JPS5895660A - Silicon nitride sintered body and manufacture - Google Patents

Silicon nitride sintered body and manufacture

Info

Publication number
JPS5895660A
JPS5895660A JP56192549A JP19254981A JPS5895660A JP S5895660 A JPS5895660 A JP S5895660A JP 56192549 A JP56192549 A JP 56192549A JP 19254981 A JP19254981 A JP 19254981A JP S5895660 A JPS5895660 A JP S5895660A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sintering
weight
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56192549A
Other languages
Japanese (ja)
Inventor
融 島森
服部 善憲
康史 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP56192549A priority Critical patent/JPS5895660A/en
Publication of JPS5895660A publication Critical patent/JPS5895660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は機械的強度、耐酸化性に優れ、高温下における
強度低下の少ない高密度窒化珪素焼結体及びその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-density silicon nitride sintered body that has excellent mechanical strength and oxidation resistance and exhibits little decrease in strength at high temperatures, and a method for producing the same.

窒化珪素焼結体は機械的強度、耐熱性、耐腐蝕性などの
諸特性に優れているために、例えばガスタービン部品の
ようなall構造材料としてのf@途がある。しかし窒
化珪1には共有結合性が高いために、焼結性に乏しく、
窒化珪素単体より高密度かつ^強度の焼結体を得ること
は困難である。そのため従来より窒化珪素を焼結するに
際しては、MQ Oz A! 2011% Y2O1等
の焼結助剤を使用してきた。これら焼結助剤の役割は、
窒化珪素の原料表面に存在する微量の3i 02と反応
し、低WAaのガラス相を生成し情緒を促進することに
ある。従ってこれらの焼結助剤を使用して得られる最終
の焼結体は窒化珪素とガラス相から構成される。ところ
がこのガラス相の融点は低(、これが焼結体の幽擺強度
及び耐酸化性を劣化する主原因となっていた。そこで本
発明者等は上記従来の欠点を除去するため窒化珪素に添
加される焼結助剤及び焼結方法につき種々検討を行った
。その結果焼結助剤として酸化ジスプロシウム及び酸化
アルミニウムを用いることにより機械的強度、高嵩特性
及び耐食性に優れた焼結体が得られることを見出し本発
明を完成した。
Since silicon nitride sintered bodies have excellent properties such as mechanical strength, heat resistance, and corrosion resistance, they are used as all-structure materials such as gas turbine parts, for example. However, silicon nitride 1 has a high degree of covalent bonding, so it has poor sinterability.
It is difficult to obtain a sintered body with higher density and strength than silicon nitride alone. Therefore, conventionally when sintering silicon nitride, MQ Oz A! Sintering aids such as 2011% Y2O1 have been used. The role of these sintering aids is
Its purpose is to react with a trace amount of 3i02 present on the surface of the silicon nitride raw material to generate a glass phase with a low WAa and promote mood. Therefore, the final sintered body obtained using these sintering aids is composed of silicon nitride and a glass phase. However, the melting point of this glass phase is low (this was the main cause of deterioration of the sintered body's tensile strength and oxidation resistance. Therefore, the inventors of the present invention added silicon nitride to eliminate the above-mentioned conventional drawbacks. We conducted various studies on sintering aids and sintering methods.The results showed that by using dysprosium oxide and aluminum oxide as sintering aids, a sintered body with excellent mechanical strength, high bulk characteristics, and corrosion resistance could be obtained. The present invention was completed based on the discovery that this can be done.

すなわち本発明は窒化珪素75〜97.9重量%、酸化
ジスプロシウム2〜20重量%、酸化アルミニウム0.
1〜811量%を含有することを特徴とする窒化珪*m
帖体及びその製造方法を要旨とするものである。
That is, the present invention contains 75 to 97.9% by weight of silicon nitride, 2 to 20% by weight of dysprosium oxide, and 0.9% by weight of aluminum oxide.
Silicon nitride*m characterized by containing 1 to 811% by weight
This article focuses on the booklet and its manufacturing method.

以下に本発明の詳細な説明するに、本発明では窒化珪素
に酸化ジスプロシウムと酸化アルミニウムの両成分を焼
結助剤として添加使用することを必須とするものである
。この両成分を焼結助剤として組み合わせ使用すること
により、その相乗効果として、室温時は勿論画濃度下に
おいても従来のものよりはるかに優れた機械的強度を有
する窒化珪素焼結体が得られる。その理由は必ずしも明
らかでないが凡そ次のように推測される。即ちこれらの
酸化物は焼結中に窒化珪素表面上の酸化珪素と反応して
窒化珪素の焼結性を向上させ、焼結後は比較的軟化点の
幽いガラス相として残るためと考えられる。また酸化ジ
スプロシウムは密度が約7.81o/crと酸化イツト
リウムの約4.84g/CW?Htび酸化マグネシウム
の約3.609/C代比較して高いため焼結体中に同プ
ロ含有している場合の占める体積はこれら酸化物よりも
少なく、従って粒界のガラス曇を減少させる事が可能と
なるためと考えられる。
The present invention will be described in detail below. In the present invention, it is essential to add and use both components of dysprosium oxide and aluminum oxide as sintering aids to silicon nitride. By using these two components in combination as a sintering aid, the synergistic effect results in a silicon nitride sintered body that has far superior mechanical strength than conventional ones, not only at room temperature but also under image density. . The reason for this is not necessarily clear, but it is assumed to be as follows. In other words, it is thought that these oxides improve the sinterability of silicon nitride by reacting with silicon oxide on the surface of silicon nitride during sintering, and remain as a glass phase with a relatively low softening point after sintering. . Also, the density of dysprosium oxide is approximately 7.81o/cr and that of yttrium oxide is approximately 4.84g/CW? Since Ht and magnesium oxide have a high value of about 3.609/C, when it is contained in a sintered body, the volume occupied is smaller than that of these oxides, and therefore it reduces glass clouding at grain boundaries. This is thought to be because it becomes possible.

本発明の窒化珪素焼結体において、焼結助剤は窒化珪素
75〜97.9重量%に対し酸化ジスプロシウムが2〜
20重量%、酸化アルミニウムが0.1〜8重最プロ有
していることが必要である。
In the silicon nitride sintered body of the present invention, the sintering aid contains 75 to 97.9% by weight of silicon nitride and 2 to 97.9% by weight of dysprosium oxide.
It is necessary to have 20% by weight of aluminum oxide and 0.1 to 8% aluminum oxide.

両焼結剤の少なく共いずれか一方がこの範囲よりも少な
い量であると、焼結性が悪くなるばかりでなく、焼結体
の組織が強度のある織雑状に変化し難くなり、また両焼
結剤の少なく共いずれか一方がこの範囲より超えると焼
結性は向上するが、焼結体の耐酸化性が悪くなりさらに
はIIAIIl化での強度劣化が激しくなる。なお窒化
珪素が75重鏝%よりも少ないと結晶粒界相の量が多く
なり過ぎ耐酸化性及びa相持性が悪くなり、97.9重
量%より多いと焼結助剤の最が少なくなり、焼結性に乏
しくなる。
If the amount of either one of the two sintering agents is less than this range, not only will the sinterability deteriorate, but the structure of the sintered body will be difficult to change into a strong weave, and If at least one of the two sintering agents exceeds this range, the sinterability will improve, but the oxidation resistance of the sintered body will deteriorate, and furthermore, the strength will deteriorate sharply when forming IIAIII. If the silicon nitride content is less than 75% by weight, the amount of grain boundary phase will be too large, resulting in poor oxidation resistance and a compatibility, and if it is more than 97.9% by weight, the amount of sintering aid will decrease. , the sinterability becomes poor.

本発明窒化珪素焼結体を製造するにはまず窒化珪素、酸
化ジスプロシウム、酸化アルミニウムの各々を窒化珪j
lI75〜97.9重鏝%、酸化ジスプロン962〜2
0重最%、酸化アルミニウム0゜1〜8重量%の割合で
、例えばボールミル等により混合粉砕し、例えば約20
00Kg/−の圧力を加えて所望の形状に成形する。次
に1600〜2200℃の温度の常圧又は3000気圧
までの加圧下で窒素ガス中若しくは窒素ガスを含む非酸
化性雰囲気中で焼結する。原料の窒化珪素はα相が50
%以上含まれていることが望ましい。これは窒化珪素の
焼結にはα/β転移が大きく関係し、α相が50%以下
では充分に焼結が進行しないからである。なお、窒化珪
素を充分な焼結体とするために、焼結助剤も含めて粒度
を10ミクロン以下に整粒したものであることが望まし
い。出発原料の窒化珪素の代りに窒化珪素を形成しうる
原料即ち、金属珪素粉末を用い、これに上記の焼結助剤
を添加混合して成形したものを窒素ガス中若しくは窒素
ガスを含む非酸化性雰囲気中にて1200〜1500℃
で焼結して得られる窒化反応焼結体を使用することもで
きる。この場合金属珪素は反応焼結機焼結体中の窒化珪
素量が75〜97゜91am1%になる壷用いられ、得
られた窒化反応焼結体は次に1600〜2200℃の濃
度の常圧又は3000気圧までの加圧下で、窒素ガス中
若しくは窒素ガスを含む非酸化性雰囲気中で再焼結しな
ければならない。
To produce the silicon nitride sintered body of the present invention, first, each of silicon nitride, dysprosium oxide, and aluminum oxide is mixed into silicon nitride.
lI75-97.9 weight trowel%, dysprone oxide 962-2
The mixture is mixed and pulverized using a ball mill or the like at a ratio of 0% by weight and 0% by weight to 8% by weight of aluminum oxide, for example, about 20% by weight.
A pressure of 00 kg/- is applied to mold it into a desired shape. Next, sintering is performed at a temperature of 1,600 to 2,200° C. under normal pressure or an increased pressure of up to 3,000 atmospheres in nitrogen gas or a non-oxidizing atmosphere containing nitrogen gas. The raw material silicon nitride has an α phase of 50
% or more is desirable. This is because the sintering of silicon nitride is largely related to α/β transition, and if the α phase is less than 50%, sintering will not proceed sufficiently. In addition, in order to obtain a sufficient sintered body of silicon nitride, it is desirable that the particle size including the sintering aid be sized to 10 microns or less. Instead of silicon nitride as a starting material, a raw material capable of forming silicon nitride, that is, metallic silicon powder, is used, and the above-mentioned sintering aid is added and mixed, and the product is molded in nitrogen gas or in a non-oxidizing environment containing nitrogen gas. 1200-1500℃ in a sexual atmosphere
It is also possible to use a nitriding reaction sintered body obtained by sintering with. In this case, metallic silicon is used in a reaction sintering machine in which the amount of silicon nitride in the sintered body is 75-97°91am1%, and the obtained nitrided reaction sintered body is then heated under normal pressure at a concentration of 1600-2200°C. Alternatively, it must be resintered in nitrogen gas or in a non-oxidizing atmosphere containing nitrogen gas under pressure up to 3000 atmospheres.

上述の焼結又は再焼結(原料として金属珪素を使用する
場合)は常圧で行う場合、1600〜1900℃の温度
範囲で行うのが好ましい。この範囲外即ち1600℃よ
り低いと、充分緻密化した機械的強度の高い焼結体が得
られず、又、19゜0℃を超えると窒化珪素自体の分解
が著しくて高結果が得られない。又、加圧焼結を行うと
緻密化された機械的強度の高い焼結体が得られる。その
場合、1.5〜3000気圧までの範囲で1600〜2
200℃のm度範囲で行うのが好ましい。
When the above-mentioned sintering or resintering (when metallic silicon is used as a raw material) is carried out at normal pressure, it is preferably carried out at a temperature in the range of 1600 to 1900°C. If the temperature is outside this range, that is, lower than 1600°C, a sufficiently densified sintered body with high mechanical strength cannot be obtained, and if the temperature exceeds 19°0C, the decomposition of silicon nitride itself is significant and high results cannot be obtained. . Moreover, when pressure sintering is performed, a sintered body that is densified and has high mechanical strength can be obtained. In that case, in the range of 1.5 to 3000 atm, 1600 to 2
It is preferable to carry out the reaction at a temperature of 200°C.

このS囲体、即ち圧力がこの範囲より低いと焼結温度が
1900℃以上のとき窒化珪素が分解しゃすく、この範
囲より高いと安全面と装置の面から工業的には適さない
。又、1000℃より低いと充分緻密化した機械的強度
の幽い焼結体が得られず、2200℃を超えるとこれも
装置の面及び安全面から工業的に適さない。
If the S enclosure, ie, the pressure, is lower than this range, silicon nitride will easily decompose when the sintering temperature is 1900° C. or higher, and if it is higher than this range, it is not industrially suitable from the viewpoint of safety and equipment. Further, if the temperature is lower than 1000°C, a sufficiently dense sintered body with low mechanical strength cannot be obtained, and if it exceeds 2200°C, this is also not suitable for industrial use from the viewpoint of equipment and safety.

尚、加圧焼結を500〜3000気圧で行う場合は、焼
結前の成形体、あるいは反応焼結体が開気孔のない場合
にはそのまま、焼結又は再焼結を行うでも差し支えない
が、開気孔のある場合にはそのまま焼結すると緻密化が
阻害される恐れがあるので、例えばシリカ系のガラス等
で表面を完全に覆って焼結するのがよい。又、1゜5〜
約5゜0気圧で焼結又は再焼結する場合には、開気孔が
あっても表面を覆わずに焼結してもよい。尚、金属珪素
を原料とする場合の再焼結工程は窒化反応焼結工程に連
続して行うことができる。
In addition, when pressure sintering is performed at 500 to 3000 atmospheres, if the compact before sintering or the reaction sintered body does not have open pores, it may be sintered or resintered as is. If there are open pores, densification may be inhibited if sintered as is, so it is better to cover the surface completely with silica-based glass or the like before sintering. Also, 1°5~
When sintering or resintering at about 5°0 atmospheric pressure, the surface may be sintered without covering even if there are open pores. Incidentally, when metallic silicon is used as a raw material, the resintering step can be performed consecutively to the nitriding reaction sintering step.

以上のようにして、窒化珪素又は窒化珪素を形成しつる
原料に焼結助剤として上記の酸化ジスプロシウムと酸化
アルミニウムとを組み会わせて特定割合で添加した混合
物を成形し、常圧又は加圧焼結するか、窒化反応焼結後
回焼結して得られた本発明の窒化珪素焼結体は優れた物
性を備えており幽緻密性で機械的強度が^く実温度化に
おいても強度の低下はほとんど認められない。そのため
本発明焼結体は、ガスタービンエンジン、ディーゼルエ
ンジン用部品あるいは切削工具として好適なものである
As described above, a mixture of silicon nitride or a raw material for forming silicon nitride, in which the above-mentioned dysprosium oxide and aluminum oxide are added in a specific ratio as a sintering aid, is molded and molded under normal pressure or pressure. The silicon nitride sintered body of the present invention obtained by sintering or by sintering after nitriding reaction sintering has excellent physical properties, and is dense and mechanically strong, even at actual temperatures. Almost no decrease was observed. Therefore, the sintered body of the present invention is suitable for use as gas turbine engine, diesel engine parts, or cutting tools.

次に本発明を実施例により更に詳細に説明するが、本発
明はその要旨を超えない限り以下の実施例に限定される
ことはない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 平均粒!!0.7μ−の窒化珪素、粉末に平均粒径1.
0μ−のDY20B粉末と平均粒径1.0μ憾のAl 
208粉末を第1表の試料番号1.3.4.5.7.8
.9.10.11.12.13.14.15.16に示
す割合で混合した後2000Kg/−の圧力にて成形し
、次にこの成形体を1700〜2100℃、圧力1〜1
00気圧の窒素雰囲気中にて各1時間焼結した。
Example 1 Average grain! ! 0.7μ- silicon nitride, powder with an average particle size of 1.
DY20B powder of 0μ- and Al with average particle size of 1.0μ
208 powder with sample number 1.3.4.5.7.8 in Table 1.
.. 9.10.11.12.13.14.15.16 After mixing at a pressure of 2000 Kg/-, this molded body was heated at 1700 to 2100°C and a pressure of 1 to 1.
Each sample was sintered for 1 hour in a nitrogen atmosphere at 00 atm.

試料番号2と6は平均粒径1.oμ−の金属珪素粉末に
平均粒i!i、oμmのDY201粉末と平均粒径1.
0μ−のAI 20m粉末を反応焼結侵第1表に示す割
合になる様に混合した後、2000KIJ/a+IIの
圧力にて成形し、窒素雰囲気にて1450℃までの温度
で反応焼結し1.さらにm度2100℃と1850℃、
圧力100気圧と20気圧の窒素雰囲気にて各1時間再
ψ結した。
Sample numbers 2 and 6 have an average particle size of 1. The average grain i! of oμ- metallic silicon powder! i, 0 μm DY201 powder and average particle size 1.
After mixing 0μ- AI 20m powder in the proportions shown in Table 1, it was molded at a pressure of 2000KIJ/a+II, and reaction-sintered at a temperature up to 1450℃ in a nitrogen atmosphere. .. Furthermore, m degrees 2100℃ and 1850℃,
Recombination was performed in a nitrogen atmosphere at a pressure of 100 atm and 20 atm for 1 hour each.

次にこれらの試料の室温強痩と空気中1200℃で24
時間酸化させた優の重量増加及び1200℃での強度を
測定した。
Next, these samples were heated at room temperature and in air at 1200℃ for 24 hours.
The weight increase and strength at 1200° C. of the specimens were measured after being oxidized for a period of time.

尚、強WI11定は8 SIX 41−の断面積を持つ
試料を用いJI8B−4014に従い2o■スパンの三
点曲げ法により、室温での曲げ強度(σRT)及び12
00℃の空気中での曲げ強度(σ1200)を測定した
。結果を第1表に示す。
In addition, the strong WI11 constant was determined by using a sample with a cross-sectional area of 8 SIX 41- and the bending strength at room temperature (σRT) and 12
The bending strength (σ1200) in air at 00°C was measured. The results are shown in Table 1.

第1!Iの結果より明らかなように酸化ジスプロシウム
と酸化アルミニウムを所定の最沈含有する本発明焼結体
は、室温強度、酸化増量、1200℃での強度の3項目
においていずれも満足すべき特性が得られた。これに対
し試料番号13の焼結体のように酸化ジスプロシウムが
所定の21量%に満だないと、室温強度及び1200℃
での強度に劣り、試料番号14の焼結体のように所定の
20重量%よりも多い酸化ジスプロシウムを含有してい
ると酸化増量及び1200℃での強度に劣り、試料番号
15の[i体のように酸化アルミニウムが含有されてい
ないと室m強喧と酸化増量に劣り、さらに試料番号16
のように所定の10重量%よりも多い酸化アルミニウム
が含有されていると酸化増量及び1200℃での強度に
劣ることが判った。言い換えれば本発明焼結体は所定量
の酸化ジスプロシウムと酸化アルミニウムとの相乗効果
により優れた特性がもたらされることが判った。
1st! As is clear from the results of I, the sintered body of the present invention containing dysprosium oxide and aluminum oxide in predetermined precipitated amounts has satisfactory properties in all three categories: room temperature strength, oxidation weight gain, and strength at 1200°C. It was done. On the other hand, if the dysprosium oxide content is less than the predetermined 21% as in the sintered body of sample number 13, the strength at room temperature and 1200°C
If the sintered body of Sample No. 14 contains more than the specified 20% by weight of dysprosium oxide, it will have poor oxidation weight gain and strength at 1200°C. If aluminum oxide is not included, as in Sample No. 16, the strength and oxidation weight gain will be poor.
It has been found that if aluminum oxide is contained in an amount greater than the predetermined 10% by weight, the weight gain due to oxidation and the strength at 1200° C. will be poor. In other words, it has been found that the sintered body of the present invention has excellent properties due to the synergistic effect of a predetermined amount of dysprosium oxide and aluminum oxide.

代理人 弁理士 定立 勉Agent: Patent Attorney Tsutomu Setatetsu

Claims (1)

【特許請求の範囲】 1 iI化珪j175〜97.911%、酸化ジスプロ
シウム2〜20!量%及び酸化アルミニウム0.1〜8
11量%を含有することを特徴とする窒化珪素焼結体。 2 窒化珪素“75〜97.91量%と酸化ジスプロシ
ウム2〜201111%と、酸化アルミニウム0.1〜
8111%とを混合成形し、窒素ガス中若しくはII素
ガスを含む非酸化性雰囲気中にて1600〜2200℃
の温度で焼結することを特徴とする窒化珪素焼結体の製
造方法。 3 反応焼結優焼結体中の窒化珪素量が75〜97.9
11量%になる量の金属珪素と酸化ジスプロシウム2〜
2011量%と酸化アルミニウム0゜1〜811Q%と
を混合成形し、窒素ガス中若しくは窒素ガスを含む非酸
化性雰囲気中にて反応焼結し、次にIll慣1600〜
2200℃の窒素ガス中若しくは窒素ガスを含む非酸化
性雰囲気中にて再焼結することを特徴とする窒化珪素焼
結体の製造方法。
[Claims] 1 175-97.911% of silicon chloride, 2-20% of dysprosium oxide! Amount% and aluminum oxide 0.1-8
A silicon nitride sintered body characterized by containing 11% by weight. 2 Silicon nitride "75-97.91% by weight, dysprosium oxide 2-201111%, and aluminum oxide 0.1-97.91%
8111% and molded at 1600 to 2200°C in nitrogen gas or a non-oxidizing atmosphere containing II gas.
A method for producing a silicon nitride sintered body, the method comprising sintering at a temperature of . 3 The amount of silicon nitride in the reaction-sintered highly sintered body is 75 to 97.9
Metallic silicon and dysprosium oxide 2 to 11% by weight
2011 mass% and aluminum oxide 0°1~811Q% are mixed and molded, reaction sintered in nitrogen gas or a non-oxidizing atmosphere containing nitrogen gas, and then Illuminum 1600~811Q% is mixed and molded.
A method for producing a silicon nitride sintered body, which comprises resintering in nitrogen gas at 2200°C or in a non-oxidizing atmosphere containing nitrogen gas.
JP56192549A 1981-11-30 1981-11-30 Silicon nitride sintered body and manufacture Pending JPS5895660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192549A JPS5895660A (en) 1981-11-30 1981-11-30 Silicon nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192549A JPS5895660A (en) 1981-11-30 1981-11-30 Silicon nitride sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS5895660A true JPS5895660A (en) 1983-06-07

Family

ID=16293122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192549A Pending JPS5895660A (en) 1981-11-30 1981-11-30 Silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS5895660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113660A2 (en) * 1983-01-10 1984-07-18 NGK Spark Plug Co. Ltd. Nitride based cutting tool
JPS623073A (en) * 1985-06-27 1987-01-09 京セラ株式会社 Silicon nitride base sintered body
JPS63303861A (en) * 1987-06-02 1988-12-12 Kyocera Corp Silicon nitride-based sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257100A (en) * 1975-11-07 1977-05-11 Toshiba Corp Method for production of sintered material of silicon nitride system
JPS5622678A (en) * 1979-07-28 1981-03-03 Ngk Spark Plug Co Manufacture of high tenacity silicon nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257100A (en) * 1975-11-07 1977-05-11 Toshiba Corp Method for production of sintered material of silicon nitride system
JPS5622678A (en) * 1979-07-28 1981-03-03 Ngk Spark Plug Co Manufacture of high tenacity silicon nitride sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113660A2 (en) * 1983-01-10 1984-07-18 NGK Spark Plug Co. Ltd. Nitride based cutting tool
JPS623073A (en) * 1985-06-27 1987-01-09 京セラ株式会社 Silicon nitride base sintered body
JPS63303861A (en) * 1987-06-02 1988-12-12 Kyocera Corp Silicon nitride-based sintered body

Similar Documents

Publication Publication Date Title
JPS6152108B2 (en)
US4134947A (en) Sintered silicon nitride body and a method of producing the same
JPS6152111B2 (en)
EP0082370B1 (en) Method of producing dense silicon nitride ceramic articles having controlled surface layer composition
EP0540642B1 (en) Preparing alpha-phase silicon nitride, converting to beta-phase
JPS6138149B2 (en)
US5055432A (en) Process for preparing a nitridable silicon-containing material having at least one densification aid including alumina, and the material resulting therefrom
EP0540671A4 (en) Preparing silicon nitride with densification aid, and results
US5166106A (en) Silicon-containing material having at least one densification aid including alumina
JPS5895660A (en) Silicon nitride sintered body and manufacture
JPS5855375A (en) Silicon nitride composite sintered body and manufacture
US5545362A (en) Production method of sintered silicon nitride
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JPS6214506B2 (en)
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPS60137873A (en) Silicon nitride sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JPH01219062A (en) Production of silicon nitride sintered body
JP2916934B2 (en) Method for producing sialon-based sintered body
JP3159350B2 (en) Highly dense silicon nitride sintered body and method for producing the same
JPS60186473A (en) Silicon nitride sintered body and manufacture
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same
JPH02145482A (en) Packing powder composition for sintering silicon nitride
JPS61101467A (en) Silicon nitride sintered body and manufacture