JPS5889688A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS5889688A
JPS5889688A JP18779381A JP18779381A JPS5889688A JP S5889688 A JPS5889688 A JP S5889688A JP 18779381 A JP18779381 A JP 18779381A JP 18779381 A JP18779381 A JP 18779381A JP S5889688 A JPS5889688 A JP S5889688A
Authority
JP
Japan
Prior art keywords
boiling point
zone
coal
liquefaction
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18779381A
Other languages
Japanese (ja)
Other versions
JPS616113B2 (en
Inventor
Tsukasa Chikada
司 近田
Keiichi Sasaki
恵一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18779381A priority Critical patent/JPS5889688A/en
Publication of JPS5889688A publication Critical patent/JPS5889688A/en
Publication of JPS616113B2 publication Critical patent/JPS616113B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To improve the safety, yield of light oil, and operational efficiency of coal liquefaction, by slurrying solid coal with a tetraline-containing solvent, liquefying the slurry in the first liquefaction zone, separating into solid and liquid, and subjecting the product to the hydrocracking and fractional distillation in the second reaction zone and the subsequent zones. CONSTITUTION:Solid coal is mixed with a tetralin-containing solvent in the slurrying zone 1, liquefied in the second liquefaction reaction zone 2 under high termperature and pressure, and introduced into the solid-liquid separation zone 3. The unreacted insoluble matter containing the ash is introduced into the first liquefaction reaction zone 2, and the liquefied component is fractionated into a medium-heavy oil and a light oil. The medium-heavy oil is hydrocracked in the second liquefaction reaction zone 6 packed with a catalyst, and the hydrocracked product is separated into gas and liquid. The light oil is separated into gas and liquid, and the liquid component is fractionated in the fractional distillation zone 8 into the components having a boiling point of <=200 deg.C, 200-210 deg.C, 210-350 deg.C, and >=350 deg.C. The component having a boiling point of 210-350 deg.C is hydrocracked in third reaction zone 9 packed with a catalyst, and the product is sent to the separation zone 7. The component having a boiling point of >= 350 deg.C is introduced into the second liquefaction zone 6 and the slurrying zone 1, and the component having a boiling point of 200-210 deg.C is recycled to the slurrying zone 1.

Description

【発明の詳細な説明】 この発明は石炭の液化方法に関し、石炭の液化反応を効
率的に行なうと共に、装置運転の安全性の向上、及び軽
質生成油の収率向上を同時に計ることを目的とするもの
である。
[Detailed Description of the Invention] The present invention relates to a method for liquefying coal, and aims to efficiently carry out the coal liquefaction reaction, improve the safety of equipment operation, and improve the yield of light product oil at the same time. It is something to do.

石炭の液化は固体石炭を液状物に転換する技術であり、
反応の原理は従来から既に知られており、通常は高温高
圧下で石炭に水素を添加する方法が採られる。
Coal liquefaction is a technology that converts solid coal into liquid.
The principle of the reaction has been known for a long time, and the usual method is to add hydrogen to coal under high temperature and pressure.

このような石炭への水素添加に於て、導入される水素の
形態としては分子状水素ガスを直接用いるか、或いは水
素供与能を持つ溶剤中の水素が使用されるのが一般的で
ある。一方、固体石炭を高圧反応系内に連続的に直接導
入することは技術的に困難であるため、石炭を導入する
にあたっては固体石炭を粉砕し、これを媒体油と混合し
てスラリー状として高圧スラリーポンプにて連続的に高
圧系内に圧送する方法が採らする。このだめの媒体油の
量どしては、良好なスラリー性状を保持するために石炭
と等量以上、使用されるのが一般的である。そこで、水
素ガスを反応系内に導入した場合には、水素が石炭分子
に付加するためには、主に水素は先ず媒体油中に溶は込
み、次いでこの溶解水素が固体石炭と接触して初めて反
応が起こるものと推察される。ところが、水素ガスの媒
体油中への溶解度は比較的低く、媒体油1リットル当り
の溶解量は一般的な液化反応条件下に於ては大略1モル
程度である。従って、石炭の水素化分解反応速度を増進
せしめるためには、水素ガスの媒体油への溶解量を増大
させる必要があり、このために反応系圧力を増大させる
こととなる。故に、分子状水素を使用した従来−の液化
プロセスでは反応系内圧力はほぼ150〜700気圧と
非常に高圧であった。
In such hydrogen addition to coal, the form of hydrogen introduced is generally to use molecular hydrogen gas directly or to use hydrogen in a solvent with hydrogen donating ability. On the other hand, it is technically difficult to directly introduce solid coal continuously into a high-pressure reaction system, so when introducing coal, the solid coal is pulverized, mixed with medium oil, and made into a slurry that can be pressurized under high pressure. A method is adopted in which the slurry is continuously pumped into the high-pressure system using a slurry pump. The amount of medium oil in this reservoir is generally equal to or more than that of coal in order to maintain good slurry properties. Therefore, when hydrogen gas is introduced into the reaction system, in order for hydrogen to be added to coal molecules, hydrogen must first be dissolved into the medium oil, and then this dissolved hydrogen must come into contact with solid coal. It is assumed that the reaction occurs for the first time. However, the solubility of hydrogen gas in medium oil is relatively low, and the amount dissolved per liter of medium oil is approximately 1 mole under general liquefaction reaction conditions. Therefore, in order to increase the hydrocracking reaction rate of coal, it is necessary to increase the amount of hydrogen gas dissolved in the medium oil, which results in an increase in the reaction system pressure. Therefore, in the conventional liquefaction process using molecular hydrogen, the pressure inside the reaction system was extremely high, approximately 150 to 700 atmospheres.

一方、水素供与能を持つ溶剤(以下HDSと略称する)
中の水素を用いて石炭の水素化分解を行なう際には、H
DSが媒体油としての機能をも有すため、粉砕石炭はH
DSと混合してスラリーとすることができる。また、H
DSを使用した場合には液化反応系内の水素濃度を高く
することが可能でア偏例えばHDSの代表的物質である
テトラリンを使用した場合には、テトラリン1リットル
当り10モル以上の水素が含有されることとなる。従っ
て、 HDSを使用した系では水素が充分に存在するた
めに石炭の液化速度が速くなるのは勿論のこと、水素ガ
スを用いる場合のように反応系圧力を増大させる必要性
が減じ、装置運転の安全性が向上する。
On the other hand, a solvent with hydrogen donating ability (hereinafter abbreviated as HDS)
When performing hydrocracking of coal using hydrogen in H
Since DS also functions as a medium oil, pulverized coal is
It can be mixed with DS to form a slurry. Also, H
When using DS, it is possible to increase the hydrogen concentration in the liquefaction reaction system. For example, when using tetralin, a typical substance of HDS, 1 liter of tetralin contains 10 moles or more of hydrogen. It will be done. Therefore, in a system using HDS, not only does the coal liquefy rate become faster due to the sufficient presence of hydrogen, but the need to increase the reaction system pressure, which is the case when hydrogen gas is used, is reduced, making equipment operation easier. safety will be improved.

HDSは、このように反応および装置の安全性等の面か
ら非常に好ましいものであるが、これを工業化規模の連
続石炭液化プロセスに適用するためには、経済性の面か
らHDSを循環使用する必要がある。ところが、HDS
は石炭の液化反応に関与した後は脱水素化物に変化する
ため、と−れをHDSとして循環使用するためには脱水
素化物を水添してHDSに再生する工程、即ち溶剤再生
工程が必要となる。従って、液化後の溶剤は溶剤水素化
再生工程を経て、元のスラリー化工程に循環されること
となるが、この場合循環使用中にI(DSの濃度が次第
に下がり、従来の実用化を目指すプロセスではスラリー
化溶剤中のHDS濃度は最大30チ程度となる。このよ
うにHDS濃度が減少する原因としては、例えば石炭か
らの液化成分が溶剤中に混入してHD8濃度を下げたこ
と、或いは溶剤再生工程での反応が進行しに< < H
DSの再生が充分には達成されなかったこと、及びHD
S自身が石炭の液化反応とは無関係に分解等を起こして
非水素供与性成分に変化したこと、等が考えられる。
As described above, HDS is very preferable from the viewpoint of reaction and equipment safety, but in order to apply it to an industrial-scale continuous coal liquefaction process, it is necessary to recycle HDS from an economic standpoint. There is a need. However, HDS
After it participates in the coal liquefaction reaction, it changes to dehydrogenated products, so in order to recycle it as HDS, a process of hydrogenating the dehydrogenated product and regenerating it into HDS is required, that is, a solvent regeneration process. becomes. Therefore, the solvent after liquefaction will go through the solvent hydrogenation regeneration process and be recycled back to the original slurry process. In the process, the maximum HDS concentration in the slurry solvent is about 30%.The causes of this decrease in HDS concentration include, for example, liquefied components from coal mixed into the solvent and lowering the HD8 concentration; As the reaction in the solvent regeneration process progresses, <<H
DS playback was not fully achieved, and HD
It is conceivable that S itself decomposed and changed into a non-hydrogen-donating component, unrelated to the coal liquefaction reaction.

HD8成分としては、多環芳香族部分水素化物が一般的
でアシ、殊に2環、3環芳香族部分水素化物が石炭液化
用HDSとして使用される。これら2.3環芳香族物質
及びそれらの誘導体は概ね沸点180〜400℃程度で
あるため、この範゛囲の成分を水素化すればHDSが得
られることとなる。従ってこの程度の範囲の成分を石炭
液化用HD8として使用することも可能であるが、しか
しながらこの範囲にはもともとHDSとは成り難い成分
が相当置台まれていることがあり、また石炭からの液化
成分がこの中に次々と混入する可能性も高く、循環使用
によってHDSの濃度が低下する危険性を有す。
As the HD8 component, polycyclic aromatic partial hydrides are generally used, and especially 2- and 3-ring aromatic partial hydrides are used as HDS for coal liquefaction. Since these 2.3-ring aromatic substances and their derivatives generally have a boiling point of about 180 to 400°C, HDS can be obtained by hydrogenating components within this range. Therefore, it is possible to use components within this range as HD8 for coal liquefaction; however, there may be a considerable amount of components within this range that are difficult to form into HDS, and there may also be a large amount of components in this range that are difficult to form into HDS. There is a high possibility that HDS will be mixed into this one after another, and there is a risk that the concentration of HDS will decrease due to cyclic use.

更に、例えば沸点180〜400℃成分、或いは250
〜400℃成分等を水素化してHDSを製造、或いは再
生する場合、HDSへの転化率は芳しくないのが一般的
である。何故なら、このような沸点範囲の溶剤を原料と
した場合には溶剤中に非常に多くの成分が含まれている
ことは容易に想像でき、またこれらの各成分のHDSへ
の転化速度も種々異なるだろうことは想像に難くない。
Furthermore, for example, a component with a boiling point of 180 to 400°C, or a component with a boiling point of 250°C
When HDS is produced or regenerated by hydrogenating components at temperatures of up to 400°C, the conversion rate to HDS is generally poor. This is because when a solvent with such a boiling point range is used as a raw material, it is easy to imagine that the solvent contains a large number of components, and the conversion rate of each of these components to HDS also varies. It's not hard to imagine that it would be different.

従って、この混合成分からなる原料を一度に処理してH
DSを製造する場合、例えばHDSの製造条件を温和に
すれば転化速度の速い成分はHDSに転化するが、転化
速度の遅い成分はHDSに転化し難い。逆に’1(DS
の製造条件を過酷にすれば転化速度の遅い成分もHDS
に転化するものの、転化速度の速い成分は一度HDSに
転化した後、更に水素化されて例えば芳香環の完全な訳
で一般には、HDSへの高転化率は達成しにくいことと
なる。同時にHDSの一部は石炭液化反応とは無関係に
芳香環の飽和、環開裂、或いは不可逆的な異性化反応等
を起こし、非水素供与性成分に転化する可能性をも有し
ている。以上のような理由から、特別の配慮がなされな
い限り溶剤中のHDSの濃度は次第に低下してしまうこ
ととなる。
Therefore, by processing the raw material consisting of this mixed component at once, H
When producing DS, for example, if HDS production conditions are made mild, components with a high conversion rate will be converted to HDS, but components with a slow conversion rate will be difficult to convert into HDS. On the contrary, '1 (DS
If the manufacturing conditions are made harsher, components with a slow conversion rate can also be
However, once a component with a high conversion rate is converted to HDS, it is further hydrogenated, and for example, the aromatic ring is completely destroyed, so it is generally difficult to achieve a high conversion rate to HDS. At the same time, a portion of HDS also has the possibility of undergoing aromatic ring saturation, ring cleavage, or irreversible isomerization reactions, etc., independently of the coal liquefaction reaction, and converting into non-hydrogen-donating components. For the above reasons, unless special consideration is given, the concentration of HDS in the solvent will gradually decrease.

ところで、石炭の液化反応は出発物質である石炭が非常
に複雑な高分子混合物であるために、液化反応経路もま
た非常に複雑なものとなる。しかしながら、一般には大
分子の固体石炭は液化反応条件下にjて、先ず成極の溶
剤に可溶な程度の中分子に迄分解する。次いでこの中分
子が更に分解、低分子化して最終的には常温液状物、或
いはそれに近い物質に迄低分子化して反応を完結するこ
ととなる。この場合、初期の、溶剤可溶な中分子にまで
分解する速度は速く、この中分子が更に分解、低分子化
する。後期の反応の速度は比較的遅い。更に、これらの
1反応の内容については、勿論種々の反応が併起してい
る筈であるが、主には初期の反応は芳香族単位構造間の
エーテル結合の切断反応等であり、後期の反応は、芳香
環の飽和、或いは開環、脂肪族側鎖の切断等である。こ
れらの反応の内容からしても、発明者らが種々基礎的な
実験検討を積み重ねたところ、テトラリンの如きHDS
は初期の反応には非常に有効であるが、後期の芳香環の
飽和反応等には顕著な効果を示さないことが判明した。
By the way, in the coal liquefaction reaction, since the starting material of coal is a very complex polymer mixture, the liquefaction reaction route is also very complicated. However, in general, large-molecular solid coal is first decomposed under liquefaction reaction conditions into medium-molecular molecules that are soluble in the polarization solvent. Next, this middle molecule is further decomposed and reduced in molecular weight, and finally, the reaction is completed by reducing the molecular weight to a liquid at room temperature or a substance close to it. In this case, the initial rate of decomposition into solvent-soluble middle molecules is fast, and these middle molecules are further decomposed and reduced in molecular weight. The speed of the late reaction is relatively slow. Furthermore, regarding the contents of each of these reactions, of course various reactions must occur simultaneously, but the main reaction is the cleavage of ether bonds between aromatic unit structures, etc. in the later stage. Reactions include saturation or ring opening of aromatic rings, cleavage of aliphatic side chains, and the like. Based on the content of these reactions, the inventors have accumulated various basic experimental studies and found that HDS such as tetralin
It was found that although it is very effective in the early stage of the reaction, it does not show any significant effect in the late stage of the aromatic ring saturation reaction.

そこで、後期の反応を促進させるだめの触媒の使用も考
慮されるが、液化反応系に高活性な触媒を使用すると非
常に短期間のうちに性能低下をきたすため、経済的に使
用困難となる。
Therefore, the use of a catalyst that accelerates the late reaction is considered, but if a highly active catalyst is used in the liquefaction reaction system, the performance will deteriorate in a very short period of time, making it economically difficult to use. .

この原因は、石炭中に含まれる高分子成分或いは灰分等
が強烈に触媒を被毒するためである。
The reason for this is that the polymer components, ash, etc. contained in the coal strongly poison the catalyst.

本発明は以上の知見に基いてなされたもので、石炭の液
化反応を効率的に行なうと共に、装置運転の安全性の向
上、及び軽質液状油の収率向上を同時に計ることを目的
とするものである。更に詳しく言えば、(a)石炭質固
体とテトラリンを含有した溶剤とを混合してスラリーと
なし、該スラリーを第一液化反応域に導入して高温加圧
下で石炭を液化し;(b)不一″性物質及び溶剤を含む
液化した石炭を固液分離域に導入して、溶剤を含む液化
した石炭と灰分を含む未反応不溶性物質とに分離し;(
c)灰分を含む未反応不溶性物質の全量または一部を第
一液化反応域に導入し;(d)溶剤を含む液化した石炭
は中重質油成分と軽質油成分とに分別し;(e)中重質
油成分は触媒を充填した第二液化反応域に水素ガスとと
もに導入して水添分解し;(f)水添分解物をガスと液
状物とに分別し;(g)前記(d)にて得られた軽質油
成分はガスと常温液状物とに分別し;(h)前記(f)
 、(g)にて得られた液状物は分留域で沸点200℃
以下成分、沸点200〜210℃成分、沸点210〜3
50℃成分、及び沸点350℃以上成分に分別し;(i
)沸点210〜350℃成分の全量または一部を触媒を
充填した第三反応域に水素ガスとともに導入して水添分
解し°、反応後生酸物は前記(f)の分離域に導入し;
(j)沸点350℃以上成分の全tまたは一部を前記(
e)の第二液化反応域、及び前記(a)のスラリー化域
に導入し;(k)沸点200〜210℃成分の全量また
は一部を前記(a)のスラリー化域に導入することを特
徴とするものである。
The present invention was made based on the above findings, and aims to efficiently carry out the coal liquefaction reaction, improve the safety of equipment operation, and improve the yield of light liquid oil at the same time. It is. More specifically, (a) coaleous solids and a solvent containing tetralin are mixed to form a slurry, and the slurry is introduced into a first liquefaction reaction zone to liquefy the coal under high temperature and pressure; (b) The liquefied coal containing the amorphous substance and the solvent is introduced into a solid-liquid separation zone to separate it into the liquefied coal containing the solvent and the unreacted insoluble substance containing the ash;
c) introducing all or part of the unreacted insoluble material containing ash into the first liquefaction reaction zone; (d) separating the liquefied coal containing the solvent into a medium-heavy oil component and a light oil component; (e) ) The medium and heavy oil components are introduced together with hydrogen gas into a second liquefaction reaction zone filled with a catalyst and hydrogenolyzed; (f) the hydrogenated product is separated into gas and liquid; (g) the above ( The light oil component obtained in step d) is separated into gas and room temperature liquid; (h) the step (f) above;
The liquid obtained in (g) has a boiling point of 200°C in the fractional distillation region.
The following ingredients, boiling point 200-210℃ Ingredients, boiling point 210-3
Separate into 50℃ component and component with boiling point of 350℃ or higher; (i
) All or part of the component with a boiling point of 210 to 350° C. is introduced into a third reaction zone filled with a catalyst together with hydrogen gas for hydrogenolysis, and after the reaction, the raw acid is introduced into the separation zone of (f);
(j) All or part of the components with a boiling point of 350°C or higher are added to the above (
e) into the second liquefaction reaction zone and the slurry zone of (a); (k) introduce all or part of the component with a boiling point of 200 to 210° C. into the slurry zone of (a); This is a characteristic feature.

この発明法では、先ずテトラリンに富んだ溶剤と微粉砕
した石炭とを混合してスラリーとし、高温加圧下にて石
炭を液化させる。この際、石炭と溶剤との混合比は石炭
1重量部に対して溶剤1〜5重量部が適当である。溶剤
量が石炭と等量以下では良好なスラリーを形成しにくく
、また5倍量以上ではスラリーを加熱するだめの熱量が
多くなり過ぎ経済的に不利となるからである。また、溶
剤成分としては水素供与能を有すテトラリンを好ましく
は50%以上含有すべきであり、これによって石炭の水
添分解のだめの水素量を充分に確保で”きる。このよう
にして調製されたスラリーは、例えば温度400〜44
0℃、圧力30〜100 kg/crllの第一液化反
応域に於て1〜120分間程度液化反応に付される。勿
論、上記反応条件はこの発明法に何らの制約を与えるも
のではなく、この発明法を実施する際の一例に過ぎない
。ただ、例示した反応条件は分子状水素ガスを使用した
一般的な液化法に対し、温度、圧力ともに比較的温和と
なっており、HDSを使用した場合にはこのように温和
な条件下で反応が円滑に進行することが理解されるべき
である。
In this method, a tetralin-rich solvent and pulverized coal are first mixed to form a slurry, and the coal is liquefied under high temperature and pressure. At this time, the appropriate mixing ratio of coal and solvent is 1 to 5 parts by weight of solvent to 1 part by weight of coal. This is because if the amount of solvent is less than the same amount as coal, it is difficult to form a good slurry, and if the amount is more than 5 times the amount of coal, the amount of heat required to heat the slurry becomes too large, which is economically disadvantageous. In addition, the solvent component should preferably contain 50% or more of tetralin, which has the ability to donate hydrogen, so that a sufficient amount of hydrogen can be secured for the hydrogenolysis of coal. For example, the slurry at a temperature of 400 to 44
A liquefaction reaction is carried out for about 1 to 120 minutes in a first liquefaction reaction zone at 0°C and a pressure of 30 to 100 kg/crll. Of course, the above reaction conditions do not impose any restrictions on the method of this invention, but are merely an example of implementing the method of this invention. However, the reaction conditions illustrated are relatively mild in both temperature and pressure compared to the general liquefaction method using molecular hydrogen gas, and when HDS is used, the reaction can be performed under such mild conditions. It should be understood that this will proceed smoothly.

第一液化反応域に於て液化反応゛に付したスラリーは、
次いで固液分離して液化石炭と未反応石炭とに分別する
。この固液分離技術としては、濾過法、遠心分離法、蒸
留法等種々の方法が開発されているが、この発明法に於
てはどの方法を採用することも可能である。ここに於て
、灰分を含む未反応石炭が除去さ扛ることとなるが、こ
の一部は第一液化反応域に循環し、再び液化反応に付し
て石炭の軽質化の向上を計る。他方、溶剤を含む液化石
炭は中重質油成分と軽質油成分とに分別される。分別さ
れた本質的に灰分、未反応石炭を含まぬ中重質油成分は
、次いで第二液化反応域に導入され、水添軽質化が計ら
れる。ただ、ここに導入。
The slurry subjected to the liquefaction reaction in the first liquefaction reaction zone is
Next, solid-liquid separation is performed to separate liquefied coal and unreacted coal. Various methods such as filtration, centrifugation, and distillation have been developed as this solid-liquid separation technique, and any of these methods can be employed in the method of this invention. Here, unreacted coal containing ash is removed, but a portion of this is circulated to the first liquefaction reaction zone and subjected to the liquefaction reaction again to improve the lightness of the coal. On the other hand, liquefied coal containing a solvent is separated into medium-heavy oil components and light oil components. The separated medium and heavy oil components, which are essentially free of ash and unreacted coal, are then introduced into the second liquefaction reaction zone where they are hydrogenated and lightened. However, it is introduced here.

さ扛た物質はその多くが中分子の液化した石炭であり、
これが更に軽質化する反応は比較的遅い。
Most of the material that was crushed was liquefied coal with medium molecular weight.
The reaction of further lightening is relatively slow.

そこで、この第二液化反応域では触媒が使用されること
となるが、ここではあらかじめ触媒に悪影響を与える物
質の多くが除去されているため、触媒の性能劣化が抑制
されることとなる。また、この反応域では中重質油成分
そのものが加温下では液状物として存在するため、第一
液化反応域の如くスラリー化する必要はなく、スラリー
化溶剤の添加は不要である。そこでこの反応域での水素
源としては、分子状水素ガスを導入する方法を採るのが
好都合である。他方、この第二液化反応域に於て使用さ
れる触媒としては、反応の本質が水素化、及び分解反応
であることからすたば、この両反応を活性化する二元機
能触媒が好ましく、例えば市販脱硫触媒を転用すること
も充分可能である。
Therefore, a catalyst is used in this second liquefaction reaction zone, but since most of the substances that have an adverse effect on the catalyst are removed in advance, deterioration of the catalyst's performance is suppressed. Furthermore, in this reaction zone, since the medium-heavy oil component itself exists as a liquid substance under heating, there is no need to slurry it as in the first liquefaction reaction zone, and there is no need to add a slurrying solvent. Therefore, it is convenient to introduce molecular hydrogen gas as a hydrogen source in this reaction zone. On the other hand, since the essence of the reaction is hydrogenation and decomposition reaction, the catalyst used in the second liquefaction reaction zone is preferably a dual-functional catalyst that activates both of these reactions. For example, it is fully possible to reuse a commercially available desulfurization catalyst.

勿論、如何なる触媒を如何なる形で使用するかは、この
発明法の本質に関して何らの影響も与えないことは理解
されるべきである。
Of course, it should be understood that which catalyst is used in what form has no effect on the essence of the process of this invention.

第二液化反応域に於て水素化、軽質化された成分は、次
いで未反応水素、及び炭化水素を主成分とするガスと液
状物とに分別される。一方、前記固液分離後の溶剤を含
む液化石炭のうちの軽質油成分については炭化水素を主
成分とするガスと常温液状物とに分別される。このよう
にして得られ350℃以上の各成分に分別される。
The hydrogenated and lightened components in the second liquefaction reaction zone are then separated into unreacted hydrogen, a gas mainly composed of hydrocarbons, and a liquid. On the other hand, the light oil component of the liquefied coal containing the solvent after the solid-liquid separation is separated into a gas mainly composed of hydrocarbons and a room temperature liquid. The product obtained in this manner is separated into each component having a temperature of 350°C or higher.

ここにて得られた沸点210〜350℃成分は第三反応
域に水素ガスと共に導入されて触媒存在下で水素化反応
に付される。即ち、この第三反応域に於て該成分が主に
芳香環の部分水素化反応を受けてHDS ’%即ち主に
テトラリンが製造されることとなる。ここにて水素化反
応を受けた成分は、未反応水素等のガスを分離した後、
全量が前記分留域に戻され、既述の各成分に分別される
こととなる。
The component with a boiling point of 210 to 350° C. obtained here is introduced into the third reaction zone together with hydrogen gas and subjected to a hydrogenation reaction in the presence of a catalyst. That is, in this third reaction zone, the component mainly undergoes a partial hydrogenation reaction of aromatic rings to produce HDS'%, that is, mainly tetralin. The components that have undergone the hydrogenation reaction are separated from unreacted hydrogen and other gases, and then
The entire amount is returned to the fractionation area and is separated into the aforementioned components.

伺、第三反応域の反応条件は、この発明法の本質に関し
て何らの影響も与えないことは理解されるべきである。
It should be understood that the reaction conditions in the third reaction zone have no effect on the nature of the process of this invention.

一方、沸点350℃以上成分の一部は前記第二液化反応
域に循環し、再度水添軽質化が計られる。
On the other hand, a part of the components with a boiling point of 350° C. or higher is circulated to the second liquefaction reaction zone, where hydrogenation and lightening are again attempted.

このようにして得られた生成テトラリン、及び未反応テ
トラリンは、沸点200〜210℃留分中にほぼ全量が
回収され、HDSとして循環使用声れることとなる。同
、この際スラリー化溶剤として少量の沸点350℃以上
成分を混合することによシ、溶剤粘度が改善され、スラ
リー性状が良好となるものである。しかしながら、この
成分を内置に循環溶剤中に混合するとHDSの濃度が下
がり、第一液化反応域における一石炭の液化速度が減少
するため好ましくない。従ってこの重質成分の混合量は
好ましくはスラリー化溶剤量の50 wt4以下、とす
べきである。
Almost all of the thus obtained tetralin and unreacted tetralin are recovered in a fraction with a boiling point of 200 to 210° C., and are recycled as HDS. At this time, by mixing a small amount of a component with a boiling point of 350° C. or higher as a slurry-forming solvent, the viscosity of the solvent is improved and the properties of the slurry are improved. However, internally mixing this component into the circulating solvent is undesirable because it lowers the concentration of HDS and reduces the liquefaction rate of one coal in the first liquefaction reaction zone. Therefore, the amount of this heavy component mixed should preferably be less than 50 wt4 of the amount of slurrying solvent.

この発明法によれば、高濃度テトラリンを石炭液化用溶
剤として循環使用することが可能となり、石炭の液化反
応が効率的になされるとともに1.装置運転の安全性の
向上、及び軽質生成油の収率向上を計れる等、その技術
的、経済的価値は非常に大きいものである。
According to the method of this invention, it is possible to recycle high-concentration tetralin as a solvent for coal liquefaction, and the coal liquefaction reaction is carried out efficiently.1. It has great technical and economic value, such as improving the safety of equipment operation and improving the yield of light product oil.

次に、この発明法を工業的に実施するだめの装置の一例
を図面に示す概略フローシートに基いて説明する。
Next, an example of an apparatus for industrially implementing the method of this invention will be explained based on a schematic flow sheet shown in the drawings.

図中1はスラリー化域であり、ここにて粉砕石炭と溶剤
とが充分に混合、調製される。スラリーは次いで2の第
一液化反応域に導入され、高温加圧下にて液化反応に付
される。液化後の生成物は3の固液分離域にて未反応固
体残渣と液状物とに分別される。ここにて分離された残
渣の一部は第一液化反応域に循環し、再度液化反応に付
される。
In the figure, reference numeral 1 is a slurry forming area, where the pulverized coal and the solvent are thoroughly mixed and prepared. The slurry is then introduced into the first liquefaction reaction zone 2 and subjected to a liquefaction reaction under high temperature and pressure. The product after liquefaction is separated into an unreacted solid residue and a liquid in solid-liquid separation zone 3. A part of the residue separated here is circulated to the first liquefaction reaction zone and subjected to the liquefaction reaction again.

一方、液状物は次の4の分離域に導入され中重質油成分
と軽質油成分とに分別される。中重質油成分は続いて6
の第二液化反応域に水素ガスとともに導入されて、触媒
存在下で水素化分解反応に付される。反応後の生成物は
7の分離域にて未反応水素、メタン等を主成分とするガ
スと液状物とに分別される。一方、4の分離域にて分別
された軽質油成分は続いて5の分離域にてメタン、CO
2等を主成分とするガスと常温液状物とに分別される。
On the other hand, the liquid material is introduced into the following four separation zones and is separated into medium-heavy oil components and light oil components. The medium and heavy oil components are 6
is introduced into the second liquefaction reaction zone along with hydrogen gas, and subjected to a hydrocracking reaction in the presence of a catalyst. The product after the reaction is separated into a gas containing unreacted hydrogen, methane, etc. as main components and a liquid in a separation zone 7. On the other hand, the light oil component separated in separation zone 4 is then converted into methane and CO in separation zone 5.
It is separated into a gas whose main components are 2 etc. and a liquid substance at room temperature.

このようにして得られた7及び5からの液状物は8の分
留域に導入され、沸点200℃以下成分、沸点200〜
210℃成分、沸点210〜350℃成分、及び沸点3
50℃以上成分に分別される。この内の沸点210〜3
50℃成分の全量または一部は、続いて9の第三反応域
に水素ガスとともに導入されて触媒存在下で水素化反応
に付される。反応後の生成物は7の分離域に導入されて
ガスと液状物とに分別される。また、沸点350℃以上
の重質成分の一部は6の第二液化反応域に導入されて再
び水素化分解、軽質化が計られる。このようにして生成
、回収された液状物のうち沸点200〜210℃成分の
全景または一部と、沸点350’C以上成分の全量また
は一部が混合されて、石炭液化用溶剤として1のスラリ
ー化域に戻され循環使用されることとなる。
The liquids obtained in this way from 7 and 5 are introduced into the fractionation zone 8, and the components with a boiling point of 200°C or lower and the components with a boiling point of 200 to
210℃ component, boiling point 210-350℃ component, and boiling point 3
Separated into components above 50°C. Of these, the boiling point is 210-3
All or part of the 50° C. component is then introduced into the third reaction zone 9 together with hydrogen gas and subjected to a hydrogenation reaction in the presence of a catalyst. The product after the reaction is introduced into separation zone 7 and separated into gas and liquid. Further, a part of the heavy components having a boiling point of 350° C. or higher is introduced into the second liquefaction reaction zone 6, where they are again subjected to hydrogenolysis and lightening. Of the liquids produced and recovered in this way, all or part of the components with a boiling point of 200 to 210°C and all or part of the components with a boiling point of 350'C or higher are mixed to form a slurry as a solvent for coal liquefaction. It will be returned to the storage area and used for circulation.

以下、この発明の各工程における実施例につき説明する
Examples of each step of this invention will be described below.

〔実施例1〕 石炭液化用装置として内容積500 ccの回転式オー
トクレーブを使用し、第1表に示す性状を有す石炭を1
00メソシユ以下に粉砕したもの309とテトラリフ 
120 gとを充填し、窒素初圧30に9/crlaと
して反応温度400°Cにて120分間石炭の液化反応
を行なった。反応後、装置を室温まで急冷し、装置内ガ
スの体積及び成分々析を行なって発生ガスの定量を行な
うと共に、液状物は全量を定量的に回収した後、減圧蒸
留して大気圧換算で沸点400℃以下成分と400℃以
上成分とに分別した。
[Example 1] A rotary autoclave with an internal volume of 500 cc was used as a coal liquefaction device, and coal having the properties shown in Table 1 was
309 crushed to less than 00 mesoyu and Tetrarif
120 g of coal was charged, and a coal liquefaction reaction was carried out at an initial nitrogen pressure of 30 and 9/crla at a reaction temperature of 400°C for 120 minutes. After the reaction, the apparatus is rapidly cooled to room temperature, and the volume and components of the gas inside the apparatus are analyzed to determine the amount of generated gas.After quantitatively recovering the entire amount of liquid material, it is distilled under reduced pressure and converted to atmospheric pressure. It was separated into components with boiling points below 400°C and components with boiling points above 400°C.

分別後の沸点400℃以上成分についてはベンゼン抽出
、及び灰分分析を行ない、原炭に対するベンゼン不溶分
量を算出した。
Benzene extraction and ash content analysis were performed for components with a boiling point of 400° C. or higher after the separation, and the amount of benzene insoluble in raw coal was calculated.

次に、上記と同様の装置に石炭30I!と初圧80kg
/crjaの水素ガスを充填し、反応温度400℃にて
120分間液化反応を行なった。反応後、同様のガス分
析を行なうと共に、装置内残留物は200gのベンゼン
を使用して定量的に洗浄、回収した後同様に蒸留して沸
点400℃以上成分を得、これを同様にベンゼン抽出し
た。
Next, add 30 I of coal to the same device as above! and initial pressure 80kg
/crja of hydrogen gas was filled, and a liquefaction reaction was carried out at a reaction temperature of 400° C. for 120 minutes. After the reaction, the same gas analysis was performed, and the residue inside the device was quantitatively washed and recovered using 200 g of benzene, and then distilled in the same way to obtain components with boiling points of 400°C or higher, which were similarly extracted with benzene. did.

第2表には両液化実験の結果を示したが、テトラリンを
使用した場合の方が、水素ガスの場合よりもベンゼン不
溶分量が少なく、大分子の石炭をベンゼンに可溶な程度
の中分子にまで液化させる能力は、水素ガスよりもテト
ラリンの方が優れていることが分る。一方、沸点400
℃以上成分の割合は水素ガス、テトラリンどちらを用い
た場合も顕著な差はなく、大分子の石炭を常温液状物程
度にまで液化させる能力には顕著な差はないもqと予想
される。
Table 2 shows the results of both liquefaction experiments, and when using tetralin, the amount of benzene-insoluble matter is smaller than when using hydrogen gas. It can be seen that tetralin has a better ability to liquefy hydrogen gas than hydrogen gas. On the other hand, boiling point 400
There is no noticeable difference in the proportion of components above ℃ whether hydrogen gas or tetralin is used, and it is expected that there will be no noticeable difference in the ability to liquefy large molecular coal to the level of a liquid at room temperature.

〔実施例2〕 実施例1と同様の装置を使用し、石炭30gとテトラリ
y120g、及び初圧30 kg /cr?i Gの窒
素を充填して反応温度400℃にて60分間石炭の液化
反応を行なった。反応後ガス分析を実施すると共に、液
状物は実施例1と同様に蒸留、分別した。分別後の沸点
400℃以上成分は全量をベンゼン抽出し、溶剤ベン1
1を蒸留除去して、沸点400℃以上のベンゼン可溶分
を得だ。このベンゼン可溶分全量を上記と同様の装置に
充填し、これにコバルト−モリブデン系触媒15wt%
を添加すると共に初圧80#I /cr/LGの水素ガ
スを充填して、反応温度400℃にて、60分間水素化
分解反応を行なった。反応後、ガス分析を実施すると共
に、装置内残留物は200gのベンゼンで定量的に洗浄
、回収し、これを蒸留して沸点400℃以下成分と以上
成分とに分別しは133gであり、この中には添加触媒
C1,5g)も含まれていることを考慮すれば、石炭由
来の成分量はほぼ129程度ということになる。一方、
実施例1の方法にて生成した沸点400℃以上成分の量
は約18gであることからすれば、触媒を使用した二段
階反応が、石炭の軽質化には非常に有効な方法であるこ
とが理解される。
[Example 2] Using the same apparatus as in Example 1, 30 g of coal, 120 g of tetrary, and an initial pressure of 30 kg/cr? The reactor was filled with iG of nitrogen and a coal liquefaction reaction was carried out at a reaction temperature of 400° C. for 60 minutes. After the reaction, gas analysis was carried out, and the liquid material was distilled and fractionated in the same manner as in Example 1. After fractionation, the entire amount of components with a boiling point of 400°C or higher is extracted with benzene, and the solvent
1 was removed by distillation to obtain a benzene-soluble component with a boiling point of 400°C or higher. The entire amount of benzene soluble content was charged into the same equipment as above, and 15 wt% of cobalt-molybdenum catalyst was added to the same equipment as above.
was added and filled with hydrogen gas at an initial pressure of 80 #I/cr/LG, and a hydrogenolysis reaction was carried out at a reaction temperature of 400° C. for 60 minutes. After the reaction, a gas analysis was carried out, and the residue in the device was quantitatively washed and recovered with 200 g of benzene, which was distilled and separated into components with boiling points below 400°C and components with boiling points above 400°C. Considering that it also contains an added catalyst (C1.5 g), the amount of components derived from coal is approximately 129. on the other hand,
Considering that the amount of the component with a boiling point of 400°C or higher produced by the method of Example 1 is approximately 18 g, it is clear that the two-step reaction using a catalyst is a very effective method for lightening coal. be understood.

〔実施例3〕 実施例2と同様の方法で石炭の液化実験を繰り返し行な
い、得られた沸点400℃以下成分を再度蒸留して沸点
範囲210〜350℃成分、約100gを取得した。
[Example 3] Coal liquefaction experiments were repeated in the same manner as in Example 2, and the obtained component with a boiling point of 400°C or lower was distilled again to obtain about 100 g of a component with a boiling point range of 210 to 350°C.

次に、実施例1と同様の装置を使用して、これに沸点2
10〜350℃成分30gとニッケルーモリブデン系触
媒459反び初圧100kg/c!!Gの水素ガスを充
填して反応温度400℃にて60分間水素化反応を行っ
た。反応後の成分は200gのベンゼンを使用して定量
的に洗浄、回収した。回収後の成分は全量を蒸留して、
沸点200℃以、下成分、沸点200〜210℃成分、
沸点210°C以上成分以上外別した。
Next, using the same apparatus as in Example 1, this was heated to a boiling point of 2.
10~350℃ component 30g and nickel-molybdenum catalyst 459 warping initial pressure 100kg/c! ! It was filled with hydrogen gas (G) and a hydrogenation reaction was carried out at a reaction temperature of 400° C. for 60 minutes. The components after the reaction were quantitatively washed and recovered using 200 g of benzene. After recovery, the entire amount of the components is distilled,
Boiling point 200°C or less, lower component, boiling point 200-210°C component,
Components with a boiling point of 210°C or higher were separated.

次に、反応時間を240分として、別途同様の実験を行
った。
Next, a similar experiment was conducted separately with a reaction time of 240 minutes.

更に、反応時間を60分として、別途同様の実験を行な
い、反応後蒸留して得られた沸点210℃以上成分を、
再度100に9/crlGの水素ガス存在下で水素化反
応を行なった。反応後、再び同様の操作を繰り返し、最
終的には反応、蒸留の繰り返しを4回行なった。
Furthermore, a similar experiment was conducted separately with a reaction time of 60 minutes, and the components with a boiling point of 210°C or higher obtained by distillation after the reaction were
The hydrogenation reaction was carried out again in the presence of hydrogen gas of 100 to 9/crlG. After the reaction, the same operation was repeated again, and finally the reaction and distillation were repeated four times.

第4表には以上の実験の結電を示したが、反応時間60
分或いは240分で行なった1パスの実験よりも、反応
時間60分で4回リサイクルさせた実験の方が沸点20
0〜210℃成分の収率が高く、従ってこのようなリサ
イクルの方法が沸点200〜210℃成分の選択的生成
反応には非常に有効であることが理解移れる。
Table 4 shows the electrical conductivity of the above experiment, and the reaction time was 60
An experiment in which the reaction time was 60 minutes and was recycled four times was higher than a one-pass experiment in which the boiling point was 20 minutes or 240 minutes.
It can be understood that the yield of the 0-210°C component is high, and that such a recycling method is very effective for the selective production reaction of the 200-210°C boiling point component.

第1表 第2表 第3表 充填量 石炭30g、テトラリン120g、 N2ガス14.2
&触媒1.5g、H2ガス37g、洗浄用ベンゼン20
0g第4表
Table 1 Table 2 Table 3 Charging amount Coal 30g, Tetralin 120g, N2 gas 14.2
& Catalyst 1.5g, H2 gas 37g, benzene 20 for cleaning
0g Table 4

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の1つの具体例の概略フローシートであ
る。 1ニスラリ−化成 2:第一液化反応域 3:固液分離域 4.5=分離域 6:第二液化反応域 7:分離域 8:分 留 域 9:第三反応域
The drawing is a schematic flow sheet of one embodiment of the invention. 1 Nislurry chemical formation 2: First liquefaction reaction zone 3: Solid-liquid separation zone 4.5 = Separation zone 6: Second liquefaction reaction zone 7: Separation zone 8: Fractional distillation zone 9: Third reaction zone

Claims (1)

【特許請求の範囲】[Claims] (、)石炭質固体とテトラリンを含有した溶剤とを混合
してスラリーとなし、該スラリーを第一液化反応域に導
入して高温加圧下で石炭を液化し;(b)不溶性物質及
び溶剤を含む液化した石炭を固液分離域に導入して、溶
剤を含む液化した石炭と灰分を含む未反応不溶性物質と
に分離し;(C)灰分を含む未反応不溶性物質の全量ま
たは一部を第一液化反応域に導入し;(d)溶剤を含む
液化した石炭は中重質油成分と軽質油成分とに分別し;
(e)中重質油成分は触媒を充填した第二液化反応域に
水素ガスとともに導入して水添分解し;(f)水添分解
物をガスと液状物とに゛分別し;(g)前記(d)にて
得られた軽質油成分はガスと常温液状物と゛に分別し;
(h)前記(f)、(g)にて得られた浚秋物は分留域
で沸点200℃以下成分、°沸点200〜′210℃成
分、沸点210〜350℃成分、及び沸点350℃以上
成分に分別し;(i)沸点210〜350℃成分の全量
または一部を触媒を充填した第三反応域に水素ガスとと
もに導入して水添分解し、反応後生酸物は前記(f))
の分離域に導入し;(j)沸点350℃以上成分の全量
または一部を前記(e)の第二液化反応域、及び前記(
a)のスラリー化′域に導入し;(k)沸点200〜2
10℃成分の全量または一部を前記(、)のスラリー化
域に導入することを特徴とする石炭の液化方法。
(a) mixing coaly solids and a solvent containing tetralin to form a slurry, introducing the slurry into a first liquefaction reaction zone to liquefy the coal under high temperature and pressure; (b) removing insoluble substances and the solvent; (C) introducing the liquefied coal containing the solvent into a solid-liquid separation zone to separate the liquefied coal containing the solvent and the unreacted insoluble material containing the ash; (d) the liquefied coal containing the solvent is separated into a medium-heavy oil component and a light oil component;
(e) Medium and heavy oil components are introduced together with hydrogen gas into a second liquefaction reaction zone filled with a catalyst and subjected to hydrogen cracking; (f) The hydrogen cracked product is separated into gas and liquid; (g ) The light oil component obtained in the above (d) is separated into gas and room temperature liquid;
(h) The dredged material obtained in (f) and (g) above contains components with a boiling point of 200°C or lower in the fractional distillation region, components with a boiling point of 200 to 210°C, components with a boiling point of 210 to 350°C, and components with a boiling point of 350°C or higher. (i) All or a part of the components with a boiling point of 210 to 350°C are introduced together with hydrogen gas into a third reaction zone filled with a catalyst and hydrogenolyzed, and after the reaction, the raw acid is produced as described in (f)).
(j) the whole or a part of the component with a boiling point of 350°C or higher is introduced into the second liquefaction reaction zone of (e);
(k) boiling point 200-2;
A method for liquefying coal, which comprises introducing all or part of the 10° C. component into the slurry zone of (2).
JP18779381A 1981-11-25 1981-11-25 Liquefaction of coal Granted JPS5889688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18779381A JPS5889688A (en) 1981-11-25 1981-11-25 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18779381A JPS5889688A (en) 1981-11-25 1981-11-25 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS5889688A true JPS5889688A (en) 1983-05-28
JPS616113B2 JPS616113B2 (en) 1986-02-24

Family

ID=16212319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18779381A Granted JPS5889688A (en) 1981-11-25 1981-11-25 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS5889688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053591A (en) * 1983-09-02 1985-03-27 Mitsubishi Heavy Ind Ltd Two-stage liquefaction of coal
JPS6065091A (en) * 1983-09-20 1985-04-13 Sumitomo Metal Ind Ltd Treatment of coal-based heavy oils
JPS60258287A (en) * 1984-05-30 1985-12-20 ルールコーレ・アクチエンゲゼルシヤフト Manufacture of diesel fuel from coal middle oil
US9073805B2 (en) 2013-11-19 2015-07-07 Uop Llc Hydrocracking process for a hydrocarbon stream

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053591A (en) * 1983-09-02 1985-03-27 Mitsubishi Heavy Ind Ltd Two-stage liquefaction of coal
JPS6065091A (en) * 1983-09-20 1985-04-13 Sumitomo Metal Ind Ltd Treatment of coal-based heavy oils
JPH0410518B2 (en) * 1983-09-20 1992-02-25
JPS60258287A (en) * 1984-05-30 1985-12-20 ルールコーレ・アクチエンゲゼルシヤフト Manufacture of diesel fuel from coal middle oil
US9073805B2 (en) 2013-11-19 2015-07-07 Uop Llc Hydrocracking process for a hydrocarbon stream

Also Published As

Publication number Publication date
JPS616113B2 (en) 1986-02-24

Similar Documents

Publication Publication Date Title
US2264427A (en) Liquid process for manufacture of motor fuel
JPS6214600B2 (en)
US4111786A (en) Process for liquefying coal
US3813329A (en) Solvent extraction of coal utilizing a heteropoly acid catalyst
JPH01165692A (en) Production of light hydrocarbon fraction by hydrogenating cracking and catalytic cracking
KR970010860B1 (en) Process for the thermal cracking of residual hydrocarbon oils and hydrocarbon oils whenever produced by the same
DE3835494A1 (en) CATALYTIC TWO-STEP CONFLECTION OF COAL USING CASCADE FROM USED CREEP BED CATALYST
JPS5889688A (en) Liquefaction of coal
JPH08269459A (en) Coal liquefaction method
US1838547A (en) Process for obtaining valuable products from solid carbonaceous materials
DE4344846C1 (en) Solid and liq. hydrocarbon(s) prodn. from high-mol. wt.polyolefin.
JPS5843433B2 (en) coal liquefaction method
JPS5845479B2 (en) Sekitan no Shiyorihouhou Oyobi Souchi
US4287051A (en) Disposition of a high nitrogen content oil stream
WO2023109818A1 (en) Heavy oil product upgrading method and heavy oil product upgrading system
US4464245A (en) Method of increasing the oil yield from hydrogenation of coal
JPS6058484A (en) Coal liquefaction
JPS5931554B2 (en) Liquefaction method for low-grade coal
JPS59164389A (en) Liquefaction of coal
JPS5889687A (en) Liquefaction of coal
JPH0242399B2 (en)
DE3032676A1 (en) METHOD FOR LIQUIDATING SOLID, CARBONATED MATERIALS
JPH05320664A (en) Liquefaction of coal
JPS59164387A (en) Liquefaction of coal
JPS59164388A (en) Liquefaction of coal