JPS589139B2 - Materials made by powder hot forging - Google Patents

Materials made by powder hot forging

Info

Publication number
JPS589139B2
JPS589139B2 JP53117897A JP11789778A JPS589139B2 JP S589139 B2 JPS589139 B2 JP S589139B2 JP 53117897 A JP53117897 A JP 53117897A JP 11789778 A JP11789778 A JP 11789778A JP S589139 B2 JPS589139 B2 JP S589139B2
Authority
JP
Japan
Prior art keywords
powder
graphite
hot forging
powder hot
materials made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53117897A
Other languages
Japanese (ja)
Other versions
JPS5544556A (en
Inventor
黒石農士
武田義信
野路進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP53117897A priority Critical patent/JPS589139B2/en
Priority to SE7907739A priority patent/SE447393B/en
Priority to US06/076,947 priority patent/US4321091A/en
Priority to CA000336059A priority patent/CA1136445A/en
Priority to DE2938541A priority patent/DE2938541C2/en
Priority to FR7923893A priority patent/FR2437259A1/en
Priority to ES484465A priority patent/ES8101958A1/en
Priority to AU51230/79A priority patent/AU527983B2/en
Priority to GB8035802A priority patent/GB2065167B/en
Priority to GB7933385A priority patent/GB2039520B/en
Priority to IT50373/79A priority patent/IT1164115B/en
Publication of JPS5544556A publication Critical patent/JPS5544556A/en
Priority to ES491892A priority patent/ES8105598A1/en
Publication of JPS589139B2 publication Critical patent/JPS589139B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、耐摩摺動特性に優れた高強度な粉末熱間鍛造
材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength powder hot forged material with excellent abrasion resistance.

粉末熱間鍛造部品は、粉末冶金法の優れた経済性即ち、
材料歩溜りが著るしく良いこと、切削等の機械加工工程
が大巾に省略出来ること及び優れた材質均一性によって
、鋳造部品や普通鍛造部品或いは切削加工部品にとって
変わろうとしている。
Powder hot forged parts have the excellent economical properties of powder metallurgy, i.e.
Due to the extremely good material yield, the ability to largely omit machining processes such as cutting, and the excellent material uniformity, they are starting to replace cast parts, ordinary forged parts, or machined parts.

しかし乍ら、粉末熱間鍛造部品は、工業化の段階で製品
コスト(即ち原料費と加工費)と性能のバランスがとれ
ず、結局市場での価格競争力において溶製材に必ずしも
優っていないのが問題点であった。
However, powder hot forged parts do not have a balance between product cost (i.e. raw material cost and processing cost) and performance at the stage of industrialization, and in the end, they are not necessarily superior to molten materials in terms of price competitiveness in the market. This was a problem.

粉末熱間鍛造品の使われようとしている最も主たる分野
は、銅の歯車、カム、等の機構部品である。
The main field in which hot powder forged products are being used is mechanical parts such as copper gears and cams.

このような部品に要求される材料特性はまず、言うまで
もなく、高い引張り、圧縮強さと靭性である。
The material properties required for such parts are, of course, first and foremost high tensile, compressive strength and toughness.

更に重要なのは、耐摩耗性の為に必要な硬さ及び適度の
摺動特性である。
More important are the hardness and appropriate sliding properties necessary for wear resistance.

特に後者は単純に硬ければ良い或いは強靭であれば良い
と言う性質ではなく、微細な金属組織の適切な状況によ
ってはじめて実現される。
In particular, the latter property is not simply good if it is hard or strong, but can only be achieved by appropriate conditions of the fine metal structure.

しかもこれらの材料特性のすべてが同時に満足されなけ
ればならない為、従来の材料では極めて困難であったり
、或いは、経済性に難点を有するのが実情であった。
Moreover, all of these material properties must be satisfied at the same time, which is extremely difficult to achieve using conventional materials, or is economically unsatisfactory.

例えば、鋳鉄材料は含有された黒鉛粒子(片状もしくは
球状)の働きによって優れた耐摩摺動性を有しているに
も拘らず、その含有された黒鉛粒子の脆性及び粒子界面
の空隙ゆえに強度、靭性が劣っていた。
For example, although cast iron materials have excellent abrasion resistance due to the action of graphite particles (flaky or spherical) contained in them, they are not strong due to the brittleness of the graphite particles contained and voids at the particle interface. , the toughness was inferior.

更に鋳物は鋳造組織の不均一性や偏析を避けることが出
来ず、適切な材料ではなかった。
Furthermore, cast iron cannot avoid the non-uniformity and segregation of the casting structure, so it is not a suitable material.

炭素鋼や低級低合金鋼材の場合には、適切な熱処理によ
って強度靭性は満足出来ても耐摩性、耐摺動性において
は劣っており、窒化処理等、特殊な表面処理が必要であ
った。
In the case of carbon steel and low-grade, low-alloy steel, although strength and toughness can be satisfied through appropriate heat treatment, wear resistance and sliding resistance are inferior, and special surface treatment such as nitriding treatment is required.

又、溶製鋼材は製鋼段階において除去されずに残る非金
属介在物の存在を無視することが出来ず、しかも鍛造や
圧延処理によって生じた素材の方向性が部品の強度の等
方性を損う問題点があった。
In addition, the presence of non-metallic inclusions that remain in molten steel cannot be ignored during the steelmaking process, and the orientation of the material caused by forging and rolling processes can impair the isotropy of the strength of the part. There was a problem.

従来の粉末熱間鍛造部品も同様の問題点が存在し、高強
度且つ耐摩摺動性に優れた材質は、得られていない。
Similar problems exist in conventional powder hot forged parts, and materials with high strength and excellent abrasion resistance have not been obtained.

本発明においては、粉末冶金法の特徴である、溶製法で
は製造が困難もしくは不可能な複合組織合金を作る技術
と、粉末熱間鍛造技術の特徴である高密度で空孔等の欠
陥のない材料を作る技術の組み合せによって、過去にお
いて例を見ない新しい高性能機構部品用材料を作りあげ
ることに成功した。
The present invention combines the characteristics of powder metallurgy, which is a technology to create a composite structure alloy that is difficult or impossible to manufacture with melting methods, and the characteristics of powder hot forging technology, which is high density and free of defects such as pores. By combining materials manufacturing techniques, we succeeded in creating a new, unprecedented material for high-performance mechanical parts.

本発明の材料の最も重要な構成要素は、基地相中に均一
に分散析出された微細黒鉛粒子である。
The most important component of the material of the present invention is fine graphite particles uniformly dispersed and precipitated in the base phase.

従来、黒鉛を分散析出させた材料は言うまでもなく鋳鉄
として知られており、特に球状黒鉛鋳鉄は球状の黒鉛粒
子を分散させた優れた材料であったしかし乍ら、黒鉛粒
子の大きさは、10μm〜100μmと比較的大きく、
この為、素材の強度靭性が劣っていた。
In the past, the material in which graphite was dispersed and precipitated was of course known as cast iron, and spheroidal graphite cast iron was an excellent material in which spherical graphite particles were dispersed. However, the size of the graphite particles was 10 μm. Relatively large at ~100μm,
For this reason, the strength and toughness of the material were inferior.

鋳造法で、黒鉛粒子を微細に制御することは困難で、炭
素含有量を大巾に変化させることさえも硬質のセメンタ
イト相の析出を招き、困難であった。
It is difficult to finely control graphite particles using the casting method, and even changing the carbon content over a large range leads to the precipitation of a hard cementite phase, making it difficult.

しかし乍ら、粉末冶金法において、原料粉末を、適切な
組成に選定することにより、極めて容易に、微細な黒鉛
粒子を均一に分散析出させることが出来ることを見い出
した。
However, in the powder metallurgy method, it has been found that fine graphite particles can be uniformly dispersed and precipitated very easily by selecting an appropriate composition of the raw material powder.

すなわち粉末状態では遊離黒鉛、炭化物、固溶炭素等様
々な形態で粉末体中に存在する炭素を合金として融解す
ることなく、高温において拡散し、焼結することによっ
て高温状態ではオーステナイト相の固溶体化する第1の
工程と、これを鍛造することによって残留空孔を潰しか
つ形を整える工程との少なくとも2工程より成る粉末熱
間鍛造により粒径0.5〜20μmの微細黒鉛粒子とし
て均一に分散析出させることができる。
In other words, in the powder state, carbon that exists in various forms such as free graphite, carbide, and solid solution carbon diffuses at high temperatures without melting as an alloy, and by sintering, the austenite phase becomes a solid solution at high temperatures. Through powder hot forging, which consists of at least two steps: a first step to crush residual pores and adjust the shape by forging, fine graphite particles with a particle size of 0.5 to 20 μm are uniformly dispersed. It can be precipitated.

上記粉末熱間鍛造プロセスは、第1に、マトリックス強
度を高めるため、第2には、巨大黒鉛析出の核となる空
孔を潰すために不可欠の工程である。
The powder hot forging process is an essential step, firstly, to increase matrix strength, and secondly, to crush pores that become the core of giant graphite precipitation.

この為に選ばれるべき化学組成は、炭素の黒鉛化元素で
あり且つ鉄合金の強化元素であるSiの存在が最も重要
であり、2〜3%の範囲において選ばれなければならな
い。
The chemical composition to be selected for this purpose is most important for the presence of Si, which is a graphitizing element for carbon and a reinforcing element for iron alloys, and must be selected in a range of 2 to 3%.

下限値以下では上述の効果が有効でなく、上限値以上で
はかえって硬化が進み過ぎ脆化する為、本範囲が選ばれ
た。
This range was chosen because below the lower limit the above-mentioned effect is not effective, and above the upper limit the hardening progresses too much and becomes brittle.

その他の必須元素としては、最も焼入れ性向上に効果が
あり、かつ鉄合金の強化元素でもあるMnを0.2〜0
.9%含有させることである。
Other essential elements include Mn, which is most effective in improving hardenability and is also a strengthening element for iron alloys.
.. The content is 9%.

Mnは更に黒鉛を安定存在させる為に有効な元素である
Mn is also an effective element for stably existing graphite.

上、下限値の設定は同じく有効な範囲と、有害な範囲に
よって行なった。
The upper and lower limits were similarly set based on the effective range and harmful range.

Cは言うまでもなく黒鉛となる元素であるが、同時に鋼
となる為に不可欠な元素である。
Needless to say, C is an element that becomes graphite, but at the same time it is an essential element for forming steel.

黒鉛粒子は前述通り大きな粒子が多数あると強度靭性に
悪影響を及ぼし、逆に少な過ぎると耐摩摺動性の効果が
少くなる。
As mentioned above, if there are many large graphite particles, it will have an adverse effect on strength and toughness, and if there are too few, the effect of abrasion resistance will be reduced.

又、固溶する炭素は基地相を共析鋼として強化するのに
不可欠であるから、約0.8%程度ぱ固溶分として必要
である。
Further, since carbon in solid solution is essential for strengthening the base phase as eutectoid steel, about 0.8% is necessary as a solid solution content.

黒鉛粒子として必要な炭素量と合計すると、結局全炭素
量として1〜2%が最適であることを見い出した。
It has been found that the optimum total carbon content is 1 to 2% when added to the amount of carbon necessary for graphite particles.

更に望ましくは、1.4〜1.8%である。More preferably, it is 1.4 to 1.8%.

その他の元素例えばP,S,O等は混入を避け難い元素
として通常存在するが、その量が0.3%以下である場
合は、積極的な効果を認めることが出来ない為、通常不
純物として混入している程度の範囲については特に規定
しない。
Other elements such as P, S, and O are normally present as elements that cannot be avoided, but if their amount is less than 0.3%, no positive effect can be observed, so they are usually treated as impurities. There is no particular stipulation regarding the extent of contamination.

更に原料からの混入として、微量のMg,Al、Sn、
Mo、Cr、Cu等の遷移元素についても、不純物とし
て存在している限りにおいては特に積極的効果を認めな
い為、特に規定するものではない。
Furthermore, trace amounts of Mg, Al, Sn,
Transition elements such as Mo, Cr, and Cu are not particularly stipulated as they do not have any particularly positive effects as long as they exist as impurities.

本発明の材料を更に熱処理することによって基地相を硬
化させ、強度を高めるとともに耐摺動性を損うことなく
、耐摩耗性茶向上させることが可能である。
By further heat-treating the material of the present invention, it is possible to harden the base phase, increase strength, and improve wear resistance without impairing sliding resistance.

この場合、基地相の硬さは、400〜600mHvに調
整するのが最も好ましく、過度の硬化による脆化を避け
、効果を高める為上、下限値を設定した。
In this case, the hardness of the base phase is most preferably adjusted to 400 to 600 mHv, and upper and lower limits are set to avoid embrittlement due to excessive hardening and to enhance the effect.

実施例 Fe−2.6Si−0.8Mn−1.7C組成を有する
粉末体を、鋳鉄切粉の粉砕分級、脱炭処理によって得た
Example A powder having a composition of Fe-2.6Si-0.8Mn-1.7C was obtained by crushing, classifying, and decarburizing cast iron chips.

本粉末体は主としてFe−2.6Si−0.8Mnマト
リックス中に、1.7%のCが粗大黒鉛又は片状黒鉛と
して存在しているものであった。
This powder mainly contained 1.7% of C as coarse graphite or flake graphite in the Fe-2.6Si-0.8Mn matrix.

該粉末を金型にて形成後還元性ガス中で加熱焼結し、直
ちに金型中で熱間鍛造した。
The powder was formed in a mold, heated and sintered in a reducing gas, and immediately hot-forged in the mold.

本プロセスによって成形体は、ほぼ理論密度の7.6g
/c.cとなった。
By this process, the molded body has a density of 7.6g, which is almost the theoretical density.
/c. It became c.

更にこの鍛造体を900℃より焼入れし、焼戻した。Furthermore, this forged body was quenched at 900°C and tempered.

各々の材料の断面組織写真を第2,3図に示す。Photographs of the cross-sectional structure of each material are shown in Figures 2 and 3.

黒鉛の微細粒子が均一に分散析出されているのが明らか
に認められる。
It is clearly observed that fine particles of graphite are uniformly dispersed and precipitated.

本材料の機械的性質の比較例を表−1に示す。Table 1 shows comparative examples of the mechanical properties of this material.

又摩耗試験の結果を第1図に示す。The results of the wear test are shown in Figure 1.

なお実施例3例と比較例3例を表2に示す。これらの結
果から、本発明の材料が従来の材料と比較して、機械構
造部品に適した優れた特性を有していることは明らかで
あり、粉末熱間鍛造材料として汎く使用される有用な材
料である。
Table 2 shows three examples and three comparative examples. From these results, it is clear that the material of the present invention has superior properties suitable for mechanical structural parts compared to conventional materials, and is useful for being widely used as a powder hot forging material. It is a good material.

【図面の簡単な説明】 第1図は本発明の実施例の性能を示す図表で、大越式摩
耗試験結果である。 相手材はS−55C(HV−270) 圧力は〜10kg/cm2 距離は〜500m 潤滑は〜なし 実線はS55C、点線はFC−25、鎖線は本発明品を
夫々示す。 第2図は100倍、第3図は400倍の顕微鏡写真によ
る組織を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a chart showing the performance of an embodiment of the present invention, which is the result of an Okoshi type wear test. The mating material is S-55C (HV-270), the pressure is ~10 kg/cm2, the distance is ~500 m, and the lubrication is ~none.The solid line shows S55C, the dotted line shows FC-25, and the chain line shows the product of the present invention. FIG. 2 shows the micrographs of the structure taken at 100 times magnification, and FIG. 3 shows the structure taken at 400 times magnification.

Claims (1)

【特許請求の範囲】[Claims] 1 重量パーセントで、Si2〜3%,Mn0.2〜0
.9%,C1.0〜2.0%、残部実質的に鉄であり、
且つ含有炭素量のうち0.5〜1,2%を、粉末熱間鍛
造により、粒径0.5〜2.0μmの微細黒鉛粒子とし
て均一に分散析出せしめたことを特徴とする粉末熱間鍛
造による材料。
1 Weight percent: Si2-3%, Mn0.2-0
.. 9%, C1.0-2.0%, the remainder is substantially iron,
A hot powder powder characterized in that 0.5 to 1.2% of the carbon content is uniformly dispersed and precipitated as fine graphite particles with a particle size of 0.5 to 2.0 μm by hot powder forging. Material by forging.
JP53117897A 1978-09-27 1978-09-27 Materials made by powder hot forging Expired JPS589139B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP53117897A JPS589139B2 (en) 1978-09-27 1978-09-27 Materials made by powder hot forging
SE7907739A SE447393B (en) 1978-09-27 1979-09-18 PROCEDURE FOR THE PREPARATION OF A HEAT-SMALL MATERIAL OF POWDER
US06/076,947 US4321091A (en) 1978-09-27 1979-09-19 Method for producing hot forged material from powder
CA000336059A CA1136445A (en) 1978-09-27 1979-09-20 Method for producing hot forged material from powder
DE2938541A DE2938541C2 (en) 1978-09-27 1979-09-24 Process for producing a hot-forged workpiece from powder
AU51230/79A AU527983B2 (en) 1978-09-27 1979-09-26 Making shapes by powder metallurgy
ES484465A ES8101958A1 (en) 1978-09-27 1979-09-26 Method for producing hot forged material from powder
FR7923893A FR2437259A1 (en) 1978-09-27 1979-09-26 PROCESS FOR THE MANUFACTURE OF MATERIALS WITH HIGH HOT FORGED MECHANICAL CHARACTERISTICS FROM METAL POWDERS AND MATERIALS THUS OBTAINED
GB8035802A GB2065167B (en) 1978-09-27 1979-09-26 Method for producing a hot forged material from powder
GB7933385A GB2039520B (en) 1978-09-27 1979-09-26 Method for producing a hot forged material from powder
IT50373/79A IT1164115B (en) 1978-09-27 1979-09-26 PROCEDURE FOR PRODUCING HOT FORGED MATERIAL FROM POWDERED MATERIAL
ES491892A ES8105598A1 (en) 1978-09-27 1980-05-27 Method for producing hot forged material from powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53117897A JPS589139B2 (en) 1978-09-27 1978-09-27 Materials made by powder hot forging

Publications (2)

Publication Number Publication Date
JPS5544556A JPS5544556A (en) 1980-03-28
JPS589139B2 true JPS589139B2 (en) 1983-02-19

Family

ID=14722907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53117897A Expired JPS589139B2 (en) 1978-09-27 1978-09-27 Materials made by powder hot forging

Country Status (1)

Country Link
JP (1) JPS589139B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169766A (en) * 1980-05-29 1981-12-26 Nippon Piston Ring Co Ltd Sliding member for internal-combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125911A (en) * 1974-03-25 1975-10-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125911A (en) * 1974-03-25 1975-10-03

Also Published As

Publication number Publication date
JPS5544556A (en) 1980-03-28

Similar Documents

Publication Publication Date Title
US5656787A (en) Hi-density sintered alloy
TWI447238B (en) Low alloyed steel powder
JP5661096B2 (en) Iron vanadium powder alloy
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
EP0480495B1 (en) Sintered ferrous-based material
US5641922A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JP4185653B2 (en) Iron-graphite composite powder and sintered body thereof
CN105903952A (en) Rare earth alloy composite material and preparation method
JP3765633B2 (en) High density sintered alloy material and manufacturing method thereof
JP2001131678A (en) High strength spheroidal graphite cast iron and producing method therefor
US4321091A (en) Method for producing hot forged material from powder
EP0835329B1 (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
JPS589139B2 (en) Materials made by powder hot forging
US3450511A (en) Sintered carbide hard alloy
Baglyuk et al. Powder metallurgy wear-resistant materials based on iron. Part 1. Materials prepared by sintering and infiltration
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
KR840001096B1 (en) A hot forging powder material
JPH0525591A (en) Wire for piston ring and its manufacture
US4854978A (en) Manufacturing method for high hardness member
KR840001138B1 (en) Method for producing a hot forged material from powder
JPS6040505B2 (en) Manufacturing method of nitrided sintered alloy
JPS6140301B2 (en)
JPH0512401B2 (en)
CA2225692A1 (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders