JPS5895407A - Conical beam array antenna - Google Patents

Conical beam array antenna

Info

Publication number
JPS5895407A
JPS5895407A JP19297681A JP19297681A JPS5895407A JP S5895407 A JPS5895407 A JP S5895407A JP 19297681 A JP19297681 A JP 19297681A JP 19297681 A JP19297681 A JP 19297681A JP S5895407 A JPS5895407 A JP S5895407A
Authority
JP
Japan
Prior art keywords
center
phase
antenna
conical beam
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19297681A
Other languages
Japanese (ja)
Inventor
Toshikazu Hori
俊和 堀
Nobuo Nakajima
信生 中嶋
Naohisa Goto
尚久 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19297681A priority Critical patent/JPS5895407A/en
Publication of JPS5895407A publication Critical patent/JPS5895407A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Abstract

PURPOSE:To offer a plane and compact conical beam array antenna, by arranging plural microstrip antennas in the center and on a circle around this center and adjusting the feed amplitude and the phase of each antenna. CONSTITUTION:A metallic substrate 11 is arranged on one face of a dielectric plate 10, and round metallic plates 9 which have center pins 12 and feeding pins 13 and 13' to constitute radiation elements are arranged in the center and on a circle around this center on the other face of the plate 10, thus forming 7 two- point feed round microstrip antennas. A power distributing circuit constituted with a microstrip line is used for feed to each radiation element, and the feed amplitude ratio of the round metallic plate 9 in the center to each of other 6 round metallic plates 9 is set to 6:1, and feeding is so performed that the phase of the radiation element in the center is opposite to the phase of each radiation element around it. Thus, the radiation electric field in the direction of the board- side is cancelled to obtain conical beams.

Description

【発明の詳細な説明】 本発明は、簡易で薄形な構造にして円錐ビームを放射す
るアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antenna that has a simple and thin structure and emits a conical beam.

第1図は、円錐ビームアンテナの用途を示すための図で
ある。
FIG. 1 is a diagram showing the use of a conical beam antenna.

1は船舶、2はアンテナ、3はアンテナの円錐ビームの
電界強度の等しい点を結んだ線、4は静止衛星、5は鉛
直軸、6は主ビーム方向を示す線である。
1 is a ship, 2 is an antenna, 3 is a line connecting points of equal electric field strength of the conical beam of the antenna, 4 is a geostationary satellite, 5 is a vertical axis, and 6 is a line indicating the main beam direction.

船舶と衛星の間で通信を行なう待合、船舶の移動や向き
にかかわらず、無追尾の状態で通信を可能にするには、
アンテナのビームパターンは、その主ビームが第1図に
示すように、鉛直軸5に対し、アンテナから衛星を臨む
方向の線を母線とする円錐形に近い形をしていればよい
In order to enable communication between a ship and a satellite without being tracked, regardless of the ship's movement or direction,
The beam pattern of the antenna may be such that its main beam has a shape close to a cone with its generating line being a line in the direction from the antenna toward the satellite with respect to the vertical axis 5, as shown in FIG.

これを円錐ビームと呼んでいる。This is called a conical beam.

従来、とあ円錐ビームを有する円偏波アンテナとしては
、第2図に示すよ°うなりロスダイば−ルアレーデンテ
ナがあった0 3はアンテナの円錐ビームの電界強度の等しい点を結ん
だ線、5は鉛直軸、6は主ビーム方向を示す線、7はク
ロスダイポール、8は給電線である。しかし、構造が立
体的になり、アンテナ高が大きくなるとともに、給電の
ための同軸線路長が異なることから、給電が複雑となる
欠点があつ、た。
Conventionally, as a circularly polarized antenna having a conical beam, there was a beat loss die antenna as shown in Fig. A vertical axis, 6 a line indicating the main beam direction, 7 a cross dipole, and 8 a feed line. However, the structure is three-dimensional, the height of the antenna is large, and the length of the coaxial line for power feeding is different, so the power feeding is complicated.

本発明は、これらの欠点を除去するために、マイクロス
トリップアンテナを用いて、円錐ビームを有するアレー
アンテナを構成することによシ、平面的なアンテナとし
、かつマイクロストリップ線路を用いた給電回路との整
合性を良くしたもので、以下図面について詳細に説明す
る0 第3−は本発明の一実施例であシ、7素子の2点給電円
形マイクロストリップを用いた場合を示している。9は
放射素子を構成する円形金−属板、10は誘電体、11
は金属基板、12は中心ピン、13および13′は給電
ピンである0本アンテナは、第3図に示した各素子への
給電のための電力分配回路を同時に有している。
In order to eliminate these drawbacks, the present invention uses a microstrip antenna to construct an array antenna with a conical beam, thereby creating a planar antenna and a feeding circuit using a microstrip line. The third embodiment is one embodiment of the present invention, and shows a case where a seven-element two-point feeding circular microstrip is used. 9 is a circular metal plate constituting a radiating element; 10 is a dielectric; 11
1 is a metal substrate, 12 is a center pin, and 13 and 13' are feeding pins. The antenna also has a power distribution circuit for feeding power to each element shown in FIG. 3.

電力分配回路には、通常、放射素子との整合性がよいと
いう理由からマイクロストリップ線路が用いられる。こ
の電力分配回路によって、中心の円形金属板と他の6素
子の金属版名々への給電の振幅比を6対1にし、また中
心と周囲の素子間の位相関係を逆相として給電する。
Microstrip lines are usually used in power distribution circuits because of their good matching with the radiating elements. With this power distribution circuit, the amplitude ratio of the power supply to the central circular metal plate and the other six metal plates is set to 6:1, and the power is supplied with the phase relationship between the center and surrounding elements being reversed.

このように、複数金属板の円形状配列の中心にもう1個
の金属板を置くか或いは、この1個の金属板の代わシに
、もう1組の円形状配列の複数金属板を同心円状に配t
(第5図の例)し、上記の如き振幅位相関係で給電する
と、1組の。
In this way, another metal plate is placed at the center of the circular array of multiple metal plates, or in place of this one metal plate, another set of multiple metal plates in a circular array is placed concentrically. distributed to
(Example in FIG. 5) When power is supplied with the amplitude and phase relationship as described above, one set of .

円形状配列の金属板の場合のみに較べて、ビームパター
ン成形の自由度が大きくなる。
The degree of freedom in shaping the beam pattern is greater than in the case of only circularly arranged metal plates.

また、金属板が円形の円形マイクロストリップは、1点
給電の時は直線偏波を放射するが、90゜離れた点にも
1点の給電ピン13  を設けて、この2点の給電位相
差を90としてやれば円偏波を放射する。
In addition, a circular microstrip with a circular metal plate emits linearly polarized waves when feeding from one point, but one feeding pin 13 is also provided at a point 90° apart, and the phase difference between the two points is adjusted. If you set it to 90, it will emit circularly polarized waves.

マイクロストリップ放射素子を基本モードで励振すると
素子の面に垂直な方向(ブロードサイド方向)に主ビー
ムを形成する。従って第3図の例において、各放射素子
に先に定められた振幅と位相の関係で給電すると、中心
の放射素子に基づく主ビームに対しそ周囲の6個の放射
素子は、それぞれ6分の1の電界強度で、しかも逆相の
ビームを形成する。
When a microstrip radiating element is excited in the fundamental mode, a main beam is formed in a direction perpendicular to the plane of the element (broadside direction). Therefore, in the example shown in Fig. 3, if power is supplied to each radiating element in the predetermined amplitude and phase relationship, each of the six surrounding radiating elements will be A beam with an electric field strength of 1 and an opposite phase is formed.

結局、周囲の6個の放射素子全体で形成されるビームは
、その強度において、中心の放射素子によるビームと同
じであり、しかも位相角が丁度逆相になっていることに
なる。このため、結果としては、ブロードサイド方向の
電磁界は中心の放射素子に基づく電磁界と周囲の6個の
放射素子によって形成される電磁界とが相殺されて、理
論的には零になる。しかし、ブロードサイドからはずれ
ると放射強度の差が生じて相殺されなくなシ、円錐ビー
ムが得られる。
As a result, the beams formed by all six surrounding radiating elements have the same intensity as the beam from the central radiating element, and their phase angles are exactly opposite to each other. Therefore, as a result, the electromagnetic field in the broadside direction theoretically becomes zero because the electromagnetic field based on the central radiating element and the electromagnetic field formed by the six surrounding radiating elements cancel each other out. However, when the beam deviates from the broadside, a difference in radiation intensity occurs and the beams are no longer canceled out, resulting in a conical beam.

第3図においては、円偏波マイクロストリップ素子とし
て、2点給電円形マイクロストリップを用いた例を示し
たが、楕円形マイクロストリップ等の1点給電円偏波マ
イクロストリップを用いても同様に構成でき、この場合
は、90゜位相差を与える給電回路が省略できるという
利点がある。
In Fig. 3, an example is shown in which a two-point fed circular microstrip is used as the circularly polarized microstrip element, but the same structure can be obtained using a single-point fed circularly polarized microstrip such as an elliptical microstrip. In this case, there is an advantage that a power supply circuit that provides a 90° phase difference can be omitted.

第4図は金属板放射素子の他の例を示す。(a)図は金
属板1個の部分とその周v!U1部の平面図であシ、(
b)図は(a)図のA −A’断面を示す図である。
FIG. 4 shows another example of a metal plate radiating element. (a) The figure shows the part of one metal plate and its circumference v! This is a plan view of U1 section (
b) The figure is a diagram showing a cross section taken along line A-A' in figure (a).

放射素子を構成する金属板として、第4図に示すような
二重構造のものにすると、金属板9の共振周波数と金属
板9′の共振周波数を異なった周波数に選定することが
できるので、比較的近接した2周波数を選定することに
よシ、単一周波数のみの場合に比べ周波数帯域を広帯域
 。
If the metal plate constituting the radiating element has a double structure as shown in FIG. 4, the resonance frequency of the metal plate 9 and the resonance frequency of the metal plate 9' can be selected to be different frequencies. By selecting two relatively close frequencies, the frequency band is wider than when only a single frequency is used.

化することができ、また、成る程度離隔した2周波数を
選定することにより、いずれの周波数でも使用できる2
周波数共用化が図れ、衛星通信における実際の使用帯域
に関する条件を満たすことができる。
By selecting two frequencies that are separated by a certain distance, it is possible to use two frequencies that can be used at any frequency.
Frequency sharing can be achieved and conditions regarding the actual band used in satellite communications can be met.

第5図は本発明の他の実施例であシ、12素子の円形マ
イクロストリップを用いた場合を示している。本アンテ
ナは、第3図に示した実施例の中心金属板を、中心を同
じくする円形状配列の6個の金属板で置き替えた場合で
あシ、ここでは内側6素子、外fill 6素子である
FIG. 5 shows another embodiment of the present invention, in which a 12-element circular microstrip is used. This antenna is obtained by replacing the central metal plate of the embodiment shown in Fig. 3 with six metal plates arranged in a circular shape having the same center.Here, there are 6 elements on the inside and 6 elements on the outside. It is.

各素子への給電は、内側素子線てへの給電振幅の和と、
外側素子線てへのそれとの、給電振幅比を約1対1とし
、かつ位相は、内側素子相互に同相、同じく外側素子相
互も同相で、内側と外側とは逆相とする。このとき、先
に示した実施例と同様に、ブロードサイド方向の放射電
界は相殺され円錐ビームが得られる。
The power supply to each element is the sum of the power supply amplitudes to the inner element wires,
The power supply amplitude ratio to that to the outer element line is approximately 1:1, and the inner elements are in phase with each other, the outer elements are also in phase with each other, and the inner and outer elements are in opposite phase. At this time, the radiation electric field in the broadside direction is canceled out and a conical beam is obtained, similar to the embodiment shown above.

両者の実施例において、円錐ビームのビーム方向は、中
心の素子或いは内側素子配列と外側素子配列の半径方向
の間隔によって変化するb具体的には、前者では、中心
素子のビーム形状とまわシの素子の円形配列によるビー
ム形状で決定され、後者では、内側および外側の円形配
列によるビームの形状で決定される。従って、第3図の
実施例の方が構造は簡易であるが、円錐ビームのビーム
方向を決定する自由度からは第5図に示した実施例の方
が優れている。
In both embodiments, the beam direction of the conical beam changes depending on the center element or the radial spacing between the inner and outer element arrays. Specifically, in the former, the beam shape of the center element and the rotation The shape of the beam is determined by the circular array of elements, and in the latter case by the shape of the beam by the inner and outer circular arrays. Therefore, although the embodiment shown in FIG. 3 has a simpler structure, the embodiment shown in FIG. 5 is superior in terms of the degree of freedom in determining the beam direction of the conical beam.

円錐と一入の周方向の一様性は、円形配列素子の素子数
および素子間隔で決定される。
The circumferential uniformity of the cone and the cone is determined by the number of elements and the element spacing of the circular array elements.

以上、円偏波で用いる場合につい′CM明したが、放射
素子金属板として、直線偏波を放射する素子、例えば円
形、正方形等のものを用いて1点給電とすれば、容易に
直線偏波の円錐ビームを得ることができる。
Above, we have explained about the case of using circularly polarized waves, but if you use an element that emits linearly polarized waves, such as a circular or square one, as the radiating element metal plate and feed at one point, linearly polarized waves can be easily obtained. A conical beam of waves can be obtained.

以上説明したように、マイクロストリップアンテナを用
い、かつ各放射素子の給電振幅および位相を調整して、
円錐ビームを有するアレーアンテナを構成することによ
シ、平面的でかつコンパクトな円錐ビームアンテナが構
成できる利点がある。
As explained above, by using a microstrip antenna and adjusting the feeding amplitude and phase of each radiating element,
By configuring an array antenna having a conical beam, there is an advantage that a planar and compact conical beam antenna can be configured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円錐ビームアンテナの用途の説明図、第2図は
従来の円錐ビームを有する円偏波アンテナの構成例、第
3図は、本発明の一実施例、第4図は、本発明に用いる
素子の他の例で、(b)図は(a)図のA−A’断面を
示す一0第5図は、本発明の他の実施例である。 1・・・・・船舶、2・1」・アンテナ、3・・・・・
アンテナの円錐ビームの電界強度の等しい点を結んだ線
、4・・・・・静止衛星、5・・・・・鉛直軸、6す・
・・主ビーム方向を示す線、7・・・・・クロスダイポ
ール、8・・・拳・給電線、9.9′・・・・・放射素
子を構成する円形金属板、10.10’・・Φ−・誘電
体、11・・@1金属基板、12・・・・・中心ピン、
−13,13’・・・・・給電ピン代理人 弁理士  
本  間     崇第 / 図 第2図 第 3 図 鴨4図 第5図
Fig. 1 is an explanatory diagram of the use of a conical beam antenna, Fig. 2 is an example of the configuration of a conventional circularly polarized antenna having a conical beam, Fig. 3 is an embodiment of the present invention, and Fig. 4 is an illustration of the present invention. FIG. 5 shows another example of the element used in the present invention, and FIG. 5 shows a cross section taken along the line AA' in FIG. 1... Ship, 2.1'' Antenna, 3...
A line connecting the points of equal electric field strength of the conical beam of the antenna, 4...Geostationary satellite, 5...Vertical axis, 6...
...Line indicating the main beam direction, 7...Cross dipole, 8...Fist/feeder line, 9.9'...Circular metal plate constituting the radiating element, 10.10'.・Φ-・Dielectric, 11...@1 metal substrate, 12...center pin,
-13,13'...Power pin agent Patent attorney
Takashi Honma / Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)誘電体板と、該誘電体板の一面側に配置された金
属基板と、前記誘電体板の他面側に配置された複数個の
金属板とを餉えたマイクロストリップアレーアンテナに
幹いて、中心怜を養とその周囲に円層状に配列された複
数個 ′の金属板と、円形状配列の各金属板への給電を
、中心の金属板への給電に対して、はぼ逆位相で且つ給
電振幅の総和がほぼ同じになるように給電する電力分配
回路とからなる円錐ビームアレーアンテナ。
(1) A microstrip array antenna consisting of a dielectric plate, a metal substrate placed on one side of the dielectric plate, and a plurality of metal plates placed on the other side of the dielectric plate has a main body. The power supply to each metal plate in the circular arrangement is almost opposite to the power supply to the center metal plate. A conical beam array antenna consisting of a power distribution circuit that feeds power in phase so that the total feed amplitude is approximately the same.
(2)中心の金属板が数個に分割され円形状に配列され
た7金属板から匁シ、該数個の金属板に対しほぼ同振幅
、同位相で給電する電力分配回路を有することを特徴と
する特許請求の範囲第(1)項記載の円錐ビームアレー
アンテナ。。
(2) The central metal plate is divided into several pieces, which are arranged in a circle from seven metal plates, and has a power distribution circuit that supplies power to the several metal plates with approximately the same amplitude and phase. A conical beam array antenna according to claim (1). .
JP19297681A 1981-12-02 1981-12-02 Conical beam array antenna Pending JPS5895407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19297681A JPS5895407A (en) 1981-12-02 1981-12-02 Conical beam array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19297681A JPS5895407A (en) 1981-12-02 1981-12-02 Conical beam array antenna

Publications (1)

Publication Number Publication Date
JPS5895407A true JPS5895407A (en) 1983-06-07

Family

ID=16300161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19297681A Pending JPS5895407A (en) 1981-12-02 1981-12-02 Conical beam array antenna

Country Status (1)

Country Link
JP (1) JPS5895407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144606A (en) * 1986-11-29 1988-06-16 ノーザン テレコム リミテッド Circularly polarized wave antenna
US4827271A (en) * 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
US4973972A (en) * 1989-09-07 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Stripline feed for a microstrip array of patch elements with teardrop shaped probes
US5453752A (en) * 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827271A (en) * 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
JPS63144606A (en) * 1986-11-29 1988-06-16 ノーザン テレコム リミテッド Circularly polarized wave antenna
US4973972A (en) * 1989-09-07 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Stripline feed for a microstrip array of patch elements with teardrop shaped probes
US5453752A (en) * 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna

Similar Documents

Publication Publication Date Title
US4775866A (en) Two-frequency slotted planar antenna
US3969730A (en) Cross slot omnidirectional antenna
JPS6137807B2 (en)
US4203118A (en) Antenna for cross polarized waves
JP2005303986A (en) Circular polarized array antenna
EP0891004B1 (en) Omnidirectional slot antenna
JPH036106A (en) Multiple band grid focus plane array antenna
JPH02189008A (en) Circularly polarized wave antenna system
JPH1028012A (en) Planar antenna
US5274390A (en) Frequency-Independent phased-array antenna
US4555708A (en) Dipole ring array antenna for circularly polarized pattern
US6504516B1 (en) Hexagonal array antenna for limited scan spatial applications
JPH04122107A (en) Microstrip antenna
JPS5877306A (en) Circular cone beam array antenna
JPS5895407A (en) Conical beam array antenna
US4240080A (en) Short backfire antenna with sum and error patterns
JPH0522013A (en) Dielectric substrate type antenna
JPS60217702A (en) Circularly polarized wave conical beam antenna
JP3304019B2 (en) ARRAY ANTENNA, RECEIVER HAVING THE SAME, AND METHOD OF DETERMINING DIRECTIVITY CHARACTERISTICS IN ARRAY ANTENNA
JPH02224506A (en) Composite antenna
JPS617706A (en) Circularly polarized wave antenna
JPS61164302A (en) Array antenna
JP2827014B2 (en) Array antenna
JPH05226927A (en) Slot array antenna
JP3056309B2 (en) Multi-beam array antenna