JPS5895226A - Temperature detector and temperature measuring device - Google Patents

Temperature detector and temperature measuring device

Info

Publication number
JPS5895226A
JPS5895226A JP56194166A JP19416681A JPS5895226A JP S5895226 A JPS5895226 A JP S5895226A JP 56194166 A JP56194166 A JP 56194166A JP 19416681 A JP19416681 A JP 19416681A JP S5895226 A JPS5895226 A JP S5895226A
Authority
JP
Japan
Prior art keywords
light
temperature
layer
wavelength
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56194166A
Other languages
Japanese (ja)
Inventor
Hidenori Nomura
野村 秀徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56194166A priority Critical patent/JPS5895226A/en
Publication of JPS5895226A publication Critical patent/JPS5895226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • G01K11/3213Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering using changes in luminescence, e.g. at the distal end of the fibres

Abstract

PURPOSE:To obtain a temperature detector and a temperature measuring device where electric circuits are not included in measuring parts and signal transmitting parts, by using a hetero junction element which consists of conductors different in forbidden band width, an optical waveguide which transmits and receives the light to and from this element, etc. CONSTITUTION:A hetero junction element 20 consists of many layers of an absorption light emitting layer 22 and a clad layer 23, which are laminated on a semiconductor substrate 21, and reflection preventing films 25 and 24 on both faces and is excited by the light of a laser light source from an optical fiber 10. Then, the light of a required wavelength different in forbidden band width is generated from the layer 22 in accordance with the temperature of the layer 22. The light of the light source including this generated light is propagated through the fiber 10, and the light of the light source is eliminated in an optical filter. Short-wavelength components and long- wavelength components are separated from each other in an optical filter, and these components are subjected to processings such as the operation of an intensity ratio of both lights of separated wavelength components or the like, and the temperature of the layer 22 is measured. Consequently, the temperature detector and the temperature measuring devices which do not include electric circuits in measuring parts and signal transmitting parts and are not affected by noise or the like are obtained.

Description

【発明の詳細な説明】 本発明は温度を光学的に測定できる温度検出素子及びそ
れを利用した温度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature detection element capable of optically measuring temperature and a temperature measurement device using the same.

温度検出素子あるいは温度測定装置がプロセス制御、ま
た装置監視のための手段として広く用いられ重要な役割
を果していることは言うまでもないところである。しか
しながら従来の温度測定手段、とシわけ遠隔沖j定可能
なものはそのほとんどが熱・電気変換素子を利用したも
のであった。このだめ従来のものでは、電気的紡導障害
の大きい環境や、高電圧機器内などでは使用できないと
いう欠点があった。
It goes without saying that temperature detection elements or temperature measurement devices are widely used and play an important role as means for process control and equipment monitoring. However, most of the conventional temperature measuring means, especially those that can be determined remotely, utilize thermoelectric conversion elements. Conventional devices have the disadvantage that they cannot be used in environments where electrical spinning is highly disturbed or in high-voltage equipment.

本発明の目的は、上述の欠点を除去し、沖[足部分及び
信号伝送部分には電気回路を含まない温度検出素子及び
温度測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a temperature sensing element and a temperature measuring device that do not include electrical circuits in the foot part and the signal transmission part.

本発明によれば、禁制帯幅が異る半導体の多層構造から
成るヘテロ接合素子が該へテロ接合素子へ光を導入し、
かつ該へテロ接合素子から発する九を導波する光導波路
と結合されて成る温度検出素子、及びそれを利用した温
度測定装置、すなわち、禁制帯幅が異る半導体の多層構
造から成るヘテロ接合素子と、該へテロ接合素子を構成
する最も禁制帯幅が小さい半導体の吸収端波長よシも短
い波長を有する光源と、骸光源の光を前記へテロ接合素
子へ導く光ファイバと、前記へテロ接合素子から発した
光を短波長側と長波長側の2つの成分に分離するフィル
タと、核分離された2つの光成分の強度を検出しその比
を演算する回路とを含む温度測定装置が得られる。
According to the present invention, a heterojunction element comprising a multilayer structure of semiconductors having different forbidden band widths introduces light into the heterojunction element,
and a temperature detection element coupled with an optical waveguide that guides the light emitted from the heterojunction element, and a temperature measurement device using the same, that is, a heterojunction element consisting of a multilayer structure of semiconductors with different forbidden band widths. a light source having a wavelength shorter than the absorption edge wavelength of the semiconductor having the smallest forbidden band width constituting the heterojunction element; an optical fiber that guides the light from the skeleton light source to the heterojunction element; A temperature measuring device includes a filter that separates the light emitted from the junction element into two components, a short wavelength side and a long wavelength side, and a circuit that detects the intensity of the two separated light components and calculates the ratio. can get.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の温度検出素子に関する一実施例の断面
図である。本実施例は直径100μm、開口数NAが0
.2のコア10cをもつ外径125μmの光ファイバ1
0の先端部に設けられたヘテロ接合素子20から構成さ
れている。ヘテロ接合素子20はlnP単結晶から成る
半導体基板21の上にエピタキシャル成長された厚さ2
μmのI no、68 (JB 0.32A@O,1B
ll Po、sx  (吸収端波長λy〜1.4μm)
から成る吸収発光層22及び厚さ1μmのlnP (1
9〜0.95μm)から成るり2ラド層23の多層構造
をもち、クラッド層23の表面と装面研磨された半導体
基板21の裏面側には光ファイバ10から導入される励
起光に対する反射防止膜24 、25が施されている。
FIG. 1 is a sectional view of one embodiment of the temperature detection element of the present invention. In this example, the diameter is 100 μm and the numerical aperture NA is 0.
.. Optical fiber 1 with an outer diameter of 125 μm and a core 10c of 2
It is composed of a heterojunction element 20 provided at the tip of 0. The heterojunction element 20 is epitaxially grown on a semiconductor substrate 21 made of lnP single crystal to a thickness of 2.
μm I no, 68 (JB 0.32A@O, 1B
ll Po, sx (absorption edge wavelength λy ~ 1.4 μm)
The absorbing/emitting layer 22 consists of a 1 μm thick lnP (1
The surface of the cladding layer 23 and the back side of the surface-polished semiconductor substrate 21 are provided with anti-reflection coatings for the excitation light introduced from the optical fiber 10. Membranes 24 and 25 are applied.

温度検出部として動作するヘテロ接合素子20の面積は
約300μm角、厚さは約100μmである。
The area of the heterojunction element 20 that operates as a temperature detection section is about 300 μm square, and the thickness is about 100 μm.

励起光として吸収発光層22の吸収端波長1.4μmよ
シ短く、クラッド層23及び半導体基板21の吸収端波
長0.95μmよシ長い、例えばYAGレーザの1.0
6μm波長の光あるい紘半導体レーザの1.2〜1.3
μm 波長の光を励起光として、光ファイバ10から導
入してヘテロ接合素子20を照射すると、励起光は吸収
発光層22で吸収され吸収発光層22を光励起する。光
励起された吸収発光層22はその禁制帯幅に応じた波長
の発光を示す。
As excitation light, the absorption edge wavelength of the absorption light emitting layer 22 is shorter than 1.4 μm and the absorption edge wavelength of the cladding layer 23 and semiconductor substrate 21 is longer than 0.95 μm, for example, 1.0 μm of a YAG laser.
6 μm wavelength light or 1.2 to 1.3 of Hiro semiconductor laser
When light with a wavelength of .mu.m is used as excitation light and is introduced through the optical fiber 10 to irradiate the heterojunction element 20, the excitation light is absorbed by the absorption/emission layer 22 and optically excites the absorption/emission layer 22. The optically excited absorption/emission layer 22 emits light with a wavelength corresponding to its forbidden band width.

この発光波長は吸収発光層22の温度によって材料固有
の値として決定される。本実施例では温度1℃の変化に
対して約5A(温度上昇に対し長波長側へシフト)の割
合で発光波長の中心値が変化する。従って光ラアイバ1
0を戻って来た発光成分の中心波長を測定することによ
シ、ヘテロ接合素子20が接触している部位の絶対温度
を純光学的に知ることができる。本実施例は温度検出部
として動作するヘテロ接合素子20が極めて小型であ〕
、また信号伝送部としての光ファイバ10の熱抵抗も高
いので、測定対象に与える擾乱が少なく正確な測定が可
能である〇 なお、上述の実施例では励起光の反射成分が測定の障害
とならないように反射防止膜24.25を設けたが、波
長測定の部分に励起光除去フィルタを使用することとし
て、反射防止膜24 、25を省パ10の先端部分とへ
テロ接合素子20を透明樹脂等で固着し一体化しても良
い。なお上述の実施例ではIn)’−1nGaAsP系
半導体を用いたが、必ずしもこれに限定しない。光励起
発光を示す材料ならばいずれでもよいが、発光効率を考
えれニ電接遷移型半導体が、また構造も単一へテロ接合
よシも二重へテロ接合構造が好ましい。
This emission wavelength is determined by the temperature of the absorption/emission layer 22 as a value specific to the material. In this embodiment, the central value of the emission wavelength changes at a rate of about 5 A (shifting to the longer wavelength side with respect to temperature rise) per temperature change of 1°C. Therefore, optical fiber 1
By measuring the center wavelength of the light emitting component that has returned to 0, the absolute temperature of the area in contact with the heterojunction element 20 can be determined purely optically. In this embodiment, the heterojunction element 20 that operates as a temperature detection section is extremely small.
Also, since the thermal resistance of the optical fiber 10 as a signal transmission part is high, there is little disturbance to the measurement target and accurate measurement is possible.In addition, in the above-mentioned embodiment, the reflected component of the excitation light does not interfere with the measurement. However, in order to use an excitation light removal filter in the wavelength measurement part, the anti-reflection films 24 and 25 are attached to the tip of the spacing 10 and the heterojunction element 20 is made of transparent resin. They may be fixed together and integrated. Note that although an In)'-1nGaAsP-based semiconductor was used in the above embodiment, the present invention is not necessarily limited to this. Any material that exhibits photoexcited luminescence may be used, but in consideration of luminous efficiency, a double-electrode transition type semiconductor is preferred, and a double heterojunction structure is preferred over a single heterojunction structure.

第2図は本発明の温度測定装置に関する一実施施の構成
図である。本実施例は駆動回路111で駆動され波長1
.2μmでパルス発振する半導体レーザ101、レーザ
・7アイパ結合用のレンズ102.1.2μmを透過す
る長波長反射フィルタ103、光ファイバ10、発光波
要約1.4μmのヘテロ接合素子20、励起光除去フィ
ルタ106.1.4μmを境界波長とする長・短波長成
分分離フィルタ107、長波長成分強度検出部108、
短波長成分強度検出部109、及びこれら二つの検出部
出力信号の比を演算する演算部110によって構成され
ている。ヘテロ接合素子20を測定対象に接触させると
、その温度に応じて発光の長波長成分と短波長成分の比
が変化し、測定対象の温度信号は演算部110の出力信
号として取シ出される0即ち高温時には長波長成分が大
、低温時には短波長成分が大となる。演算部110にお
いて両信号の比をとっているために、励起光強度の変化
や発光効率の変化によって測定誤差が発生することはな
い。また本実施例に、よれば熱容量が小さい−ヘテロ接
合素子20′1r:温度検出部として用い、更に光励起
された電子・正孔対の寿命で決定される応答速度も01
μS以下と極めて速いことから時間応答性の良い測定が
可能である。もちろん測定及びその信号伝送は光にもと
づいておシ、電気的誘導障害を受けることはなく、また
高電圧余積部分においても安全な測定が可能である。
FIG. 2 is a block diagram of one embodiment of the temperature measuring device of the present invention. In this embodiment, the drive circuit 111 drives the wavelength 1.
.. Semiconductor laser 101 that emits pulses at 2 μm, lens 102 for laser/7-eyeper coupling, long wavelength reflection filter 103 that transmits 1.2 μm, optical fiber 10, heterojunction element 20 with emitted wave length of 1.4 μm, excitation light removal Filter 106. A long/short wavelength component separation filter 107 with a boundary wavelength of 1.4 μm, a long wavelength component intensity detection unit 108,
It is composed of a short wavelength component intensity detection section 109 and a calculation section 110 that calculates the ratio of the output signals of these two detection sections. When the heterojunction element 20 is brought into contact with the object to be measured, the ratio of the long wavelength component and the short wavelength component of the emitted light changes depending on the temperature, and the temperature signal of the object to be measured is extracted as the output signal of the calculation section 110. That is, when the temperature is high, the long wavelength component is large, and when the temperature is low, the short wavelength component is large. Since the calculation unit 110 calculates the ratio of both signals, measurement errors do not occur due to changes in excitation light intensity or light emission efficiency. In addition, according to this embodiment, the heterojunction element 20'1r, which has a small heat capacity, is used as a temperature detection section, and the response speed determined by the lifetime of the photoexcited electron-hole pair is also 01.
Since it is extremely fast at less than μS, measurements with good time response are possible. Of course, since the measurement and signal transmission is based on light, there is no electrical induction interference, and safe measurements can be made even in high-voltage areas.

ところで上述の実施例では励起用の光源として半導体レ
ーザを用いたが、必ずしもこれに限定するものではなく
、他のレーザ、例えばYAGレーザあるいは放電管等で
あってもよい。またパルス状の光源である必要はなく連
続的に発光するものであってもよい。なお上述の実施例
において、駆動回路111の信号を長波長成分強度検出
部108及び短波長成分強度検出部109に与え同期検
出を行なっても効果がある。
By the way, in the above embodiment, a semiconductor laser was used as the excitation light source, but the invention is not necessarily limited to this, and other lasers such as a YAG laser or a discharge tube may be used. Further, the light source does not need to be a pulsed light source and may emit light continuously. In the above-described embodiment, it is also effective to apply the signal from the drive circuit 111 to the long wavelength component intensity detection section 108 and the short wavelength component intensity detection section 109 to perform synchronous detection.

最後に本発明が有する効果を要約すれば、電気的誘導障
害や高電圧感電などの恐れがなく、かつ時間応答性が良
い温度測度が可能な温度検出素子及び装置が得られるこ
とである。
Finally, to summarize the effects of the present invention, it is possible to obtain a temperature detection element and device that are free from electrical induction disturbances, high voltage electric shocks, etc., and are capable of measuring temperature with good time responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度検出素子に関する一実施例の断面
図、第2図は本発明の温度測定装置に関する一実施例の
構成図である。 図中、10・)・・・・光ファイバ、10C・・・・・
・コア、20・・・・・・ヘテロ接合素子、21・・・
・・・半導体基板、22・・・・・・吸収発光層、23
・・・・・・クラッド層、24及び25・・・・・・反
射防止膜、101・・・・・・半導体レーザ、102・
・・・・・レンズ、103・・・・・・長波長反射フィ
ルタ、106・・・・・・励起光除去フィルタ、107
・・・・・・長・短波長成分分離フィルタ、108・・
・・・・長波長成分強度検出部、109・・・・・・短
波長成分強度検出部、110・・・・・・演算部、11
1・・・・・・駆動回路である。
FIG. 1 is a sectional view of an embodiment of the temperature detection element of the invention, and FIG. 2 is a configuration diagram of an embodiment of the temperature measurement device of the invention. In the figure, 10.)...Optical fiber, 10C...
・Core, 20... Heterojunction element, 21...
... Semiconductor substrate, 22 ... Absorption/emission layer, 23
... Cladding layer, 24 and 25 ... Antireflection film, 101 ... Semiconductor laser, 102.
... Lens, 103 ... Long wavelength reflection filter, 106 ... Excitation light removal filter, 107
...Long and short wavelength component separation filter, 108...
... Long wavelength component intensity detection section, 109 ... Short wavelength component intensity detection section, 110 ... Calculation section, 11
1... Drive circuit.

Claims (1)

【特許請求の範囲】 1、禁制帯幅が異る半導体の多層構造から成るヘテロ接
合素子が該へテロ接合素子へ光を導入しかつ該ヘテロ接
合素子から発する光を導波する光導波路と結合されて成
る温度検出素子。 Z 禁制帯幅が異る半導体の多層構造から成るヘテロ接
合素子と、該へテロ接合素子を構成する最も禁制帯幅が
小さい半導体の吸収端波長よシも短い波長を有する光源
と、該九諒の光を前記へテロ接合素子へ導く光フ゛盲バ
と、前記へテロ接合素子から発した光を短波長側と投技
長側の2つの成分に分離するフィルタと、該分離6れた
2つの光成分の強度を検出しその比を演箕する回路とを
含む温度測定装置。
[Claims] 1. A heterojunction element made of a multilayer structure of semiconductors with different forbidden band widths is coupled to an optical waveguide that introduces light into the heterojunction element and guides light emitted from the heterojunction element. Temperature sensing element made of Z: a heterojunction element consisting of a multilayer structure of semiconductors with different forbidden band widths; a light source having a wavelength shorter than the absorption edge wavelength of the semiconductor with the smallest forbidden band width constituting the heterojunction element; an optical fiber blind bar that guides the light from the heterojunction element to the heterojunction element; a filter that separates the light emitted from the heterojunction element into two components, one on the short wavelength side and the other on the long pitch side; A temperature measuring device comprising a circuit for detecting the intensities of two light components and calculating the ratio thereof.
JP56194166A 1981-12-02 1981-12-02 Temperature detector and temperature measuring device Pending JPS5895226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194166A JPS5895226A (en) 1981-12-02 1981-12-02 Temperature detector and temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194166A JPS5895226A (en) 1981-12-02 1981-12-02 Temperature detector and temperature measuring device

Publications (1)

Publication Number Publication Date
JPS5895226A true JPS5895226A (en) 1983-06-06

Family

ID=16320022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194166A Pending JPS5895226A (en) 1981-12-02 1981-12-02 Temperature detector and temperature measuring device

Country Status (1)

Country Link
JP (1) JPS5895226A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661625A (en) * 1979-10-10 1981-05-27 Asea Ab Temperature measuring apparatus using optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661625A (en) * 1979-10-10 1981-05-27 Asea Ab Temperature measuring apparatus using optical fiber

Similar Documents

Publication Publication Date Title
EP0111853B1 (en) Temperature measuring apparatus
US4136566A (en) Semiconductor temperature sensor
US5560712A (en) Optical systems for sensing temperature and thermal infrared radiation
US4703175A (en) Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
US5318362A (en) Non-contact techniques for measuring temperature of radiation-heated objects
JPH0638060B2 (en) Optical temperature measuring device using fiber
JPH0481132B2 (en)
KR940001898B1 (en) Apparatus for controlling transmission of light
US4195269A (en) Two-way single fiber optical communication system
JPS58137710A (en) Optical-fiber measuring device
JP2635732B2 (en) Optical fiber sensing method
JPS5895226A (en) Temperature detector and temperature measuring device
KR100256435B1 (en) Superfluorescent broadband fiber laser source
JPS60164227A (en) Temperature detecting method
JPS5478156A (en) Detector of break point of optical fibers
IT9019779A1 (en) IMMERSION OPTICAL SENSOR FOR DETERMINING THE TURBIDITY DEGREE OF A SOLUTION
JPH0377026A (en) Fluorescent fiber sensor
JPS59154340A (en) Wetness measuring device
JPS58117476A (en) Radiation detector
SU1122113A1 (en) Fiber for scintillation hodoscopes
Domanski Thermo-optic microsensor with double core optical fiber for medical applications
Quinn et al. Measurements of nanosecond lifetimes using a transient method based on pulse delay
SU1425473A1 (en) Temperature-sensitive element
JP2621750B2 (en) Optical temperature measurement device
JPS6035234A (en) Pressure measuring device