JPS5890117A - Method and device for measuring position - Google Patents

Method and device for measuring position

Info

Publication number
JPS5890117A
JPS5890117A JP19913982A JP19913982A JPS5890117A JP S5890117 A JPS5890117 A JP S5890117A JP 19913982 A JP19913982 A JP 19913982A JP 19913982 A JP19913982 A JP 19913982A JP S5890117 A JPS5890117 A JP S5890117A
Authority
JP
Japan
Prior art keywords
measuring device
angle measuring
aiming mark
aiming
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19913982A
Other languages
Japanese (ja)
Inventor
ヘルム−ト・ライツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of JPS5890117A publication Critical patent/JPS5890117A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、所定の距1ii(Fに配置1斤され、その測
定値が計算装置に供給可能である最低2つの角度測定装
置を使用する前方交会により位置を測定する方法および
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention measures the position by forward intersection using at least two angular measuring devices placed at a predetermined distance 1ii(F) and whose measurements can be fed to a computing device. METHODS AND APPARATUS.

誌、IQ81年第δ号、第14−頁から公知である。こ
の装置は、共通の小型7)計算機へオンラインで接続可
能である電気的データ発信装置を有する2つの経緯儀よ
り成る。
Magazine, IQ81, issue δ, page 14-. The device consists of two theodolites with electrical data transmitters that can be connected online to a common small 7) computer.

また測地学の場合、2つまたはそれ以上の経緯儀ないし
はタキシメーターを使用する前方交会による位置測定が
常用の方法である。しかしながら一般に、電気的な計算
装置が付属でれず;さらに、測定結果が測定装置に記憶
されかつオフラインで計算装置に供給される。
In geodesy, a common method is to measure position by forward intersection using two or more theodolites or taximeters. However, generally no electrical computing device is attached; furthermore, the measurement results are stored in the measuring device and fed offline to the computing device.

前述の方法によれば、位置の座標測定は、これが最低2
つの角度測定装置の望遠鏡を使用しそれぞれ1人のオペ
レータにより達せられる。
According to the above-mentioned method, the coordinate measurement of the position is at least 2
Each is achieved by one operator using two angle-measuring telescopes.

ところで、なかんずく平面的な非描造的物体の場合、共
通の照偲点の識別に難点が生じる:位置測+−、lxの
高い精度わJ7、そ、11−ぞれ正確に同じ照準点がこ
れら2つの装置iコiにより測定された場合にたり得ら
れることができる。このことは、平面的な物体の場合明
白に不可能である。従来よりこのような物体に11、手
作業に上り色標点を取付けることによりマーキングされ
た。しがしながら、例えば船体またd、建築物のような
接近不能また(lJ:極めて接近用つ°イ[な′物体は
、極めて困難K、すなわち不当に大きい費用でマ〜・ト
ングされうるにずぎない。
By the way, especially in the case of planar, non-graphical objects, a difficulty arises in identifying a common point of aim: the high accuracy of position measurement +-, lx, J7, so, 11- each has exactly the same point of aim. can be obtained by measuring with these two devices. This is clearly not possible for planar objects. Traditionally, such objects have been marked by manually attaching color markers. However, inaccessible or extremely inaccessible objects, such as ship hulls or buildings, can be mangled with great difficulty, i.e. at unreasonably high cost. No wonder.

本発明の課題は、この難点を除去しかつ前述の種類の装
置を、欠陥あるマーキングによる測定誤差が回避される
ように形成することであるこの課題は、特許請求の範囲
第1項の特徴部に」:す、測定ずべき位tijiへ、角
度測定装置の照準点として使用される光照準マークを投
射することにより解決される。
The object of the invention is to eliminate this disadvantage and to design a device of the above-mentioned type in such a way that measurement errors due to defective markings are avoided. The solution is to project a light aiming mark, which is used as an aiming point of the angle measuring device, into the measurement position.

照準マーク投射装置1/Lが、11111′/、i、C
ずべき物体に12つの測定装置のための照準マークとし
て使用される光点を生じる。従って、異なる物体点が照
準されることがなく、かつ同時に平面的な]−1標の場
合マーキングせる[1標なしに自動的に1つの照準マー
クが得られる。この方法のもう1つの利点は、この装置
を照準マーク投射装置とともに段階的にたんに水平ない
しは垂直軸回りに相応に旋回させかつ連続点の座標を測
定することにより、垂直−または水平断面の物体側fi
1が実施されうろことである。
The aiming mark projection device 1/L is 11111'/, i, C
A light spot is created on the object to be moved, which is used as an aiming mark for the 12 measuring devices. Therefore, different object points are not sighted and at the same time one aiming mark is automatically obtained without marking in the case of a planar target. Another advantage of this method is that the device, together with the aiming mark projection device, can be rotated correspondingly in stages around a horizontal or vertical axis simply by measuring the coordinates of successive points, thereby making it possible to move objects in vertical or horizontal section. side fi
1 is the scale that will be implemented.

良好に規準化された光束を放射する装置を有する経緯儀
は自体公知であるが、しかし従来よりもっばら境界標示
ないしは整列製筒として使用されている;すなわち経緯
儀は、固定位置に配置および整列されかつこの場合連続
的に強力な光束を境界標示すべき区間の方向へ放射する
。前方交会による座標測定には、このような、例えば西
rイッ国特許公開明細書第2117096号および同第
21051牛Oすに記載された測定装置は使用されなか
った。
Theodolites with devices for emitting a well-normalized beam of light are known per se, but have traditionally been used more often as boundary markings or alignment tubes; that is, the theodolites are arranged and aligned in a fixed position. and in this case continuously emits an intense light beam in the direction of the section to be marked. For coordinate measurement by forward intersection, such measuring devices, such as those described in Japanese Patent Publications No. 2117096 and No. 21051, were not used.

本発明を右利に発展さ−U゛た装置は従属請求項の記載
から明白である。
Devices which take advantage of the invention are evident from the dependent claims.

以下に、本発明を図面実施例につぎ詳説する第1図に示
しだタキシメーター16はU字形のケーシング1を有し
、このケーシングがピゼツI・2により、図示・ローざ
る、水平に旋回可能なベースに固′/IL可能である。
In the following, the present invention will be explained in detail with reference to the drawings.The taximator 16 shown in FIG. It is possible to fix/IL on a basic base.

TJ字形ケーシングの脚部間に、夕・1′シメ−ターの
、垂直方向に旋回可能′1.f望遠鏡3が増刊GJられ
ている。
Between the legs of the TJ-shaped casing, there is a vertically swivelable '1' shimmeter. F Telescope 3 has been published as an extra edition.

望i卓鏡3の対I吻しンズ周りに、固定リング牛がねじ
5により]占しi!されている。この固定リング牛Cj
:ベースプレ−1・6をイfし、その端面に板はね7が
1占しj!され、その薗iにもう1つのプレー1・8が
その1λ′11而でねじ市めされている。プレー1・8
にレーーリ゛−発信装置9が取(Jりられ、この装置に
拡大光学系12/l 3並びに、照準マークを生じさせ
るだめの位相板1牛が前方接続されている。この位相板
14−は、内側に施こされた蒸着層をイJN7、)ニー
r1時に密閉窓として役立つガラス板より成り、この蒸
着層が、透過する部分的光束の位相に異なった影響を与
えるセグメントを形成する。この場合照準マークが、こ
の部分的光束の干渉により物体面に形成され、その場合
照準マークの形が、蒸着層のセグメントを適当に形成す
ることにより決められる。
A fixed ring is attached around the proboscis of the table mirror 3 by the screw 5] Fortune Telling! has been done. This fixed ring cow Cj
: Base plays 1 and 6 are if, and the board 7 is on the end face! Then, another play 1.8 is screwed to that 1λ'11. Play 1・8
A ray transmitting device 9 is taken up, to which is connected in front a magnifying optical system 12/l3 and a phase plate 1 for producing an aiming mark. , a vapor deposited layer applied on the inside (iJN7,)) consists of a glass plate which serves as a hermetic window during knee r1, and this vapor deposit layer forms segments which have a different influence on the phase of the transmitted partial luminous flux. In this case, an aiming mark is formed in the object plane by interference of this partial beam of light, the shape of the aiming mark being determined by suitably shaping the segments of the deposited layer.

プレート8は、プレート6に対し、調節ねじ11を経て
水平にかつ調節ねし10を経て垂直に傾斜可能である。
The plate 8 is tiltable relative to the plate 6 horizontally via an adjusting screw 11 and vertically via an adjusting screw 10.

これらのねしは、投射装置1り9の照準線を望遠鏡3の
照準線に対し調節するだめに使用され、その結果これら
照準線が測量すべき物体の平面で交差する。垂直調節が
水平調節と反対に距離と関連しかつしばしば実施されな
ければならないので、ねじ10はローレットねじとして
形成されている。
These screws are used to adjust the line of sight of the projection device 19 with respect to the line of sight of the telescope 3, so that these lines of sight intersect in the plane of the object to be surveyed. Since the vertical adjustment, as opposed to the horizontal adjustment, is distance-related and must be carried out more often, the screw 10 is designed as a knurled screw.

第3図に、本発明による方法による測定法を銘水する: 船体15のプロフィルを前方交会法により無接触測量す
るだめ、固定の基線長aだけ相互に離して配置された2
つの経緯儀ないしはタキシメーター16および17が使
用される。このタキシメーター16は、第1図−13よ
び第2図に示したように照準マーり投射装置9を有し、
この投射装置1′iが、拡大して示しだ工1u状セグメ
ント形の照亭マーり19を船体15に、タキシメーター
16をIMi弔に垂直重力1111+回りに旋回させる
ことにより水平方向の線に沿い投射する。
FIG. 3 shows the measurement method according to the method according to the invention: In order to carry out a contactless survey of the profile of the hull 15 by the forward intersection method, two probes placed apart from each other by a fixed baseline length a are used.
Two theodolites or taximeters 16 and 17 are used. This taximeter 16 has an aiming marker projection device 9 as shown in FIGS. 1-13 and 2,
This projection device 1'i is enlarged and shown.The projection device 1'i is enlarged and shown.The projection device 1'i is enlarged and shown.By rotating the taximeter 16 around the vertical gravity 1111+ on the hull 15 and the taximeter 16 on the IMi, it becomes a horizontal line. Project along.

これら装置16およびLlj、データ回線を経テill
’ fX藩2OK接続され、この計算器が、マーク19
の照準が行なわれた後その都度これら装置の仰角および
方位角の測定値を受信し、物体座標に換算しかつ船体の
作図を得る。
These devices 16 and Llj, through the data line
'fX domain 2 OK connected, this calculator is marked 19
After each aiming, the elevation and azimuth measurements of these devices are received, converted into object coordinates and a drawing of the hull is obtained.

4− 図面の簡?1′i、な説明 第1図および第2図口:、本発明による装置の1実施例
を示す正面図およびそのII −II線による断面図、
並びに第3図は、本発明による方法の1実施例を銘水す
る斜視図である。
4- Simple drawing? 1'i, Description of FIGS. 1 and 2: A front view showing one embodiment of the device according to the present invention and a cross-sectional view thereof taken along line II-II;
FIG. 3 is a perspective view illustrating one embodiment of the method according to the invention.

1・・・ケーシング、3・・・望遠鏡、4.・・・固定
リング、9・・・レーーリゝ−発信装置、12.13・
・・拡大光学系、l11−・・・位相板、15・・・船
体、16.17・・・経結儀ないしタキシメーター、1
9・・・照Kl’i V−り、20・・・1ン1幹装置
1を
1...Casing, 3...Telescope, 4. ... Fixed ring, 9... Rayleigh transmitter, 12.13.
...Magnifying optical system, l11-...Phase plate, 15...Hull, 16.17...Meridian or taximeter, 1
9... Teru Kl'i V-ri, 20... 1 n 1 main device 1

Claims (1)

【特許請求の範囲】 1 所定の距離(a)に配置され、その測定値が計算装
置(20)に供給可能である最低2つの角度測定装置(
16,17)を使用する前方交会法により位置を測定す
るに当り、測定すべき位置へ、角度測定装置(16,1
7)の照準点として使用される光照準マーク(19)を
投射することを特徴とする位置測定法。 2、所定の距離(a)に配置され、その測定値が計算装
置(20)に供給可能である最低2つの角度測定装置(
16,17)を使用する前方交会法により位置を測定す
るだめ、測定すべき位置へ、角度測定装置(16,17
)の照準点として使用される光照準マーク(19)を投
射するに当り、照準マーク投射装置を水平または垂直軸
回りで旋回させることに照ivcマーク より、光標的の列を垂直ないしは水平線に沿い物体(1
5)へ投射しかつ測定することを特徴とする位置測定法
。 3、所定の距離(a)に配着され、その測定値が計算装
置(20)に供給可能である最低2つの角度測定装置(
16,17)を使用する前方交会法により位置を測定す
るため、測定すべき位置へ、角度測定装置(16,17
)の照準点として使用される光照準マーク(19)を投
射する方法を実施する装着において、1つの角度測定装
置(16)に光学的照準マーク投射装置(9)が備えら
れていることを特徴とする位置測定装置。 屯 照準マーク投射装置(9)がレーザー光源を含有す
ることを特徴とする特許請求の範囲第3項記載の位置測
定装置。 5、投射装置(9)の拡大せる光路中に、光の位相に影
響するセグメント形の蒸着層が施こされた透明板の形の
照準マーク(14)が配置されていることを特徴とする
特許3111求の範囲第4.8′I記載の位;111測
定装置。 6.照準マーク投射装置(9)が、1つの角度測定装置
1′Lの光学系へ合体されていることを特徴とする特許
請求の範囲第3〜第5項のいずれかに記載の位置測定装
置i”i 。 7、照準マーク投射装置(9)が角度測定装置(16)
に載2iされていることを特徴とする、QjF 7’l
’ nlV求の範囲第3〜第5頂のいずれかに記載の位
置測定装f!’:l−,n a、  +r<+準マーク投射装置(Q)が、角度測定
装置(1G)の対物レンズ(3つを包囲する固定リング
(牛)を有することを特徴とする特11/l請求の範囲
第7頂記1代の位置測定装置。 9、照f(fr、マーク投射装置i′i(9)にJ:、
その照準線が、角度A1り定装置it、 (16)の望
遠鏡(3)にスJし水平に調節可能および垂直に微調節
可能であることを!IVi徴とする、′1、′1.i′
1′請求の範囲第7項および第8頂のいずれかに記載の
位詮測定装:l’、f 。
[Scope of Claims] 1. At least two angle measuring devices (
When measuring the position by the forward intersection method using the angle measuring device (16, 17), move the angle measuring device (16, 17) to the position to be measured.
7) Position measuring method, characterized in that it projects an optical aiming mark (19) which is used as an aiming point. 2. At least two angle measuring devices (
To measure the position by the forward intersection method using the angle measuring device (16, 17), move the angle measuring device (16, 17) to the position to be measured.
) When projecting the optical aiming mark (19) used as an aiming point, the aiming mark projection device is rotated around a horizontal or vertical axis, and the line of optical targets is projected along a vertical or horizontal line from the aiming mark. Object (1
5) A position measurement method characterized by projecting onto and measuring. 3. At least two angle measuring devices (a) arranged at a predetermined distance (a) and whose measured values can be supplied to the calculation device (20);
16, 17), the angle measuring device (16, 17) is moved to the position to be measured.
), characterized in that one angle measuring device (16) is equipped with an optical aiming mark projection device (9). position measuring device. 4. Position measuring device according to claim 3, characterized in that the aiming mark projection device (9) contains a laser light source. 5. An aiming mark (14) in the form of a transparent plate coated with a segment-shaped vapor-deposited layer that affects the phase of the light is arranged in the expandable optical path of the projection device (9). Scope 4.8'I of Patent No. 3111: 111 Measuring device. 6. Position measuring device i according to any one of claims 3 to 5, characterized in that the aiming mark projection device (9) is integrated into the optical system of one angle measuring device 1'L. 7. The aiming mark projection device (9) is the angle measuring device (16)
QjF 7'l, characterized by being listed in 2i
' The position measuring device f! according to any one of the third to fifth peaks of the range of nlV finding! ':l-, na, +r<+Special feature 11/ 1 Position measuring device according to claim 7. 9. Illumination f (fr, mark projection device i'i (9) J:,
The line of sight can be adjusted horizontally and finely adjusted vertically through the telescope (3) at angle A1 (16)! IVi characteristics, '1, '1. i′
1' Position measuring device according to any one of claims 7 and 8: l', f.
JP19913982A 1981-11-19 1982-11-15 Method and device for measuring position Pending JPS5890117A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813145823 DE3145823C2 (en) 1981-11-19 1981-11-19 Device for determining points
DE31458238 1981-11-19

Publications (1)

Publication Number Publication Date
JPS5890117A true JPS5890117A (en) 1983-05-28

Family

ID=6146708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19913982A Pending JPS5890117A (en) 1981-11-19 1982-11-15 Method and device for measuring position

Country Status (2)

Country Link
JP (1) JPS5890117A (en)
DE (1) DE3145823C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141602A (en) * 1988-11-24 1990-05-31 Seisho Kawabata Light marker
CN104677331A (en) * 2015-02-09 2015-06-03 山东电力工程咨询院有限公司 Spatial distance measurement method at alternating fixed points of conductor in long span

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO164946C (en) * 1988-04-12 1990-11-28 Metronor As OPTO-ELECTRONIC SYSTEM FOR EXACTLY MEASURING A FLAT GEOMETRY.
DE3827458C3 (en) * 1988-08-12 1998-04-09 Michael H Dipl Ing Korte Method and device for determining the spatial coordinates of any measuring point
DE4032657A1 (en) * 1990-10-15 1992-04-16 Pietzsch Ibp Gmbh METHOD AND MEASURING DEVICE FOR DETERMINING THE POSITION OF SPACE POINTS
EP0524533A3 (en) * 1991-07-16 1993-03-03 Frans Gall Aiming attachment for a telescopic sight of an optical system
NO302055B1 (en) * 1993-05-24 1998-01-12 Metronor As Geometry measurement method and system
EP1189022A1 (en) * 2000-09-13 2002-03-20 BAE SYSTEMS plc Measurement method to find position of a target on an object
CN102645311B (en) * 2011-12-12 2014-12-10 浙江吉利汽车研究院有限公司 Centering method for rod crash test

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE682835C (en) * 1935-06-23 1939-10-25 Aeg Procedure for distance measurement using several direction finding devices
DE1548389A1 (en) * 1965-08-20 1969-08-21 Bergwerksverband Gmbh Device for carrying out a process for excavating and mining mine workings
US3633010A (en) * 1970-05-04 1972-01-04 Geosystems Inc Computer-aided laser-based measurement system
CA1002744A (en) * 1973-05-23 1977-01-04 British Railways Board Optical system for datum establishment in roadway maintenance
DE2623369A1 (en) * 1976-05-25 1977-12-08 Guedesen Alwin Camera focussing aid for use in poor light - generates two identical small images which are brought to coincidence on object by movable mirror

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141602A (en) * 1988-11-24 1990-05-31 Seisho Kawabata Light marker
CN104677331A (en) * 2015-02-09 2015-06-03 山东电力工程咨询院有限公司 Spatial distance measurement method at alternating fixed points of conductor in long span

Also Published As

Publication number Publication date
DE3145823C2 (en) 1984-04-12
DE3145823A1 (en) 1983-05-26

Similar Documents

Publication Publication Date Title
US6166809A (en) System for point-by-point measuring of spatial coordinates
CN105021211B (en) A kind of attitude test device and method based on autocollimator
US7079234B2 (en) Method for determining the spatial location and position of a reflector rod in relation to a marked ground point
EP0829701B1 (en) Method and system for geometry measurement
ATE519092T1 (en) LASER-ASSISTED COORDINATE MEASURING APPARATUS AND LASER-ASSISTED COORDINATE MEASURING METHOD
JPS60185108A (en) Method and device for measuring body in noncontacting manner
JP2011158371A (en) Three-dimensional position measuring and marking system, and method of using the same
JPH04504469A (en) Device for forming or defining the location of measurement points
US6067152A (en) Alignment range for multidirectional construction laser
JPS5890117A (en) Method and device for measuring position
CN105509707A (en) Sliding rail type optical measurement device and method
CN111580127B (en) Mapping system with rotating mirror
CN1965211B (en) Device for positioning markings
CN105403194A (en) Optical calibration distance measuring and length measuring device and distance measuring and length measuring method
US3355979A (en) Attachment for a sighting device for sighting in opposite directions perpendicular to the optical axis of the device
JPH10293029A (en) Surveying machine with machine height measurement function
CN105509706A (en) Angle-variable optical measurement device method
CN105486277A (en) Slide rail type optical measuring device capable of changing angles and measuring method
CN105486237A (en) Point light source based measurement apparatus and measurement method
JPH06167184A (en) Irradiator of tunnel section
US7143520B2 (en) Alignment structure
CN205228437U (en) Variable angle&#39;s optical measuring device
SU665206A1 (en) Device for measuring deviation from plane shape of surfaces
JP2972880B1 (en) Measurement method of telescope origin position and intra-station delay time
JPS63191912A (en) Level setting device using laser light beam