2'Ik
- 25 mm or less in weight, and has an XM structure of α-20. This alumina fiber contains lithium, beryllium boron, sodium, magnesium, phosphorus, potassium, calcium, titanium, chromium, manganese, yttrium, The lid of the inorganic fiber used in the FRM of the present invention is not particularly limited. Special K if it is within the range where the strengthening effect occurs without any damage.
There is no IIIJIII.

加工方法によって社繊維の密度に疎密をもたし、答湯が
含浸し易くすることも可能である。
Depending on the processing method, it is also possible to make the density of the fibers more or less dense, making it easier for the fibers to be impregnated with water.

本発明に用いられるアルミニウムを主成分とする合金(
アルミニウム合金)として好適な本のは第コ成分として
銅または亜鉛を含み、かつ熱処理可能な合金である。ま
た合金の強度向上流動性向上、組織の微細化などの目的
で第3成分以上の成分としてケイ素、鉄、銅、ニッケル
、スズ、マンガン、マグネシウム、鉛、亜鉛、ジルコニ
ウム、チタン、バナジウム、ナトリウムリチウム、アン
チモン、ストロンチウム、またはクロムなどの一種以上
を含むことができる〇これらの合金は本発明で述べる熱
処理をほどこすことによυFRMの剪断強度を高める効
果が特に著しい。
The alloy mainly composed of aluminum used in the present invention (
Suitable aluminum alloys are alloys that contain copper or zinc as the third component and are heat treatable. In addition, silicon, iron, copper, nickel, tin, manganese, magnesium, lead, zinc, zirconium, titanium, vanadium, sodium lithium are used as the third or higher components for the purpose of improving the strength, fluidity, and refining the structure of the alloy. , antimony, strontium, or chromium. These alloys have a particularly remarkable effect of increasing the shear strength of υFRM when subjected to the heat treatment described in the present invention.

さらに好オしくは本発明者らがFRMの機械強度を向上
させる目的で発−し九(特願昭jj−/θn29、特願
昭6 ! −704/!II%特願昭jA−626/6
、特願昭j A −j、24/7、特願昭j6−526
/に、特願昭J4−jコ乙J1特願昭j4−!;、u2
/および特願昭56−Sコロ、23 )マトリックス中
への添加元素である、ビスマス、カドミウム、インジウ
ム、バリウム、ラジウム、カリウム、セシウム、ルビジ
ウム、アンチモン、ストロンチウムおよびフランシウム
の一種以上を訳アルミニウム合金に含有させることであ
る。これらの元素をマトリックス合金としソテルミ=ウ
ム合金に添加することによりFRM−引張り、曲は強度
を著しく高めることができ、本発明の効果をよ如明確に
発現することができる〇各種のアル4ニウム合金類中で
これらのアルえニウム合金類が特にallに効果を示す
理由は明らかではないが、 FRM中での無機質繊維と
これらのマトリックス合金の漏れ性、繊維とマドこのア
ルミニウム合金は本発明の効果を損なわない範囲で他元
素を含有していてもさしつかえない。
More preferably, the inventors of the present invention have issued a patent application for the purpose of improving the mechanical strength of FRM. 6
, patent application Shoj A-j, 24/7, patent application Shoj 6-526
/ Tokugan Showa J4-j Kootsu J1 Tokugan Showa J4-! ;, u2
/ and Japanese Patent Application No. 1982-S Coro, 23) Addition of one or more of bismuth, cadmium, indium, barium, radium, potassium, cesium, rubidium, antimony, strontium and francium to the matrix into an aluminum alloy. It is to contain it. By adding these elements to the sotermium alloy as a matrix alloy, the FRM tensile and bending strength can be significantly increased, and the effects of the present invention can be more clearly expressed. It is not clear why these allenium alloys are particularly effective for all, but the leakage of inorganic fibers and these matrix alloys in FRM, the fibers and the aluminum alloys of the present invention It may contain other elements as long as the effect is not impaired.

熱処理条件は選択されるマトリックス合金によりて最適
条件Fi異なるが、偏析した元業iたは金属同化合物が
母相中に固溶するのに十分な温度であることを畳する。
Although the optimum heat treatment conditions differ depending on the selected matrix alloy, it is important that the temperature is sufficient for the segregated metal compound or metal compound to form a solid solution in the matrix.

好ましくは夕θθ°C以上のm彦でlす、IKtFfま
しくはアルミニウム度はFRM1%’形体が変形しない
範囲であれば何縦でもかまわ々い。
Preferably, the temperature is θθ°C or higher, and the IKtFf or aluminum content may be any vertical as long as the FRM 1% shape does not deform.

熱処理の時間は熱処理温度や製品の大巻さによって異な
るが、一般には7時間から3θ時間V1度が最適である
。熱処理後の急冷条件はα相中に固溶した偏析物が再び
結晶粒界に析出しない程度の速度であれば十分であシ、
具体的に杜方法としては、水や油による冷却方法があり
、その他液体窒素浸漬とか送風による冷却方法なども*
b得る。焼もどしは/θθ°C以上Jθ°C以下のIi
度で3時間以上30時間以下の範囲で行なうことが望ま
しい。この様にFRMに熱処理、急冷操作および焼吃ど
じを行なうことにより、マトリックス合金自体は一般の
熱処理効果に基づいた変化すなわち結晶粒界に存在し九
偏析物のα相中への固溶および析出により強化されてい
るのは轟然の事ながら、この様な処理を受けたFRMの
剪断強度は、処理前のFRMの剪断Ii!!度より大巾
に向上することが認められる。また処理前の引張シ及び
曲げ強度を維持しておシ模械強度のバランスの優れたF
RMが得られる。
The heat treatment time varies depending on the heat treatment temperature and the size of the product, but in general, the optimum time is 7 hours to 3θ hours and V1 degrees. It is sufficient that the rapid cooling conditions after heat treatment are such that the segregated solid solution in the α phase does not precipitate again at the grain boundaries.
Specifically, Mori methods include cooling methods using water or oil, and other cooling methods such as immersion in liquid nitrogen and cooling using air blowing*
b get. Tempering is / θθ°C or more and Jθ°C or less Ii
It is desirable to carry out the treatment at a temperature of 3 hours or more and 30 hours or less. By performing heat treatment, rapid cooling operation, and sintering on FRM in this way, the matrix alloy itself undergoes changes based on general heat treatment effects, that is, solid solution and precipitation of 9 segregates in the α phase that exist at grain boundaries. Although it is amazing that the shear strength of the FRM that has undergone such treatment is greater than that of the FRM before treatment, the shear strength Ii! ! It is recognized that there is a significant improvement over time. In addition, it maintains the tensile strength and bending strength before treatment, and has an excellent balance of mechanical strength.
RM is obtained.

本発明のFRMは種々の方法によって粂遺し得る。すな
わちその主なものとして、(1)液体金属含浸法のよう
な液相法、Q拡散接合のよりな固相法、に)粉末冶金(
焼結、溶結)法、(9)溶射、電析、蒸着などの沈積法
、(イ)押出、圧延などの塑性加工法、(、g);*圧
凝固鋳造法などが例示される。
The FRM of the present invention can be deposited by various methods. That is, the main ones are (1) liquid phase methods such as liquid metal impregnation method, solid phase method such as Q diffusion bonding, and) powder metallurgy (
(9) deposition methods such as thermal spraying, electrodeposition, and vapor deposition; (a) plastic working methods such as extrusion and rolling; and (g); *pressure solidification casting method.

本発明の効果が特に顕著に認められる方法は(1)の筐
体金属含浸法や(6)の高圧凝固鋳造法などのように1
11融金真と繊維が直接接触する場合であるが、0〜C
!:)に示される製造方法においても明らかに効果が認
められる。
Methods in which the effects of the present invention are particularly noticeable include the case metal impregnation method (1) and the high-pressure solidification casting method (6).
11 In the case where the financial thread and the fiber are in direct contact, 0 to C
! The manufacturing method shown in :) is also clearly effective.

この様にして製造され九FRMは他のアルミニウム合金
、または熱処理の行なわれていない場合と比較して、引
張りおよび曲げ強度はPI程度に維持されたまま大巾に
剪断強度の向上が藺められる。tた加工法上も既存のア
ルミニウムの設備、方法を何ら変更する事なく本発明を
実行てきることは実生産上からも非常に大きなメリット
である。以下本発明を実施例にょシさらに詳しく説明す
るが、本発明はこれによって限定されるものではない。
Compared to other aluminum alloys or those without heat treatment, the nine FRM manufactured in this way has a significant improvement in shear strength while maintaining tensile and bending strengths at the PI level. . The fact that the present invention can be carried out without making any changes to existing aluminum processing equipment or methods is a great advantage in terms of actual production. The present invention will be explained in more detail below using Examples, but the present invention is not limited thereto.

尚、IJ6Fi断わシのあるもの以外は全て重量饅を表
わすものとする。
All items other than those marked with IJ6Fi indicate heavy weight rice cakes.

実施例/ マトリックス金属としテAIJjGT (AJ3−4t
、、29bCu −0,3A *s+ −0,3%Mg
 −0,/θ%T1−0.θ/%Zn−0,00/%B
 )、およびAA−7θ76(u”−7、jlZn −
OJ6%Cu −0,6%Mg −/、 6%Mtr 
)を、無機質繊維としてアルミナ質僚維[M320.含
有率ざjチ、5io2含有率/jチ、平均歎絶径/41
pm、引張り強度/!;011?/m2 (ゲージ長−
0m)、弾性率、2J、 !00 FIEF/1112
 )を用いガス加圧含浸法にて溶湯温度UO″C1加圧
力jθ%/、、意の条件下、繊維体積含有率(Vf) 
jθチのFRMを作製した。
Example/Matrix metal AIJjGT (AJ3-4t
,,29bCu -0,3A *s+ -0,3%Mg
-0, /θ%T1-0. θ/%Zn-0,00/%B
), and AA-7θ76 (u”-7, jlZn −
OJ6%Cu-0,6%Mg-/, 6%Mtr
) and alumina fibers [M320. Content rate: 5io2 content: average diameter: 41
pm, tensile strength/! ;011? /m2 (gauge length -
0m), elastic modulus, 2J, ! 00 FIEF/1112
) using the gas pressure impregnation method under the following conditions: molten metal temperature UO''C1 pressurizing force jθ%/, fiber volume content (Vf)
A FRM of jθ was fabricated.

このFRMを第1表に示される条件で熱処理を行なった
This FRM was heat treated under the conditions shown in Table 1.

また比較のため純度??、sチのアルミニウムおよびj
u −7,,5%MgをマトリックスとしたFRMを同
一条件で作製、第1表に示される熱処理を行なった。つ
いでこれらの成形体の剪断強度を測定した。参考のため
測定した曲げ強度を含めて第1表に結果を示した。これ
より銅または亜鉛を第一成分として含むアル鳳ニウム合
金に所定の熱処理を行なったFRMの剪断強度が著しく
高いことが認められる。
Purity again for comparison? ? , s chi aluminum and j
FRMs using u-7,.5% Mg as a matrix were produced under the same conditions and subjected to the heat treatments shown in Table 1. The shear strength of these molded bodies was then measured. The results are shown in Table 1, including the measured bending strength for reference. From this, it is recognized that the shear strength of FRM made by subjecting an aluminum alloy containing copper or zinc as a first component to a predetermined heat treatment is significantly high.

実施例λ マトリックス合金にAUjGTおよびAA7θ76合金
を用い、これらの合金中にバリウムをそれぞれθ、3チ
添加した合金を作製した。これらの合金と実施例/に用
いたアルミナ質繊維を実施例/と同様の方法で複合化し
、締維体積含有率SoチのFRMを作製した。これらの
FRMに第2表に示す熱処理をほどこし、実施例/と同
様に剪断強度、曲げ強度を測定した結果を第−表に示す
。この結果からバリウムを少量マトリックス合金中に添
加し熱処理することによって曲げ強度が著しく向上し、
曲げ強度と剪断強度のバランスの取れたFRMが得られ
ることが判る。
Example λ Alloys were prepared by using AUjGT and AA7θ76 alloys as matrix alloys and adding barium to these alloys in amounts of θ and 3T, respectively. These alloys and the alumina fibers used in Examples were composited in the same manner as in Examples to produce FRMs with a fiber volume content of So. These FRMs were subjected to the heat treatment shown in Table 2, and the shear strength and bending strength were measured in the same manner as in Examples. The results are shown in Table 2. From this result, the bending strength was significantly improved by adding a small amount of barium to the matrix alloy and heat treating it.
It can be seen that an FRM with well-balanced bending strength and shear strength can be obtained.

実施例3 無機質繊維に平均線維径7..5Am、引張り強度3θ
θ1層2、弾性率、23. fl ij/■2の炭素繊
維、平均繊維径/Sμm1引張り強度λV塾/”” 、
弾性率JJ〃シ/鱗2の遊離炭素を含むシリコンカーバ
イド繊維を用い、マトリックスとなるアルミニウム合金
にAUjGT −θ、3嗟Ba合金を、また比較のため
AJ −0,39GBm合金を用いて実施例/に示した
のと同じ方法でVf−30チのFRMを作製した。この
FRM成形体をjノS″Cで70時間熱処理したり水中
に投入急冷し、ついで760°Cで/θ時間焼もどしを
行なった。この成形体の剪断強皺曲げ強度を測定した結
果を第3表に示す。また比較のため熱処理を行なわない
成形体の剪断強度、曲げ強度を測定した結果もf!g3
表に示す。この結果かられかるように本発明に示された
製造方法によシ作られ九FRMは剪断強度、曲げ強度い
ずれも優れ良性能を示した。
Example 3 Inorganic fibers with an average fiber diameter of 7. .. 5Am, tensile strength 3θ
θ1 layer 2, elastic modulus, 23. fl ij/■2 carbon fiber, average fiber diameter/Sμm1 tensile strength λV/””,
Example using silicon carbide fiber containing free carbon with elastic modulus JJ〃shi/scale 2, using AUjGT-θ, 39GBm alloy as the matrix aluminum alloy, and using AJ-0,39GBm alloy for comparison. A Vf-30chi FRM was manufactured using the same method as shown in . This FRM molded body was heat treated at JNO S''C for 70 hours, quenched in water, and then tempered at 760°C for /θ hours.The results of measuring the shear stiff bending strength of this molded body are Table 3 shows the results of measuring the shear strength and bending strength of the molded product without heat treatment for comparison.
Shown in the table. As can be seen from these results, the nine FRMs manufactured by the manufacturing method shown in the present invention exhibited excellent performance in both shear strength and bending strength.

手続補正書(自発) 昭和57年7 イ挾イ日 持r「庁長官  若 杉 和 夫 殿 1 事件の表示 昭和S6年 特許願第 194126  号2 発明Q
)名称 繊艙彊化金属複合材料 3?l’i+ +’T(4□ −j ル考事件とυ9関
係  特許出願人 (1所  大阪市東区北浜51″l−115番地名相\
 (209)住友化学下業株式会社代表若 上方 武 4代理 人 住 所  大阪市東区北浜5]゛目15番地5、補正の
対象 明細書の発明の詳細な説明の欄。
Procedural amendment (spontaneous) July 1980, Director General Kazuo Wakasugi, 1. Indication of the case, 1982, Patent application No. 194126, 2. Invention Q
) Name: Fiber-treated metal composite material 3? l'i+ +'T (4□ -j Reconsideration and υ9 relationship Patent applicant (1 location: 51"l-115 Kitahama, Higashi-ku, Osaka City, address name:\
(209) Sumitomo Chemical Subaru Co., Ltd. Representative Takeshi Wakagami 4 Agent Address 5, Kitahama, Higashi-ku, Osaka, 15-5, Column for detailed description of the invention in the specification to be amended.

6、補正の内容 1)明細書の91頁下から4行目の「アルミナ繊維」と
あるを「アルミナ質繊維」と訂正する。
6. Contents of the amendment 1) In the fourth line from the bottom of page 91 of the specification, the phrase "alumina fiber" is corrected to "alumina fiber."

2)同、112頁11行目の「などと共に」とあるを「
などの他に」と訂正する。
2) Ibid., p. 112, line 11, replace “with etc.” with “
etc.,” he corrected.

8)同、fli2頁14〜16行目の[引張り、曲げ強
度を高く保ちつつかつJとあるを削除する。
8) Same, fli page 2, lines 14-16 [Delete J while maintaining high tensile and bending strength.

4)同、#i8頁14行目の「ことが望ましい、」と「
この理由からこれらの無機質」との間に次の文を挿入す
る「その為、これら無機繊維の表面を他物質で被覆する
ことで繊維界面でマ) IJフックス属との濡れ性、反
応性を調節することもできろ」 6)同、116頁4行目の「容湯」とあるを「溶湯」と
訂正する 6)IQI、I!6頁下から6行目の1れ性」とあるを
「Sれ性」と訂正する。
4) Same, page #i8, line 14, “It is desirable,” and “
For this reason, the following sentence is inserted between "These inorganic substances" and "Therefore, by coating the surface of these inorganic fibers with other substances, we can improve the wettability and reactivity with IJ Fuchs at the fiber interface." You can also adjust it.'' 6) Same, page 116, line 4, correct the word ``hot water'' to ``molten metal.'' 6) IQI, I! In the 6th line from the bottom of page 6, the text ``1-resei'' is corrected to ``S-resei.''

7)曙、l[7頁6行目の「金属同化合物」とあるを「
金属間化合物」と訂正する。
7) Akebono, l
"Intermetallic compounds".

8)同、II7頁11行目の「でもかまわなし1゜」と
あるを「でもかまわな−1が一般番と−よマトリックス
合金の固相線より低い温度で行なうのが望ましい。」と
訂正する。
8) In the same article, on page 7, line 11 of II, the phrase "It doesn't matter, 1°" was corrected to "It doesn't matter, -1 is the general number. It is desirable to conduct the process at a temperature lower than the solidus line of the matrix alloy." do.

9)同、第8頁10〜12行目の「また処理前の引張り
及び曲げ強度を維持しており機械強度のバランスの優れ
たFRMが得られる。」とあるを削除する 1G)  同、@9頁7〜8行目の「引張りおよび曲げ
強度は同程度に維持されたまま」とあるを削除する。
9) Ibid., p. 8, lines 10 to 12, "Also, the tensile and bending strengths before treatment are maintained, and an FRM with an excellent balance of mechanical strength can be obtained." 1G) Ibid., @ On page 9, lines 7 and 8, the statement ``Tensile and bending strengths remain at the same level'' is deleted.

11)同、第9頁14行目の「尚、%番よ」とあるを「
尚、実施例中%は」と訂正する。
11) Same, on page 9, line 14, replace the phrase ``It's number %'' with ``
In addition, the percentage in the examples is corrected as ".

12)同、1ilO頁下から4〜5行目の[参考のため
測定した曲げ強度を含めて」とあるを削除する。
12) Delete the text "Includes measured bending strength for reference" in the 4th to 5th lines from the bottom of page 1ilO.

18)同、j[11頁のtH1表を別紙1の通り訂正す
る。
18) Same, j [tH1 table on page 11 is corrected as shown in Attachment 1.

14)同、@tS頁の第2表を別紙2の通り訂正する。14) Table 2 on the @tS page is corrected as shown in Attachment 2.

以上 茅U′へ/that's all To Kaya U'/

Claims (1)

【特許請求の範囲】[Claims] 第2成分として銅または亜鉛を含みかつ熱処理可能なア
ルミニウム合金をマトリックスとし無機質線維を強化材
とした繊維強化金属複合材料をグθθ°C以上の温度に
て溶体化処理後急冷、ついで100℃以上250℃以下
の温度にて焼もどすことを特徴とする剪断強度にすぐれ
た繊維強化金属複合材料。
A fiber-reinforced metal composite material containing copper or zinc as a second component, a heat-treatable aluminum alloy matrix, and inorganic fiber reinforcement is solution-treated at a temperature of θθ°C or higher, then rapidly cooled, and then quenched to 100°C or higher. A fiber-reinforced metal composite material with excellent shear strength that can be tempered at a temperature of 250°C or lower.
JP19412681A 1981-09-01 1981-12-02 Fiber reinforced metallic composite material Granted JPS5896857A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19412681A JPS5896857A (en) 1981-12-02 1981-12-02 Fiber reinforced metallic composite material
CA000410521A CA1202553A (en) 1981-09-01 1982-08-31 Method for the preparation of fiber-reinforced metal composite material
US06/413,253 US4444603A (en) 1981-09-01 1982-08-31 Aluminum alloy reinforced with silica alumina fiber
DE8282108013T DE3268826D1 (en) 1981-09-01 1982-08-31 Method for the preparation of fiber-reinforced metal composite material
EP82108013A EP0074067B1 (en) 1981-09-01 1982-08-31 Method for the preparation of fiber-reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19412681A JPS5896857A (en) 1981-12-02 1981-12-02 Fiber reinforced metallic composite material

Publications (2)

Publication Number Publication Date
JPS5896857A true JPS5896857A (en) 1983-06-09
JPH0447016B2 JPH0447016B2 (en) 1992-07-31

Family

ID=16319336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19412681A Granted JPS5896857A (en) 1981-09-01 1981-12-02 Fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS5896857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270173A (en) * 2018-12-05 2020-06-12 湖南科技大学 Method for improving stability of aluminum-copper-magnesium alloy by compounding silicon carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270173A (en) * 2018-12-05 2020-06-12 湖南科技大学 Method for improving stability of aluminum-copper-magnesium alloy by compounding silicon carbide
CN111270173B (en) * 2018-12-05 2021-04-06 湖南科技大学 Method for improving stability of aluminum-copper-magnesium alloy by compounding silicon carbide

Also Published As

Publication number Publication date
JPH0447016B2 (en) 1992-07-31

Similar Documents

Publication Publication Date Title
EP0074067B1 (en) Method for the preparation of fiber-reinforced metal composite material
EP3026135B1 (en) Alloy casting material and method for manufacturing alloy object
CN109161770B (en) High-modulus magnesium alloy and preparation method thereof
EP0081204B1 (en) Process for producing fiber-reinforced metal composite material
Alam et al. Review on Aluminium and Its Alloys for automotive applications
US20170298477A1 (en) Aluminum-Scandium-Calcium Alloy
JPS61284547A (en) Aluminum base composite material having high strength and high toughness
CN110453115B (en) Novel automobile transmission shell die-casting aluminum alloy and preparation process thereof
Dorward et al. Advanced aluminium alloys for aircraft and aerospace applications
EP0642598A1 (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
CN113462938A (en) Preparation method of high-strength gradient microalloyed aluminum alloy material
CN108707790A (en) A kind of High Strength Cast Aluminum Alloy
US20160298217A1 (en) Aluminum Alloy Refiner Material and Preparation Method Thereof
WO2020224627A1 (en) Alloy material and production process therefor
US5676773A (en) Aluminum-lithium, aluminum-magnesium and magnesuim-lithium alloys of high toughness
US5024902A (en) Fiber-reinforced metal
JPS5896857A (en) Fiber reinforced metallic composite material
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
Kim Designing with aluminum alloys
US4732602A (en) Bronze alloy for glass container molds
US2938789A (en) Titanium-molybdenum alloys with compound formers
JPS5839757A (en) Manufacture of composite body
JPH0368941B2 (en)
JP2682100B2 (en) Plastic mold
JPH0339430A (en) High strength titanium alloy